Объединенный институт ядерных исследований дубна

> 2/6-80 P3-80-19

К.Д.Толстов

2342 2-80

РАСПРЕДЕЛЕНИЕ НЕЙТРОНОВ ПРИ СПОНТАННОМ ДЕЛЕНИИ ЯДЕР

Направлено в АЭ

Толстов К.Д.

P3-80-19

Распределение нейтронов при спонтанном делении ядер

Проанализированы результаты опытов по распределению нейтронов при спонтанном делении 238 U и 252 Cf. Показано, что эти распределения описываются суперпозицией биномиальных распределений для нейтронов, вылетающих из осколков деления. Показано, что величина среднего числа нейтронов для неизвестного спонтанного излучателя /ссылки 5 и 9/ заключена в пределах $3 \le \nu \le 5$, что указывает на 252 Cf. Показано, что величина среднего числа нейтронов для неизвестного спонтанного излучателя /ссылки 5 и 9/ заключена в пределах $3 \le \nu \le 5$, что указывает на 252 Cf. Показано, что моделирование распределения нейтронов по множественности с помощью биномиального или суперпозиции двух этих распределений дает более однозначные результаты, по сравнению с методом статистической регуляризации, притмененной ранее для спонтанного деления изотопов фермия.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Tolstov K.D.

P3-80-19

Neutron Distribution at the Nuclear Spontaneous Fission

Спонтанное деление ядер исследовалось для ряда изотопов во многих работах, например в $^{/1-5/}$. Однако сранительно мало данных о распределении нейтронов по множественности при спонтанном делении и неоднозначно математическое описание этого распределения.

Закономерности при спонтанном делении обуславливаются основными параметрами: массой осколков деления, их изотопическим составом и энергией возбуждения, а также эффектами, связанными с оболочечной структурой. Сложная связь между этими параметрами и их многообразие затрудняют теоретический расчет распределения нейтронов. В эмпирическом подходе, например, в работах Д. Террела^{/3/} утверждалось, что распределение Гаусса с $\sigma = 1,08$ хорошо описывает экспериментальные данные для большинства изотопов, за исключением ²⁵² Cf. Последующие работы, обзор которых сделан в /6/ показали отсутствие универсальности гауссовского распределения и непостоянство 9. При сопоставлении с опытными данными биномиального распределения в рабо- Te^{2} сделан вывод о том, что оно не удовлетворяет критерию χ^{2} . Экспериментальной основой для нахождения распределения нейтронов - $\mathcal{F}(\nu)$ является величина среднего числа нейтронов при спонтанном делении $\overline{\nu}$ и число отсчетов аппаратуры - N(n), регистрирующей n -нейтронов в акте спонтанного деления. Если задаться законом $\mathcal{F}(\nu)$, то по величинам $\overline{\nu}$ и N(n), с учетом эффективности регистрации нейтронов, очевидно, можно сделать заключение о соответствии $\mathfrak{F}(\nu)$ опытным данным. Однако экспериментальные исследования осложнены тем, что эффективность аппаратуры є, регистрирующей нейтроны, существенно меньше 100%, и может зависеть от спектра нейтронов. Поэтому калибровка эффективности по излучателю с данным спектром и $\overline{\nu}$ может потребовать коррекции є для другого изотопа. Действительно, если число делений в системе q, то число испущенных нейтронов по= q v. Если регистрируется n-нейтронов, то $\epsilon = n/q \overline{\nu}$, а так как n пропорционально q и $\bar{\nu}$, то ϵ не должно зависеть от $q\bar{\nu}$. Однако вероятность вылета нейтронов из системы или поглощения нейтронов ядрами, содержащимися в системе помимо тех, которые дают отсчеты, регистрирующие нейтроны, может зависеть от энергетического спектра нейтронов, следовательно, влиять на 🤄 Далее при увеличении и для данного изотопа средняя энергия нейтронов, очевидно, уменьшается, следовательно, уменьшается время существозания нейтронов в системе, т.е. число возможных столкновений

с ядрами, которые приводят к регистрации нейтронов. Эта поправка может быть более существенна, если ϵ определено для изотопа с $\overline{\nu}_1$, а измерения производятся с изотопом, у которого $\overline{\nu}_2$ много меньше $\overline{\nu}_1$. Следовательно, поправка может увеличиться с ростом ν . Как будет показано ниже, возможна линейная поправка $\epsilon(\nu) = \epsilon \left(1 - a\nu\right)$.

