

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов

СПИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ 147_{Sm И} 149_{Sm}

1972

PHIMK

неннечтілун ричетле

P3 - 6237

3 - C

£

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов

СПИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ 147 Sm И 149 Sm

Спериненный инсклут изорных исследований БИБЛИОТЕНА 1. В предыдущей работе авторов ^{/1/} описана методика (аналогичная предложенной в ^{/2/}) определения спинов нейтронных резонансов по множественности _у -квантов, испускаемых при захвате нейтронов. В данном сообщении приводятся полученные с помощью этой методики результаты исследования спинов резонансов ¹⁴⁷ Sm и ¹⁴⁹ Sm. На установке из 4-х кристаллов Nal, описанной в ^{/1/}, проведены измерения выхода ^у -лучей в зависимости от времени пролета нейтронов в режиме совпадений и в режиме одиночного счета. Измерения выполнены на 250-метровой пролетной базе в бустерном режиме работы реактора, что обеспечивало разрешение ≈16 нсек/м. Образцы ¹⁴⁷ Sm и ¹⁴⁹ Sm представляли собой окись самария с обогащением по основному изотопу≈ 95%.

f

Обработка полученных спектров проводилась на осциллографе со световым карандашом на ЭВМ БЭСМ-4 ^{/3/}. В результате обработки были получены площади резонансов S_{Σ} -в режиме одиночного счета и S_c -

в режиме совпадений, а также их отношения $R \frac{S_{\Sigma}}{S_c}$. Порог в канале одиночного счета составлял ≈ 3 Мэв, а в канале совпадений – 0,33 Мэв. Анализ отношений площадей позволил провести спиновую идентификацию почти всех разрешенных резонансов ¹⁴⁷ Sm в области до 250 эв и ¹⁴⁹ Sm в области до 140 эв. Кроме того из анализа графиков совмещенных спектров можно было указать спины плохо разрешенных резонансов, расположенных в области больших энергий. Результаты спиновой

3

идентификации резонансов ¹⁴⁷ Sm и ¹⁴⁹Sm приведены в таблицах 1 и 2. В этих таблицах показаны также данные других авторов. В столбцах таблиц, где приведены наши результаты, в скобках указаны спины, которые мы приписываем плохо разрешенным резонансам из анализа совмещенных спектров (рис. 1-4).

На рис. 5 приведены полученные значения R° для разрешенных резонансов ¹⁴⁷ Sm и ¹⁴⁹ Sm .

2. Из таблиц 1 и 2 видно, что наша идентификация спинов в большинстве случаев согласуется с результатами других авторов. Полученные подробные сведения о спинах нейтронных резонансов ¹⁴⁷ Sm и ¹⁴⁹ Sm позволяют с использованием наших данных о параметрах резонансов этих изотопов ^{/7/} проанализировать спиновые эффекты в плотности уровней и силовых функциях.

На рис. 6,7 представлена зависимость числа наблюдавшихся уровней с определенным спином от энергии нейтронов. Для ¹⁴⁷ Sm наблюдается линейная завысимость $N_{I}(E)$ для обоих спиновых состояний как в области до 250 эв (где спиновая идентификация достаточно надежна), так и в более высокой области до 400 эв (где возможны ошибки в определении спинов). Из рис. 6 видно, что для ¹⁴⁷ Sm среднее расстояние между резонансами с J = 3 $D_3 = 15,0 \pm 1,5$ эв, а с J = 4 $D_4 = 12,8 \pm 1,2$ эв. Как было отмечено в ^{/7/}, в условиях нашего разрешения для ¹⁴⁹ Sm в области выше 130 эв наблюдается заметный пропуск уровней, что можно также видеть на рис. 7. Оценка средних расстояний между уровнями для двух спиновых состояний ¹⁴⁹ Sm по линейным участкам графиков рис.6,7 приводит к следующим значениям: $D_3 = 5,2\pm0,5$ эв, $D_4 = 4,1\pm0,3$ эв.

	Таблица]	[
Спины	резонансов	¹⁴⁷ Sm

<u> </u>	Спин резо	нанса			
Е _о эв	Данная работа	/4/	/5/	Е _о эв	Данн рабо
3,4	3	3		225.3	3
18,3	4	4	4	228.6	(3)
27,I	3	3	3	240.6	4
29,7	3	3	3	247.7	4
32,I	4	(4)	4	256.5	(4)
39,7	4	(4)	4	263.5	(3)
40,6	3	3	3	265.8	(4)
49,3	4	(4)		271.0	3
57,9	3	(4)		274.4	3
64 ,9	4	(4)		283.3	4
76,0	4			289.4	(4)
79,8	4		4	290.5	
83,4	3	3	3	308	(3)
99,5	4			312	(4)
102,6	3	3		321	(3)
106,8	4			330	(3)
108,4	(4)			332	(4)
I23 , 4	3	3	3	340	(4)
I40,0	4		3	350	(3)
I43,3	4			359	(4)
151.3	3		3	362	(3)
160.8	4		-	379	(3)
163.6	4		4	382	(3)
171.7	4		4	39I	(4)
179.7	3		•	398	(4)
183.7	3	3		399	(3)
190.8	3	-		406	(3)
193.5	4			412	(4)
198.0	(3)				
205.8	4				
221.6	3				

