K-228 ОБЪЕДИНЕННЫЙ институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 422

P3 - 6092

20/x11-71

Э.Н.Каржавина, Ким Сек Су, А.Б.Допов

ОПРЕДЕЛЕНИЕ СПИНОВ НЕЙТРОННЫХ РЕЗОНАНСОВ ПО МНОЖЕСТВЕННОСТИ У-КВАНТОВ

1971

NHOLINIH

GN40

P3 - 6092

ŧ

Э.Н.Каржавина, Ким Сек Су, А.Б.Попов

f

ОПРЕДЕЛЕНИЕ СПИНОВ НЕЙТРОННЫХ РЕЗОНАНСОВ ПО МНОЖЕСТВЕННОСТИ У-КВАНТОВ

Доклад, представленный на XXII совещание по ядерной спектроскопии и структуре атомного ядра (Киев, 25-28 января 1972 года)

В работе Драпера и Шпрингера^{/1} (1960 г.) было получено указание на существование зависимости числа испускаемых у-квантов от спина нейтронного резонанса. Однако прошло несколько лет, прежде чем был предложен простой метод обнаружения вариации множественности у-квантов и была показана возможность его применения для идентификации спинов нейтронных резонансов^{/2/}. В настоящей работе описана попытка использовать имеющийся в ЛНФ (*n*. *y*) -детектор из 4 кристаллов *Naj* для определения спинов нейтронных резонансов этим методом.

<u>Метод</u>

Описываемый метод^{/2/} основан на предположении, что среднее число ступеней в каскаде у -квантов, испускаемых после захвата нейтронов, зависит от различия спинов начального и конечного состояний. То есть предполагается, что средняя множественность < ν > и распределение множественности имеют зависимость от спина резонансов. При этом

есть надежда, что портер-томасовские флюктуации будут существенно ослаблены, если подавляющая часть первичных переходов заканчивается в области с большой плотностью уровней. Используя двухкристальный детектор у -лучей из кристаллов Nal в двух режимах (одиночного счёта и совпадений), авторы работы^{/2/} показали, что при соответствующем выборе порогов регистрации у -лучей отношение отсчётов по резонансам, полученных в режиме одиночного счёта, к отсчётам в режиме совпадений проявляет зависимость от эффективной множественности У -квантов в каскаде и тем самым от спина резонансов.

Для многокристального детектора эффективность в режиме суммирования дается выражением

 $W_{\Sigma} = 1 - (1 - n\xi)^{\nu} ,$

где *n* – число кристаллов, *ξ* – произведение телесного угла на эффективность для одного кристалла. Эффективность в режиме регистрации двойных и любых других совпадений определяется формулой

$$W_{-} = l + (n-1) (1-n\xi)^{\nu} - n [l-(n-1)\xi]^{\nu}$$

Очевидно, что эффективная множественность регистрируемых каскадов существенно зависит от порога $E_{\text{пор}}$ детектирования у -квантов. Как показано в², отношение множественностей для разных начальных спинов $v_{l-\frac{1}{2}}/v_{l+\frac{1}{2}}$ меняется в зависимости от $E_{\text{пор}}$ и заметное различие в v_{j} проявляется при достаточно высоком пороге: 243 Мэв. При этом эффективная множественность для меньшего начального спина будет большей, т.е. $v_{l-\frac{1}{2}} > v_{l+\frac{1}{2}}$. Если из соображения высокой скорости счёта в канале совпадений выбрать низкий порог, то можно ожидать, что эффективность в режиме совпадений будет слабо чувствительна к спинам резонансов. Тогда отношение площадей резонансов в режиме одиночного счёта с большим порогом к площадям резонансов в режиме

совпадений с низким порогом будет содержать в себе информацию о вариациях эффективной множественности и о спинах резонансов. При условии малости величины ξ это отношение площадей будет иметь вид

$$\frac{S_{\Sigma}}{S_{c}} = R_{J} = \frac{\nu^{\Sigma} \xi^{\Sigma}}{\frac{1}{2} (n-1) \nu^{c} (\nu^{c}-1) \xi_{c}^{2}}$$

Таким образом, R_{I} будет иметь определенную зависимость от спина резонанса, а именно: $R_{I-\frac{1}{2}} > R_{I+\frac{1}{2}}$.