Испускание нейтронов при спонтанном делении происходит преимущественно мгновенно и из обоих осколков, на что указывает корреляция величин $\sigma(\nu)$ и $\sigma(E_K)$, $^{/6/}$ где E_K - кинетическая энергия осколков. В случае биномиального распределения $P(\nu)$ для каждого осколка:

$$P(\nu) = \frac{\nu_{\text{max}} ! P^{\nu} (1-P)^{\nu_{\text{max}} - \nu}}{\nu ! (\nu_{\text{max}} - \nu)!}, \qquad /1/$$

где $\nu_{\max} \cdot P = \overline{\nu}$, суммарное распределение в общем случае не будет биномиальным, но разность между ними будет уменьшаться при сближении $\nu_{1\max}^{+} \nu_{2\max}^{-} \nu_{\max}^{-}$. Результирующая вероятность вылета ν - нейтронов $\Omega(\nu)$ равна:

$$\Omega(\nu) = \sum_{i,j}^{i+j=\nu} P(i) \cdot P(j).$$
 /2/

Если в первом приближении принять, что вылет нейтронов происходит с равной вероятностью из каждого осколка по биномиальному закону, то $P_1 = P_2 = \vec{\nu} / \nu_{max}$ и $\nu_{1max} = \nu_{2max} = \nu_{max} / 2$. Следовательно, суммарное распределение будет биномиальным с тем же $P = \vec{\nu} / \nu_{max}$.

При испускании *v*-нейтронов и постоянной эффективности их регистрации є, вероятность регистрации п-нейтронов равна:

$$\omega(n) = \frac{\nu ! \epsilon^{n} (1-\epsilon)^{\nu-n}}{n! (\nu-n)!} , \qquad (3/2)$$

Если вероятность испускания нейтронов $P(\nu)$, то результирующая вероятность зарегистрировать n -нейтронов:

$$W(n) = \sum_{\nu=n}^{\nu_{max}} P(\nu) \frac{\nu! \epsilon^{n} (1-\epsilon)^{\nu-n}}{n! (\nu-n)!}$$
 (4/

Для биномиального распределения получим:

$$W(n) = \sum_{\nu=n}^{\nu_{max}} \frac{\nu_{max}! (P\epsilon)^{\nu} (1-P)^{\nu_{max}-\nu} (\epsilon^{-1}-1)^{\nu-n}}{n! (\nu_{max}-\nu)! (\nu-n)!}.$$
 (5/

В случае суммирования двух биномиальных распределений для нахождения W(n) по формуле /4/ вместо $P(\nu)$ используются $\Omega(\nu)$ по формуле /2/.

Если для каждого осколка справедлив пуассоновский закон при испускании нейтронов, то суммарное распределение будет также пуассоновским со средним числом нейтронов $\overline{\nu}$, равным сумме средних значений для каждого из осколков. В этом случае

$$W(n) = \frac{\sum_{\nu=n}^{\nu \max} (\bar{\nu}\epsilon)^{\nu} (\epsilon^{-1} - 1)^{\nu-n}}{n! (\nu-n)!} e^{-\bar{\nu}} .$$
 (6/

В формулах /4,5 и б/ имеется только один экспериментальный параметр – $\bar{\nu}$, в отличие от двух параметров в распределении Гаусса. Поэтому, в отличие от выводов/5-7/, где оценки $\bar{\nu}$ и σ коррелированы в нашем рассмотрении, если по величине $\bar{\nu}$ будет установлен закон распределения, то определяется величина σ . Сопоставим изложенное с результатами некоторых опытов. В maGn.1 приведены экспериментальные данные из работы /5/ для спонтанного деления 238 U и 252 Cf и расчеты W(n) по формулам /4/ и /5/. Если произошло q делений, то число отсчетов с кратностью нейтронов – n. очевидно, равно: N(n) = q.W(n), поэтому, эталонируясь к числу отсчетов с кратностью нейтронов, равной 2, получим расчетное число с кратностью n:

$$N(n)_{pacy} = \frac{N(2)}{W(2)} \cdot W(n).$$

Таблица 1

Изотоп	Максималь- нал эффек- тивность £	Расчетная эффективность	Форку-	N (n) - число событай с кратностью нейтронов - п Слева - опытные значения, справа - расчетные.										
				2		3		4		5		6		7
	0,38	0,30	5	19074 -	2989	3898	248	289	12	18	0	0,6		
, 238	-"-	0,38	5	-"	-"-	2964	-"-	521	-"-	41	-"-	I,6		
u	-"-	0,352(1-0,0357 V)	5	-*	-"-	3048	-"-	268	-"-	14	-"-	0,4		
	0,38	0,36	4	77570 -	33296	31600	796I	798I	1259	1298	130	132	8	7
C 4 ²⁵²	-"-	0,38	4		_*_	33436	_"_	9153	-*-	1587	_"_	174		II
	0,58	0,54	4	3967 -	2680	2688	II59	1139	298	308	84	52	41	5
	-"-	-"-	6	-"- ~	-"-	2665	-"-	IJII	-"-	420	-"-	139	-"-	25
	0,58	0,58	4	3967 -	2680	2963	1159	1380	298	413	84	77	41	B
	-"-	-"-	6	-"	-"-	2811	_*_	1514	_"_	612	-"-	187	-"-	41

