ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C34311 K-228

P3 - 6948

16/10-

1925/2-73 Э.Н.Каржавина, Ким Сек Су, А.Б.Попов

СПИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ 111,113 Сd, 157 Gd, 161,163 Dy

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИНИ

P3 - 6948

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов

СПИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ 111,113 Cd, 157 Gd, 161,163 Dy

Направлено на советско-голландско-бельгийский симпозиум "Ядерная физика с использованием тепловых и резонансных нейтронов"(Голландия, 1973 г.)

BBEOERUE Alexandre Beedenue Alexandre A

(1, 2, 3, 3, 5) , (1, 2, 3, 3, 5) , (3

and the second second

Информация о спинах нейтронных резонансов, помимо чисто компилятивного значения, представляет определенный физический интерес для уточнения наших представлений о спиновой завнсимости плотности уровней, силовых функций или о других эффектах, проявляющихся в индивидуальных и усреднеиных характеристиках резонансов. Подробная информация о спинах может оказаться полезной и при выявлении некоторых особенностей взаимодействия нейтроиов с ядрами, например таких, как проявление промежуточной структуры, поскольку промежуточное состояние должно приводить к усилению резонансов с определенным спином.

and the figure of a solution we we have the state of the

and the second state of a second state of the second state of the

الجائز المحمد المراجعة عن الأولى المراجع المحمد المحمد المحمد والأراج المحمد. • [المحمد محمد]] المحمد المحمد

Stand Standard Standard Standard and Standard Standard Standard

В настоящее время имеются обширные данные о таких параметрах нейтронных резонансов, как резонансная энергия E_0 , нейтронная ширина Г, и вместе с тем весьма ограничены сведения о спинах. Это объясняется тем, что не существует простого и надежного способа определения спинов. Определение спинов прямым методом с использованием поляризованного пучка нейтронов и поляризованной мишени до сих пор не получило широкого применения из-за трудностей создания интенсивных пучков поляризованных нейтронов в резонансной области и осушествлення достаточной поляризации ядер мишени. Оценка • спинов путем комбинации результатов измерений полного и парцнальных сечений также является не простой задачей / особенно измерение резонансного рассеяния/ и оказывается эффективной только для мишеней с низкими значениями спинов. В последние годы получили развитие методы определения спинов, с помощью которых исследуются характеристики у спектров от радиационного захвата нейтронов: вариации отношений интенсивностей низкоэнергетических переходов или среднего числа у -квантов в каскаде.

3.

Авторы нспользовали последний метод для определения спинов резонансов некоторых ядер / 1, 2, 3/. Результаты этнх работ показывают, что способ определения спинов по множественности у -квантов также не является универсальным, и для некоторых нзотопов найтн спины не удается. Поэтому нам представлялось полезным выяснить для выбранных в эксперименте ядер возможность оценкн спинового эффекта с помощью расчетов.

Расчетные оценки эффекта и сравнение с экспериментом

Напомним методику эксперимента. Образец, в котором происходит резонансный захват нейтронов, окружен иесколькими кристалламн /у нас четырьмя/ NaJ, детектирующими у -лучи, которые возникают при захвате нейтронов. В электронной схеме детектора нмеется два канала: одиночного счета и двойных совпадений, в которых пороги регистрации можно устанавливать независимо. Для каждого резонанса можно получить отношение площадн в режиме одиночного счета S_{Σ} к площади в режиме совпадений $S_c, R = S_{\Sigma}/S_c$, которое будет пропорционально следующему отношению:

$$R \approx \frac{\nu \Sigma}{\nu_c (\nu_c - 1)},$$

Где ν_{Σ} н ν_{c} - среднее число у -квантов в каскаде, энергия которых выше выбранных порогов регистрации в соответствующих каналах. Возможность определения спинов индивидуальных резонансов заключается в том, что совокупность отношений R распадается на две группы в зависимости от спина захватного состояння, поскольку ν_{Σ} н ν_{c} могут иметь заметную завнсимость от спина нейтронного резонанса $J = l \pm 1/2 / l$ - спин мишени/. Удобно определить величину спинового эффекта следующим образом:

$$= \frac{\langle R_{1-1/2} \rangle}{\langle R_{1+1/2} \rangle} .$$

K

4

Для расчетных оценок K мы воспользовались программой расчета спектра y -квантов, возникающих при захвате нейтронов, которая разработана Т. фон Эгиди $^{/4/}$. В этой программе на основе статистических предположений плотность уровней составного ядра от границы известного спектра нижних состояний до энергин возбуждения описывается формулой $\rho(E, J, \pi) = \frac{1}{T_{\pi}} e^{\frac{E - E_0 \pi}{T_{\pi}}} \frac{2J + 1}{2\sigma^2} e^{\frac{(J + 1/2)^2}{2\sigma^2}},$