Для сопоставления результатов разных серий измерений удобно ввести величину

$$R_{J}^{0} \doteq \frac{R_{J}}{\frac{1}{2} \left(\langle R_{I}, \frac{1}{2} \rangle + \langle R_{I}, \frac{1}{2} \rangle \right)}$$

где $< R_{l+\frac{1}{2}} >$ практически являются средними значениями "больших⁴и "малых" R_{l} для наблюдаемых резонансов.

Величина R_J нечувствительна к эффекту захвата нейтронов после рассеяния в резонансах, так как этот эффект зависит только от толщины образца и параметров резонанса. Что касается искажений R_J из-за различной чувствительности каналов совпадений и одиночного счёта к рассеянным нейтронам, то их можно оценить следующим образом. Площадь резонанса S пропорциональна $A \frac{\Gamma_V}{\Gamma} \epsilon_{\gamma} + A \frac{\Gamma_n}{\Gamma} \epsilon_n$, поэтому $\frac{S_{\Sigma}}{S_c} = \frac{\epsilon_{\gamma}^{\Sigma} + \frac{\Gamma_n}{\Gamma_V} \epsilon_n^{\Sigma}}{\epsilon_{\gamma}^c} = \frac{\epsilon_{\gamma}^{\Sigma}}{\epsilon_{\gamma}^c} = \frac{\epsilon_n^{\Sigma}}{\epsilon_n^c} \approx \frac{\epsilon_{\gamma}^{\Sigma}}{\epsilon_{\gamma}^c} - \frac{\Gamma_n}{\epsilon_{\gamma}^c} (\frac{\epsilon_n^{\Sigma}}{\epsilon_{\gamma}^c} - \frac{\epsilon_n^c}{\epsilon_{\gamma}^c})$],

где $\epsilon \frac{\Sigma}{\gamma}$, $\epsilon \frac{\Sigma}{n}$ - эффективность регистрации захвата и рассеяния нейтронов в канале одиночного счёта, а ϵ_{γ}^{c} . ϵ_{n}^{c} - соответствующие эффективности в режиме совпадений. Искомое истинное отношение $R_{J} = \epsilon_{\gamma}^{\Sigma} / \epsilon_{\gamma}^{c}$. Видно, что для резонансов, у которых $\Gamma_{n} \sim \Gamma_{\gamma}$, необходимо иметь $\epsilon_{n} \ll \epsilon_{\gamma}$.

Измерения и обработка данных

Четыре кристалла Nal (размером 100х100 мм каждый) располагались крестообразно в плоскости, нормальной к оси пучка нейтронов. Пучок формировался парафиновыми и свинцовыми коллиматорами до диаметра образцов 70 или 100 мм. Между образцами и кристаллами помещалась защита от рассеянных нейтронов толщиной 25 или 35 мм (парафин с карбидом бора).