Вероятности W(n) вычислялись по формулам, указанным в табл.1, причем расчетные значения эффективности регистрации нейтронов - ϵ подобраны несколько меньше приведенных в работе $^{/5/}$, т.к. там сказано, что это - максимальные значения. Как следует из таблицы, для 238 Ц невозможно достичь согласия с опытом без введения поправки на уменьшение эффективности регистрации нейтронов с ростом ν : $\epsilon(\nu) = \epsilon(1 - a\nu)$, что было рассмотрено ранее. Для 252 Cf при $\epsilon = 0.36$ формула /5/ дает согласие с опытными данными вплоть до кратности нейтронов 7, а для є = 0,54 при n = 7 согласия нет. Использование формулы /6/ для ²⁵² Сf при $\epsilon = 0.54$ и 0.58 улучшает согласие при кратностях нейтронов 6 и 7, но ухудшает при меньших кратностях. Таким образом, за малым исключением, ²⁵²Cf и кратности нейтронов - 7 получено согласие с опытными данными в пределах среднеквадратичной ошибки при расчетах по формуле /4/ для ²³⁸U и /5/ - для ²⁵²Cf. В качестве второго примера остановимся на проблеме поисков естественных сверхтяжелых элементов, рассматриваемой, например в 15,8-12/. В работе 5/ поиск производился в геотермальных водах полуострова Челекен, а в '9/ - в образцах метеоритов. Был сделан вывод о наблюдении нового спонтанно делящегося нуклида, причем величина $\tilde{\nu}$ оценена в пределах $4 \le \nu \le 10$ "с надежностью 95%". Однако обработка экспериментальных данных ^{/9/}, проведенная в работе ^{12/} методом наибольшего правдопо-добия, показала, что оценка $\bar{\nu}$ в ^{/9/} завышена, и было получено 1,5 < v ≤ 6. причем $\bar{\nu}$ и σ сильно коррелированы - при малых Белико о и наоборот. Из этого следует, что однозначный вывод о величинах $\overline{\nu}$ и σ сделать нельзя. Апробировать результаты /9/ описываемым нами способом не представляется возможным, т.к. мала статистика отсчетов: N(2)=36; N(3)=5. Остановимся поэтому на результатах 151, которые приведены в табл. 2. Ввиду малой статистики отдельных серий они были нами просуммированы,

Taonuna 2	2
-----------	---

Образец	Вескг	Экспо- зиция в сутках	W.P	Число событий с кратностью нейтронов					
				2	3	4	5	6	
Насыщен-	9	88	27	31	IO	I	0	0	
ная смола		IO	38	28	14	I	0	I	
Фракция	6	7	40	23	9	3	I	0	
ONODER		6	54	17	6	2	I	0	
		средняя	40	Су	ммарно	е чис.	ло отс	четов	
		40		99	39	7	2	I	

в результате чего средняя эффективность оказалась равной: $\epsilon = 0,40$. Из *табл.* 2 получим отношения:

$$\frac{N(2)}{N(3)} = 2,5 \pm 0,3 \qquad \frac{N(2)}{N(4)} = 14 \pm 3,$$

а согласно *табл.1*, эти отношения для 238 U($\bar{\nu} = 2$) равны 6,4 и 7,2 соответственно, следовательно, исключены значения $\bar{\nu} \leq 2$. Далее расчеты по формуле /5/ дают для указанных отношений: 3,5 и 15,2 при $\bar{\nu} = 3$, или 1,9 и 6,9 при $\bar{\nu} = 5$. Наконец, из *табл.1* имеем, что опытные значения этих отношений для 252 Cf равны:

$$\frac{N(2)}{N(3)} = 2,33 \pm 0,02 \qquad \frac{N(2)}{N(4)} = 9,74 \pm 0,1.$$

Таким образом, характеристики спонтанного излучателя в работах $^{15,9'}$ близки к 252 Сf. Остановимся на восстановлении распределения множественности нейтронов при спонтанном делении с помощью метода статистической регуляризации (STREG), который был использован в работе $^{13'}$ для обработки экспериментальных данных спонтанного деления 244 Cm и изотопов Fm. Стохастичность эксперимента при эффективности регистрации нейтронов ϵ , много меньшей 100%, приводит к "некорректным" уравнениям, и в $^{13'}$ утверждается, что метод статистической регуляризации на примере спонтанного деления этих изотопов "позволяет восстанавливать реальные распределения множественности". Однако это не следует из результатов, полученных STREG -методом в $^{13'}$, которые приведены в macdn.3. Обращает на себя внимание сильное расхождение величин $P(\nu)$ для 254 Fm и