параметры которой E₀, T определяются реальной плотностью иейтронных резонансов и плотностью известных нижних состояний. В программе учитываются переходы на известные нижине состояния, а вероятности электромагиитных переходов $S \ \ell \ \Lambda E$, ΔЈ, Δπ) берутся по оценкам Вайскопфа с поправками на некоторые факторы ослабления, которые принимаются разными для разных мультипольностей излучения; учитывается также разное ослабление S вблизи энергин связи или вблизи основного состояния. Используя расчетную форму у -спектра для двух возможных спинов захватного состояния, мы получили оценки спинового эффекта К в зависимости от порогов детектирования квантов. При этом порог, эквивалентный каналу совпадений, выбирался в пределах О,1' - О,5 Мэв, а одиночному каналу - в пределах 1,5 - 3,5 Мэв. Некоторые расчетные оценки спинового эффекта К_{расч}приведены в табл. 1. Их можно сопоставить с экспериментальными значениями К эксп, полученными нами для приведенных в таблице ядер в предыдущих работах /1-3/и в настоящем сообщении. Значения К расч и К эксп соответствуют одинаковым порогам регистрацин у -квантов. В расчетах проверялась устойчивость результатов к варнациям исходных параметров. Наибольшую неопределенность вносят факторы ослабления вероятностей электромагнитных переходов. Тем не менее для ряда ядер К_{расч}слабо зависит от изменений параметров, используемых в расчете. Для тех ядер, для которых наблюдался разброс значений К расч, в таблице приведены границы оценок Красч Сравнение экспериментальных и расчетных значений К обнаруживает удовлетворительное качественное согласие. Из экспериментов следует, что для надежной спиновой идентификации достаточно, чтобы спиновый эффект К >1.10.Из табл. 1 видно, что для всех ядер, для которых К расч ≥ 1.10 , в эксперименте, действительно, наблюдается не меньший эффект. Для ¹⁶⁵Но и ¹⁷¹ Yb отсутствие заметного спинового эффекта в расчетах также подтверждается экспериментально. Неудовлетворительно согласие расчетных оценок К с экспериментальными для ¹⁶¹ Dy и ¹⁶³ Dy .Однако трудно было ожидать, что грубые модельные расчеты у -спектров будут всегда давать хорошее согласие с экспериментом. Вопрос как раз и состоял в том, можно ли с помощью таких модельных расчетов предугадать наличне достаточных спиновых эффектов у выбираемых для исследований мишеней и выяснить, насколько однозначно

5

можно предсказать знак спинового эффекта, т.е. что $R_{f-1/2}R_{l+1/2}$. Как нам кажется, результаты расчетов показывают, что такие оценки спинового эффекта весьма полезны для предварительного отбора образцов, пригодных для исследований спинов нейтронных резонансов по методу множественности у -квантов, для выяснения знака спинового эффекта и выбора порогов регистрации квантов в каналах одиночного счета и совпадений.

Результаты

Измерения образцов из естественного кадмия, ^{157}Gd и естественного диспрозия проведены на нейтронном спектрометре Лабораторни нейтронной физики ОИЯИ с разрешением ≈ 16 нсек/м. Методика измерений и обработка экспериментальных данных была такой же, как в /1.2/. Для оценки достоверности определяемых значений спинов резонансов мы использовали метод, предложенный в /s/, где вероятности значений спина 1+1/2 или 1-1/2 вычисляются следующим образом:

Здесь a, b - средние R для двух возможных значений спина; σ_i - дисперсия R_i в которую входит, кроме $\sigma_{i \ ЭКСП}$, еще дисперсия, обусловленная портер-томасовскими флюктуациями, σ_{PT} , т.е.

$$\sigma_i^2 = \sigma_{i \ \Im K C \Pi}^2 + \sigma_{PT}^2 .$$

 W_a , W_b - априорные вероятности иметь резонансу спин l + 1/2или l - 1/2, которые разумно положить

$$W_{a} \sim g_{a} = \frac{1}{2} \left[1 + (2l+1)^{-1} \right],$$

$$W_{b} \sim g_{b} = \frac{1}{2} \left[1 - (2l+1)^{-1} \right].$$

Из условий экстремума функции правдоподобия для всей совокупности наблюдаемых резонансов можно найти параметры a, b, σ_{PT} , а следовательно, и вероятности W_i^a и W_i^b .