На рис. 1 приведена блок-схема детектора. Схема совпадений работала в режиме любых двойных и выше совпадений, порог в каждом канале этой схемы был 330 кэв. С помощью схемы антипропускания на дискриминатор пропускались только одиночные импульсы с одного из кристаллов. Дискриминатор в канале одиночного счёта позволял устанавливать порог в пределах от 1 до 6 Мэв. Настройка порогов проводилась с помощью источников ¹³⁷Cs , ⁶⁰Co и калибровочного генератора. Импульсы после дискриминатора и схемы совпадений передавались через формирователи по кабелю в измерительный центр ЛНФ. Детектор располагался на 750-метровой пролетной базе. В экспериментах использовались 4096-канальные временные анализаторы. Измерения проводились или одновременно на двух анализаторах, или на одном последовательно в разных режимах. Данные с анализаторов передавались на ЭВМ БЭСМ-4, где подвергались обработке. Методом наименьших квадратов экстраполировалась подложка под резонансными пиками, которая затем вычиталась из экспериментального спектра, вычислялись площади резонансов и проводилась нормировка по какому-либо изолированному резонансу спектра в режиме одиночного счёта на спектр в режиме совпадений. Полученные в двух режимах измерений значения площадей давали возможность вычислить отношение S_Σ / S_c = R . Графики совмещенных спектров давали наглядную картину разбиения резонансов на две группы, что позволяло качественно проводить идентификацию резонансов по спинам.

Результаты

Измерения проводились в режиме реактора при разрешении 100 нсек/м и мошности 25 квт. В качестве образцов были выбраны ¹⁶⁵Но, обогащенные изотопы ¹⁴⁷Sm и ¹⁴⁹Sm (содержание основного изотопа ~ 95%), естественный Os. Гольмий был взят как изотоп с известными спинами для проверки данной методики. Однако многократные измерения и варьирование порога в одиночном канале не дали положительного результата: не удалось установить корреляции величины R со спинами резонансов. Так, вычисленные средние значения $\langle R_J \rangle$ для разрешенных трех уровней с J =3 (8,15; 18,1; 35,3 эв) и с J =4 (12,6; 21,0 и 39,4 эв) при изменении порога в одиночном канале от 1,6 до 3,0 Мэв отличаются не более чем на 2%. Отсутствие корреляции R^0 со спином видно из табл. 1. Отсутствие заметного спинового эффекта у¹⁶⁵Но показывает также рис. 2, на котором сплошной кривой изображен спектр в одиночном канале, а точками – спектр в канале совпадений. Нормировка спектров выполнена по резонансу 12,6 эв.

Изотопы 147,149 Sm представляли интерес в связи с выполненными недавно измерениями параметров резонансов этих ядер $^{/4/}$, а также в связи с исследованием спектров a -частиц в резонансах 147 Sm $^{/5/}$.

Эксперименты с ¹⁴⁷Sm и ¹⁴⁹Sm выполнены при трех значениях порога в одиночном канале (1,6; 2,3; и 3,0 Мэв), а с ¹⁴⁹Sm – и при разной толшине защиты между образцом и кристаллами. На рис. 3 и 4 приведены некоторые результаты исследований ¹⁴⁷Sm и ¹⁴⁹Sm , а в табл. 2 и 3 - некоторые результаты вычисления R^{0} . В таблицах даны значения спинов, которые можно приписать резонансам на основании полученных данных. В скобках указаны спины, найденные путем качественного анализа совмещенных спектров. В таблицах приведены также спины, измеренные другими авторами. Отметим совпадение идентификации спинов для^{, 147}Sm (за исключением резонанса 57,8 эв) в настоящей работе с аналогичными

данными, полученными при изучении спектров a -распада нейтронных резонансов^{/5/}. В табл. 3 приведены спины ¹⁴⁹Sm, полученные в результате анализа γ -спектров^{/6/}. В последнее время появилось сообщение о спинах резонансов ¹⁴⁷Sm и ¹⁴⁹Sm, полученных аналогичной методикой в Сакле^{/7/}. Наши результаты для ¹⁴⁷Sm и¹⁴⁹Sm хорошо согласуются с данными работы^{/7/} и несколько расходятся для ¹⁴⁹Sm с результатами работы^{/6/}.