5

4

^E o	Данная работа	/6/	/5/	Eo	Данная работа	/5/	Eo	Данная работа	/5/
4,98	4	4	4	83,9	4		I85.	4 3	3
6,48	3	3	4	87,7	3		I88	(4)	-
8,93	4	3		90,6	4	4	192.	9 4	
[2,0	3	3	3	92,I	3		195	0	
I4 , 9	4	3	4	95,6	4		197	4 3	
15,8	3	3	3	96,3	3		201	I	
[7,I	4	4	4	98,I	4		203	7 3	
23,2	4	4	4	99,5	4		210	.94	
24,6	(4)			I0I,6	3		214	7 3	
25 ,2	. 3	3		104,7	4	4	218	2 4	
26,I	4	3	4	107,0	3		225	.6 4	
27,9	3	3		I09,0	4	4	228	.2 (4)	
29,9	3	3		III,2	3		230	T 3	
30,7	4	4	4	II5,I	4	(3)	234.	.0 (4)	
33,9	4	4	4	II7,0	3		238	4	
40,I	3		3	TT9.4	3		240.	I (3)	
4 I ,3	3		3	I2I.7	(4)		244	3 (4)	
44,3	4		4	125.2	4	(3)	248	7 3	
45,I	~. 4		4	I30.3	4	3	254	7 3	
49,5	3			I34.I	4	(3)	258	.9 (4)	
50,5	(3)		(4)	I38.6	(4)	N = 7			
5I , 6	4		4	I4I.0	(3)				
57,4	4		4	I44.2	4				
59,7	4		4	I45.7	(4)				
60,9	3		3	I46.9	4				
62 , I	4		4	I49.5	(4)				
64,7	3		4	154.7	4				
68,3	4		4	157.5	3				
70,8	3		3	158.7	(3)				
72,2	(3)			I68.3	3	(3)			
73 , I	4		4	173.5	(3)				
74,6	4		(4)	174.7					
75,3	3		3	177.8	4	(3)			
76,9	4			179.9	3				
-				-					

Таблица 2

Рис. 1. Самарий-147. Сплошная кривая - спектр в режиме совпадений, точки - спектр в режиме одиночного счета. Показаны участки спектров, нормированные по резонансу 57,8 эв.

7

 $\frac{1}{\sqrt{1-c_{f}}}$

Рис. 2. Самарий-147. Сплошная кривая – спектр в режиме совпадений, точки – спектр в режиме одиночного счета. Показаны участки спектров, нормированные по резонансу 79,8 эв.

۰.,

Рис. 3. Самарий-149. Сплошная кривая - спектр в режиме совпадений, точки - спектр в режиме одиночного счета. Показаны участки спектров, нормированные по резонансу 33,8.

θ

Рис. 4. Самарий-149. Сплошная кривая - спектр в режиме совпадений, точки - спектр в режиме одиночного счета. Показаны участки спектров, нормированные по резонансу 119,4.

-8

Рис. 5. Значения R^o для разрешенных резонансов ¹⁴⁷Sm и ¹⁴⁹Sm . (Для большинства точек ошибки меньше их размера).

Рис. 6. Зависимость числа резонансов с разными спиновыми состояниями от энергии нейтронов для ¹⁴⁷ Sm .

11

Полученные значения D J для разных спинов дают такое отношение

$$\frac{D_4}{D_3} = \frac{\rho_3}{\rho_4} = 0.85 \pm 0.11 \text{ m} 0.79 \pm 0.10$$

для ¹⁴⁷ Sm и ¹⁴⁹ Sm , соответственно. Эти данные интересно сопоставить с общепринятой теоретической зависимостью плотности уровней от спина при постоянной энергии возбуждения ядра ^{/8/}

$$\rho(J) = const(2J + 1) exp\left[-\frac{(J + \frac{1}{2})^2}{2\sigma^2}\right].$$
 (1)

Сравнение $(D_4/D_3)_{3 \text{ ксп}}$ с теоретическим отношением, даваемым формулой (1), позволяет получить оценку спинового фактора σ , входящего в эту формулу: для 147 Sm $\sigma = 7_{+\infty}^{-2.5}$, для 149 Sm $\sigma = 12_{+\infty}^{-6.5}$, т.е. для обоих изотопов $\sigma \ge 4,5$, что согласуется с оценками величины σ в этой области атомных весов, даваемых разными авторами (например, $^{/8/}$).