Таблица 3

Расчетные вероятности Р (V)			Изотоп	²⁵⁴ Fm	²⁵⁶ Fm	257 Fm .	
при V	при V = 4 Vняма = 8			6I,I	48,3	51	
	Бином	Пуассон	V	3,98 ± 0,19	3,73 ± 0,18	4,01 ± 0,13	
V	G*=2	G* =4	GL	I,49 ± 0,2	2,3 ± 0,65	$2,92 \pm 1,68$	
·0	0,004	0,018		0,003 ± 0,012	0,000 ± 0,036	0,059 ± 0,015	
I	0,031	0,073		0,020 ± 0,027	0,080 ± 0,043	0,042 ± 0,029	
2	0,110	0,147		0,095 ± 0,030	0,157 ± 0,048	0,077 ± 0,030	
3	0,219	0,195		$0,246 \pm 0,034$	0,217 ± 0,048	0,163 ± 0,035	
4	0,274	0,195		0,317 ± 0,035	0,239 ± 0,048	0,232 ± 0,036	
5	0,219	0,156		0,223 ± 0,033	0,20I ± 0,045	0,221 ± 0,036	
6	0,110	0,104		0,076 ± 0,029	0,102 ± 0,040	0,146 ± 0,033	
7	0,031	0,060		0,012 ± 0,026	0,004 ± 0,031	0,060 ± 0,033	
8	0,004	0,030		0,008 ± 0,013	0,000 ± 0,013	0,000 ± 0,021	

средние числа нейтронов очень близки между собой $\tilde{\nu}$ (254 Fm)=3,98; $\tilde{\nu}$ (257 Fm)=4,02. Вероятности P(ν), полученные STREG -методом, сильно отличаются от их значений для биномиального распределения, который, по *табл.1*, дает хорошее согласие при близкой величине $\tilde{\nu}$ =3,75 для 252 Cf. Среднеквадратичные ошибки, полученные STREG-методом для P(0), P(7) и P(8), сами намного превышают эти величины, а для остальных P(ν) составляют 15÷50%.

ЗАКЛЮЧЕНИЕ

1. Показано, что распределение множественности нейтронов при спонтанном делении ²³⁸ U и ²⁵² Cf хорошо описывается суперпозицией биномиальных распределений для нейтронов из каждого осколка деления.

2. В случае, если эффективность регистрации нейтронов – ϵ при спонтанном делении определена, например для изотопов с $\tilde{\nu} = 4$, при $\epsilon \simeq 0.4$, то для изотопов с $\tilde{\nu} = 2$ для величин $\epsilon(\nu)$ необходима поправка, зависящая от ν и ϵ : $\epsilon(\nu) = \epsilon(1 - a\nu)$, $a = 0.1 \times \epsilon$.

3. Показано, что величина $\bar{\nu}$ для неизвестного спонтанного излучателя в работах 75,97 заключена в пределах: $3 \le \nu \le 5$, что указывает на 252 Cf.

4. Моделирование распределения нейтронов по множественности с помощью биномиального или суперпозиции двух этих распределений дает более однозначные результаты по сравнению с методом статистической регуляризации, примененной в^{/13/} для ряда изотопов.

Автор выражает благодарность за ценные замечания Ю.С.Замятнину, Л.Б.Пикельнеру и И.М.Франку.

ЛИТЕРАТУРА

- 1. Diven B.C. et al. Phys.Rev., 1956, 101, p.1012.
- 2. Hicks D.A. et al. Phys. Rev., 1956, 101, p.1016.
- 3. Tirell Ja. Phys.Rev., 1957, 108, p.783.
- 4. Даковский М., Лазарев Ю.А., Оганесян Ю.Ц. ЯФ, 1973, 18, с.724.
- 5. Флеров Г.Н. и др. ОИЯИ, Д7-11724, Дубна, 1978.
- 6. Lazarev Yu.A. At.En.Rep., 1977, 15, p.75.
- 7. Попеко А.Г., Тер-Акопян Г.А. ЯФ, 1979, 29, с.604.
- 8. Nix J.R. Phys.Lett., 1969, 30, p.1.
- 9. Флеров Г.Н. и др. ЯФ, 1977, 26, с.449.

- 10. Толстов К.Д. ОИЯИ, Р6-10515, Дубна, 1977; ОИЯИ, Р6-11677, Дубна, 1978.
- 11. Толстов К.Д. ЭЧАЯ, 1979, 10, с.784.
- 12. Frazier R. Science News, 1978, 113, p.226.
- 13. Dakowski M. et al. JINR, E11-6969, Dubna, 1973.

Рукопись поступила в издательский отдел 9 января 1980 года.