Данные исследования естественного Os представлены на рис. 5 и в табл. 4. Изотопическая принадлежность резонансов Os указана по^{/8/}. Для ¹⁸⁹Os имеется неоднозначность в идентификации спинов резонансов 6,72 и 18,7 эв по вычисленным значениям R^{0} или по виду совмещенных спектров для разных режимов измерений, пронормированных по резонансу 22,2 эв, которому однозначно можно приписать спин J = 1. Что касается резонансов ¹⁸⁷Os, то за исключением резонанса 12,7 эв они слабо проявляются в спектре, и только исходя из равенства энергии связи ¹⁸⁷Os и ¹⁸⁹Os и подобия γ -спектров можно на основании рис.5 предположить, что первые три резонанса ¹⁸⁷Os (9,43; 12,7 и 40,5 эв) имеют, возможно, спин 0, а резонанс 47,7 эв - спин 1.

На рис. 6 представлены сводные данные с R^0 для всех исследованных ядер. Резонансы, относящиеся к группе с $R^0 > 1,0$, имеют спины l = 1/2, а относящиеся к группе с $R^0 < 1,0$ - спины l + 1/2.

Оценка искажений R из-за регистрации рассеянных образцом резонансных нейтронов показала, что для¹⁴⁷ Sm и ¹⁴⁹ Sm при толщине защиты 25 мм эффект завышения R пренебрежимо мал в области до 100 эв и только для некоторых резонансов с $\Gamma_n \sim \Gamma_\gamma$ достигает ~ 5%. Тем не менее систематическое превышение кривой одиночного счёта над кривой совпадений в области выше 100 эв у ¹⁴⁷ Sm (рис. 3), по-видимому, объясняется этим эффектом. При толщине защиты 35 мм оценка отношений $\epsilon_n / \epsilon_\gamma$ из результатов дополнительных измерений со свинцом дала для ¹⁴⁹ Sm следующие значения: 1/80 в режиме одиночного счёта и

1/1000 в режиме совпадений. При этих усновиях эффект регистрации рассеянных нейтронов ничтожен.

Заключение

Можно сделать вывод, что для исследованных чётно-нечётных изотопов¹⁴⁷ Sm ,¹⁴⁹ Sm , ¹⁸⁹Os наблюдается эффект разбиения резонансов по R на две группы, который можно идентифицировать как проявление спиновой зависимости величины R . Отсутствие чёткой зависимости от спина у ¹⁶⁵Ho , по-видимому, связано со структурой γ -спектра, в котором значительную долю составляют мягкие переходы с E_{γ} <1,5 Мэв, что свойственно нечётно-нечётным составным ядрам. Таким образом, метод идентификации спинов по множественности γ -квантов, будучи простым по своей реализации, не является универсальным. Тем не менее он оказывается удобным как дополнение к другим методам определения спинов. Результаты данной работы указывают на возможность и полезность проведения в ЛНФ ОИЯИ аналогичных измерений в условиях более высокого разрешения.

Авторы признательны В. Николенко за многократные полезные обсуждения.

Литература

- 1. I.E. Draper, T.E. Springer, Nucl. Phys., 16, 27 (1960).
- C. Coceva, F. Corvi, P. Giacoble, G. Carrado, Nucl. Phys., <u>A117</u>, 586 (1968).

3. В.П. Алфименков и др. Препринт ОИЯИ, РЗ-3208, Дубна, 1967.

- 4. Э.Н. Каржавина, А.Б. Попов. Препринт ОИЯИ, РЗ-5655, Дубна, 1971.
- 5. И. Вильгельм, Ю.П. Попов, М. Пшитула, Р.Ф. Руми, М. Стэмпиньски. Сообщение ОИЯИ, Р3-5553, Дубна, 1970.
- 6. F. Becvar, R.E. Chrien, O.A. Wasson. BNL-15056 (1970).

7. B. Canvin, A. Lotton, A. Michaudon et al. Sacley (1971).

8. Neutron Cross Section. BNL-325, Sp. 2, vol. IIc (1966).

Рукопись поступила в издательский отдел 19 октября 1971 года.