Оценивая силовые функции для разных спиновых состояний как $S_J^{\circ} = \frac{\Sigma \Gamma^{\circ}}{\Delta E}$ и используя данные из /7/ для ¹⁴⁷ Sm , мы получили (рис. 8-10), что по интервалу до 260 эв $S_J^{\circ} = 4,4 \pm 1,6$ (число резонансов m = 18) и $S_4^{\circ} = 4,2 \pm 1,5$ (m = 20) (S° везде в единицах 10⁻⁴). Оценка S° по интервалу до 400 эв дает $S_3^{\circ} = 3,9 \pm 1,2$ и $S_4^{\circ} = 3,8\pm 1,1$ ($m_3 = 25$, $m_4 = 32$).

Полученные значения S_J° показывают, что у ¹⁴⁷ Sm не наблюдается никакой зависимости силовой функции от спина резонансов. Не имеется существенного различия в силовых функциях для разных спинов и у ¹⁴⁹Sm. Так, на интервале до 120 эв, где надежна спиновая идентификация и нет пропуска резонансов, S° = 6,3±2,1 (m = 23) и S° =7,7±2,2 (m = 30).

Рис. 7. Зависимость числа резонансов с разными спиновыми состояниями от энергии нейтронов для ^{149}Sm .

Рис. 8. Зависимость суммы приведенных нейтронных ширин резонансов с разными спиновыми состояниями от энергии нейтронов.

Рис. 9. Зависимость суммы приведенных нейтронных ширин резонансов с разными спиновыми состояниями от энергии нейтронов для 147 Sm .

Рис. 10. Зависимость суммы приведенных нейтронных ширин резонансов с разными спиновыми состояниями от энергии нейтронов для ¹⁴⁹ Sm .

Для интервала до 250 эв получены такие значения: $S_3^\circ = 4, 1 \pm 1, 1$ (m = 36) и $S_4^\circ = 5, 8 \pm 1, 4$ (m = 46).

Если принять во внимание более достоверные оценки S_J° (для ^{147}Sm по интервалу до 260 эв, а для ^{149}Sm по интервалу до 120 эв), то полученные нами величины S_J° и S_4° не дают никаких оснований предполагать существование спиновой зависимости в силовых функциях для ^{147}Sm и ^{149}Sm . В этом отношении наши результаты для изотопов Sm противоречат выводам, сделанным в работе $^{/9/}$.

В нашей работе $^{/7/}$ обращалось внимание на флуктуацию в зависимости нарастающей суммы $\Sigma 2 g \Gamma_n^{\circ}$ от энергии нейтронов для изотопа $^{149} Sm$. Вычисления S° по интервалу 0-40 эв (≈ 20 резонансов) и по интервалу 40-100 эв (≈ 25 резонансов) приводили к значениям $S^{\circ} = 2,8 \pm 1,0$ и 11,7 $\pm 3,6$, соответственно. Результаты настоящей работы показывают, что эта флуктуация ни в коей мере не связана с группированием резонансов с определенным спином.

Изучение распределений приведенных нейтронных ширин резонансов исследованных изотопов *Sm* приводит к заключению, что распределения Γ_n° для резонансов с *J* = 3 и *J* = 4 как для ¹⁴⁷ *Sm*, так и для ¹⁴⁹ *Sm* находятся в удовлетворительном согласии с распределением Портера-Томаса,

Авторы выражают признательность В.Б. Злоказову за помощь в обработке экспериментальных данных на ЭВМ.

Литература

- Э.Н. Каржавина, Ким Сен Су, А.Б. Попов. Препринт ОИЯИ РЗ-6092, Дубна, 1971.
- 2. C.Coceva, F.Corvi et al. Nucl. Phys. Al17, 586 (1968).
- В.Б. Злоказов, Л.С. Нефедьева. Сообщение ОИЯИ, 10-5966, Дубна, 1971.
- 4. И. Вильгельми, Ю.П. Попов, М. Пшитула, Р.Ф. Руми, М. Стэмпински. Сообщение ОИЯИ, Р3-5553, Дубна, 1970.
- 5. B.Cauvin, A.Lottin, A.Michaudon et.al. Saclay (1971).
- 6. F.Becvar, R.Chrien, O.Wascon. BNL-15056 (1970).
- 7. Э.Н. Каржавина, А.Б. Попов. Препринт ОИЯИ, РЗ-5655, Дубна, 1971.
- 8. А.В. Малышев. Плотность уровней и структура атомных ядер. Атомиздат, Москва, 1969.

9. C.Newstead, J.Delaroche, B.Cauvin. International Conference on statistical properbies of nuclei. Report 5.11. August 23-27, 1971. Albany.

Рукопись поступила в издательский отдел 18 января 1972 года.