Результаты идентификации спинов резонансов исследованных образцов приведены в табл. 2, 3, 4. В измерениях с образцами кадмия и диспрозия использовались пороги в канале совпадений О,3 Мэв, в одиночном канале - 2,5 Мэв. Образец ¹⁵⁷Gd имел обогащение ~ 95%, нзмерения с ним проводились при нескольких порогах в одиночном канале /2,О-3,О Мэв/ и пороге О,1 Мэв в канале совпадений. На основании проведенных расчетных оценок спинового эффекта можно было ожидать, что использова ние амплитудных окон в каналах совпадений в пределах О,1 -2,О Мэв будет приводить к заметному увеличению спинового эффекта. Однако применение таких окон в измерениях с ¹⁵⁷ Gd и Ду не привело к ожидаемому эффекту. Это расхождение можно объяснить тем, что при использовании дифференциального окна в реальном детекторе в этом окне на самом деле регистрируется значительная доля жестких квантов за счет комптонэффекта в кристаллах, в то время как при получении расчетных оценок К подразумевалось полное поглощение квантов.

Используя параметры нейтронных резонансов ¹⁵⁷ Gd из нашей работы / 6/ и спины, полученные в настоящей работе, мы нашли, что силовые функции ¹⁵⁷ Gd для двух возможных значений спина имеют следующие значения:

 $S_0 = /2, 1 \pm 0, 7/.10^{-4}$ для J = 1, н $S_A = /2, 3 \pm 0, 6/.10^{-4}$ для J = 2.

Средние расстояния между резонансами составляют $D_{J=1} = 13,3\pm1,5$ и $D_{J=2} = 9,5\pm0,9$ эв, что позволяет дать следующую оценку спинового фактора, входящего в формулу лютности уровней, даваемую статистической моделью ядра: $\sigma = 3,5\pm4,0$.

С целью увеличения числа определяемых спинов для резонансов кадмия и диспрозия мы планируем продолжить измерения на образцах разделенных изотопов.

7

Авторы выражают признательность В.И.Фурману и В.Г.Николенко за полезные обсуждения и интерес к работе и И.И.Шелонцеву за помощь в проведении расчетов на ЭВМ.

Литература

- 1. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. ОИЯИ, РЗ-6092, Дубна, 1971.
- 2. Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. ОИЯИ, РЗ-6237, Дубна, 1972.
- 3. E.N.Karzhavina, Kim Sek Su, A.B.Popov. The determination of spins of neutron resonances by the gamma ray multiplicity method. Conference on nuclear structure study with neutrons. Budapest, 1972.
- 4. T. von Egidy. Statistical calculation of neutron capture radiation. Proceedings of the international simposium on neutron capture gamma ray spectroscopy. Studsvik, Aug. 1969, IAEA, Vienna, 1969, p. 541.
- 5. A.Stolovy et al., Phys.Rev., 5C, 2030, 1972.

8

6. Э.Н.Каржавина, Нгуен Фонг, А.Б.Попов. ОИЯИ, РЗ-3882, Дубна, 1968.

Рукопись поступила в издательский отдел 14 февраля 1973 года.

έĻ,

a 35

	Ядро мишень	Cunn	Karcn	Kpack	Bn Mal	N	Emarce Marc
I.	105 Pd	5/2	1,29	I,I4-I,I9	9,55	I2	2,2
2.	"" Cd	I/2	I,27	1,12-1,17	9,05	9	2,2
3.	" ³ Cd	I/2	I,27	I,I2-I,I6	9,05	8	2,2
4.	443 Sm	7/2	I,23	I,24	8,14	I 4	2,3
5.	449 Sm	7/2	I,I8	1,13	8,01	9	I,4
6.	1576d	3/2	I,II	I,II	7,94	I 4	I,6
7.	"Dy	5/2	I,20	I,04-I,I3	8,19	6	I,0
8.	165 Dy	5/2	1,20	I,00-I,I4	7,64	I4	1,3
9.	165 Ho	7/2	I,00	I,0I	6,33	17	0,48
10.	HI Yb	I/2	1,00	I,03	7,98	21	2 , I
II.	173 Yb	5/2	1,13	I,09	7,50	7	I,6
12.	10 05	3/2	I,I7	I,II	7,75	I 4	I,8

Таблица І

Ви - энергия связи нейтрона;

- № число известных нижних состояний, включенных в расчёт;
- верхняя граница дискретного спектра.