	Значения	сов ¹⁶⁵ но	, 1			
		R°				
Ео, Эв	Ĵ[3]	Е _{псі} = 1,6 Мэв	2,3 Мэв	3,0 Мэв		
8,15	3	1,04 <u>+</u> 0,01	1,10 <u>+</u> 0,01	I,I7 <u>+</u> 0,UI		
12,6	4	0,995 <u>+</u> 0,002	0,981 <u>+</u> 0,003	0,98 <u>+</u> 0,01		
18,1	3	1,01 <u>+</u> 0,01	1,01 <u>+</u> 0,01	0,98 <u>+</u> 0,01		
21,0	4	I,05 <u>+</u> 0,0I	I,05 <u>+</u> 0,0I	1,01 <u>+</u> 0,01		
35,3	3	0,947 <u>+</u> 0,007	0,92 <u>+</u> 0,0I	0,87 <u>+</u> 0,01		
39,4	4	0,962 <u>+</u> 0,007	0 ,944<u>+</u>0,006	0,96 <u>+</u> 0,01		

Таблица 2 Самарий—147

		R°	<u> </u>	J	J	J	J
Е ₀ , эв	Enep =1,6 Mas	2,3 Мав	3,0 Мэв	данная работа	[5]	[7]	[8]
3,4		I,047 <u>+</u> 0,002		3	3		3
18,3	0 ,905<u>+</u>0,00 I	0,901 <u>+</u> 0,002	0 ,832<u>+</u>0, 005	4	4	4	
27,I	1,040 <u>+</u> 0,002	1,071 <u>+</u> 0,006	1,02 <u>+</u> 0,01	3	3	3	3
29,7	1,0 99<u>+</u>0,00 2	1,128 <u>+</u> 0,006	1,180<u>+</u>0, 009	3	3	3	3
32,I	0 ,897<u>+</u>0,00 I	0 ,907<u>+</u>0, 004	0 ,868<u>+</u>0,012	4	(4)	4	
39,7]	0 ,935<u>+</u>0,00 I	0 ,966<u>+</u>0,00 4	0,916 <u>+</u> 0,008	4	(4)	. 4	
40,6	>I, 0		>1,0	3	3	3	ŧ
49,3	0 ,891<u>+</u>0, 002	0,890 <u>+</u> 0,006	0,826 <u>+</u> 0,015	4	(4)	3	
57,9	1,107 <u>+</u> 0,002	I,I44 <u>+</u> 0,007	1,22 <u>+</u> 0,01	3	(4)		
64,9	0 ,951<u>+</u>0,0 03	0,933 <u>+</u> 0,009	0 ,883<u>+</u>0,0 24	4	(4)		
76,8	0 ,904<u>+</u>0,00 3	0,881 <u>+</u> 0,008	0,844 <u>+</u> 0,02I	4	-		
79,8	∠1,0			(4)	-	4	
83,4	I,173 <u>+</u> 0,003		1,35 <u>+</u> 0,02	3	3	3	
94,9							
99,5	> I,0		>1,0	(3)			
102,6	7 1,0	•	>1,0	3	3		
106,8	< I.0		<1,0	(4)		(4)	
108,4							
123,4	1,35 <u>+</u> 0,04	1,35 <u>+</u> 0,02	1,56 <u>+</u> 0,02	3	3	3 .	