Таблица 3 Спини резонансов ^{157}G d $\alpha = 1.978$, b = 2.192, 57 = 0.081

	Спины резонансов ¹¹¹ Cd , ¹¹³ Cd					
0	L = 1.596,	6 = 2.04	2, G_{PT}	= 0.152		
E _O ab	Изотоп	Ri	Giyken	Спин	Вероят- ность %	
18.3	113 e	I.505	0.038	i I di	100	
27.5	III	I.555	0.006	· I · ·	100	
56.I	113	2.222	0.174	0	90	
63.7	113	I.603	0.015	I	99	
84.8	113	I.653	0.007	I	99	
86.0	III	I.911	0.021	0	65	
99.4	111	I.480	0.010	I	100	
102.5	III	I.247	0.029	I	100	
108.3	II3	I.596	0.013	I	99	
138.0	III	I.499	0,014	I	100	
I42.9	113	I.904	0.052	.0	59	
158.8	113	1.623	U.022	I	99	
163.9	III S	I.655	0.010	I	99	
192.5	113	2.088	0.022	0	98	
215.I	113	I.589	0.017	I	100	
225.I	III	1.702	0.011	I	9 6	
231.8	III	I.670	0.0II	I	98	
260.8	113	I.689	0,020	' I	97	
269.2	113	I.863	0.030	Ĩ	57	
275.3	III	I.6I5	0.025	I	99	
291.1	II3 . 1.5	I.955	0.075		73	
311.4	III	I.985	0.065	. 0	83	
331.7	III	1.189	0.077	I	100	
354.9	III	I.548	0.023	I	100	
390.T	111	2.334	0.018	0	100	
414.0	113	1.702	0.021	I	96	
430.8	113	1.650	0.033	I	98	

Таблица 2

Еоэв	Ri	Ci skan	J	Вероятность
16.17	2.121	0.012	I	65
16.77	I.962	0.003	2	99
20.5	I.9II	0.004	2	100
21.6	I.944	0.016	2	99
23.2	2.225	0.023	I	97
25.3	2.034	0.010	2	89
40.06	2.170	0.032	I I	86
44.I	I.973	0.007	2	98
48.7	I.90I	0.005	2	100
58.I	I.972	0.006	2	98
66.4	2.271	0.015	Ί	99
81.2	2.195	0.011	Ī	95
82.0	2.056	0.016	2	80
87.0	2.035	0.0I4	2	88
96.5	2.152	0.015	I	83
100.0	2.179	0.013	I.	92
I04.8	2.214	0.012	I	97
107.3	1.961	0.022	2	98
IIO.O	I.927	0.009	2	100
115.2	I.95I	0.024	2	99
120.7	I.991	0.026	2	9 6.
135.1	I.827	0.032	2	100
137.9	2.008	0.010	2	95
138.8			(I)	
143.7	I.989	0.011	2	97
I48.3	2.179	0.025	I	90
156.4	I.939	0.018	2	99
164.8	2.179	0.023	I	9I
171.3	2.314	0.016	·I	100
178.6	I.975	0.023	2	98
182.9	2.164	0.026	I	86
190.6	2.444	0.028	I	100
194.4	I.969	0.016	2	98

H

10

Та блица 4 Спины резонансов ^{161, 163} Ду CL = 2.153, **С** = 2.587, *Срт* = 0.130

· ·	•			
202.8	2.09I	0.038	(2)	59
207.7	I.948	0.013	2	99
217.2	2.045	0.062	2	(79)
22I.I	I.890	0.069	2	98
228.3	1.711	0.043	2	100
239.2	2.172	0.015	I	. (95)
246.4			(2)	\sim
250.2	2.I28	0.054	I	. eT
260.I			(Ì)	
265.8	I.997	. 0,06I	. 2 .	9 I
268.2	I.964	0.078	2	93
281.8	2.105	0.028	(1)	52
∠87.6	2.099	0.037	(2)	53
290.8	2.198	0.034	Ī	93
293.7	2.180	0.060	I	81
300.9	2.306	0.046	I	99
306.4	*	and and a second se	(2)	
319.0			(1)	- ´
32I	•		(2)	
339			(2)	

E _o an	Изотоп	Изотоп Ri Giman J		J	Вероятность
7.72	161	1.991	0.015	3	100
I0.4	161	2.908	0.013	2	100
I0.99	I6I	2.277	0.020	3	94
12.66	IGI	2.890	0.22I	2	96
I4.2	161	2.164	0.008	3	100
16.2	163,161	2.327	0.007	3	82
16.6	161	2.162	0.008	3	100
18.4	161	2.125	0.009	3	100
. I9.6	I63	2.434	0.027	2	77
20.3	161	2.747	0.017	2	TOO
23.3		9 8 1 B		(3)	n en station (the state
29.0	161	2.204	0.023	.3	- 99
29.8	161	2.034	0.038	3	100
34.9	161.163	2.200	0.050	3	99
35.7	161.163	2.485	0.013	2	93
37.7	161	2.078	0.011	3	100
38.4	161	2.120	0.010	3 9 1	T00
43.2	161	2.006	0.011	3	100
45.0	161	2.167	0.013	3	100
50.2	163	2.227	0.025	3	98
50.8	161	2.098	0.023	3	100
51.7	161	2.281	0.006	3	94
55.0	161	2.484	0.011	2	93
55.8	163	2.510	0.050	2	94
58.9	163.161	2.625	0.011	2	100
61.3	161	2.209	0.022	- 3	99 ····
63.6	161	1.962	0.050	3	100
65.9	163.161	2.502	0.019	2	95
				en Thurs	

And the

n en el el situar Altre