11

÷-

Таблица З

ŧ

Самарий-149

E ₀ , 33	R°	J	7	γ	7	
	Е _{по} л 2,3 Мал защита 25 мм	Е _{поБ} 2,3 Мэв зацита 35 мм	данаая работа	[6]	[8]	[7]
4,93	0,897 <u>+</u> 0,003	0,924 <u>+</u> 0,005	4	4	4 [≇]	4
6,43	I,123 <u>+</u> 0,015	I,I39 <u>+</u> 0,009	3	3	4	4
8,03	I,98+0,02	I,64+0,02	Sm ¹⁵⁻²⁸			
8,94	0,912+0,03	0,913+0,005	4	3	4 [±]	
12,0	I,07I±0,005	I,06±0,0I	3	3		3
14,9	0,911±0,004	0,926 <u>+</u> 0,007	4	3		4
15,8	I,0I+0,0I	I,09±0,03	3	3		3
17,1	0,876±0,006	0,907 <u>+</u> 0,0II	4	4		4
20,6	2,03+0,04	2,00±0,08	Sm ²⁵⁰			
23,2	0,911+0,012	0,957 <u>+</u> 0,014	4	4		4
24,6]	· •					
25,2	I,008±0,004	I,077 <u>+</u> 0,008	3	3		
26,1)	<1,0	< I,0	4	3		.4
27,9	I,09±0,02	I,073 <u>+</u> 0,038	3	3		
29,9]	> 1.0	>1.0	3	3		
30,7	I,007±0,005	0,965±0,009	4	4		4
33,9	0,941±0,007	0,92 <u>+</u> 0,0I	4	4		4
40,17			3			3
41,3	I,I28±0,005	I,065 <u>+</u> 0,008	3			3
44,3	0,953+0,004	0,90 <u>+</u> 0,0I	4			4
45,I			(4)			4
49,5	> 1,0	>1,0 .	3			
50,5	I,0I4±0,005	0,96 <u>+</u> 0,0I				
51.6)	< I,0	< 1,0 ·	4			4
57,4)	< 1,0	< I,0	4			4
59.7	< 1,0	< 1,0	4			4
60,9	I,012±0,003					-3
62,I	< I,0	< I,0	(4)			4
64,7	< I,0	< I,0	(4)			4

T Отмечены слины из полярызац.измерений

ţ

ţ

Осмий

Е ₀ эв	Изотоп	R°	J
6,72	189	I,0 52 <u>+</u> 0,007	I
8,98	189	0,927 <u>+</u> 0,007	2
9,43	187	> 1,0	(0)
10,3	I 89	I,099 <u>+</u> 0,009	I
12,7	187	> 1,0	(0)
I8,7	189	I,0I <u>+</u> 0,0I	Ş
20,3	2-2		
22,2	189	I,I2 <u>+</u> 0,0I	I
27,52	<u>1</u> 89	0,883 <u>+</u> 0,009	2
28,4	I89		2
30,4	189	0,70 <u>+</u> 0,04	2
38,9	2-2	I,I8 <u>+</u> 0,02	
40,5	187	> I,0	(0)
43,5]	I89	0,97 <u>+</u> 0,02	(2)
44,6∫	2-2		
47,7	187	< I,0	(I)
50,5	I89	I,02 <u>+</u> 0,0I	(1)
55,I	189	0,9II <u>+</u> 0,0 4 6	2
60,8	189	0,856 <u>+</u> 0,018	2

схема антипропускания; 7 - дискриминатор; 8 - формирователь; 9 - ка-I Рис. 1. Блок-схема детектора. 1 - кристалл Nal ; 2 - сумматор; 3 усилитель; 4 - схема совпадений; 5 - линия задержки; 6 - линейная либровочный генератор.

ş

счёта при E пор =2,3 Мэв, точки - спектр в режиме совпадений. (Нор-Рис. 2. Гольмий-165. Сплошная кривая - спектр в режиме одиночного мировка проведена по резонансу 12,6 зв).

ş

счёта при $E_{\rm пор}$ =2,3 Мэв, точки - спектр в режиме совпадений. (Нор-Рис. 3. Самарий-147. Сплошная кривая - спектр в режиме одиночного мировка проведена по резонансу 18,3 эв).

ţ

Рис. 5. Осмий. Сплошная кривая - спектр в режиме одиночного счёта при E _{пор} =2,3 Мэв, точки - спектр в режиме совпадений. (Нормировка проведена по резонансу 22,2 зв).

ţ

Рис. 6. Значения *R⁰ для* разрешенных резонансов исследованных изотопов. (Для большинства точек ошибки меньше их размера).