5875

P 3-5875

ОБНАРУЖЕНИЕ РЕАКЦИИ (п,α) В РЕЗОНАНСАХ ИЗОТОПОВ ЦИНКА И ГАФНИЯ

Ю.П. Попов, В.Г. Семенов, М. Флорек

1971

HENTP

BMde

TAG

P 3-5875

Ю.П. Попов, В.Г. Семенов, М. Флорек

ОБНАРУЖЕНИЕ РЕАКЦИИ (n,α) В РЕЗОНАНСАХ ИЗОТОПОВ ЦИНКА И ГАФНИЯ

> Научно-техническая библиотека ОИЯИ

1. Введение

В Лаборатории нейтронной физики с 1965 года проводятся исследования реакции (n, a) в реакционной области энергии нейтронов. До настоящего времени было исследовано около 50 резонансов, принадлежащих различным изотопам в области атомных весов $95 \le A \le 149/1, 2/$. Результаты поисков и исследований использовались, в частности, для построения a-частичной силовой функции/2/, для анализа поведения которой значительный интерес представляет обнаружение (n, a) реакции в более широкой области атомных весов.

Выбор конкретных ядер в значительной мере определялся требованием относительно большого значения проницаемости кулоновского барьера для *a* -частицы. С этой точки эрения перспективными ядрами оказались изотопы ⁶⁴ Zn , ⁶⁷ Zn и ¹⁷⁷ Hf. Ядро ¹⁷⁷ Hf лежит в области деформированных ядер, для которых еще не наблюдалась реакция (*n*, *a*) на медленных нейтронах, в то же время флуктуации полных *a* -ширин в таких ядрах могут дать сведения о вкладе ротационных типов возбуждений в резонансные состояния ядер/3/. Исследования с изотопами цинка позволяют приблизиться к области ядер, представляющих интерес с точки зрения реакторостроения/4/.

2. Измерение

Поиски реакции (n, a) проводились на пучке нейтронов импульсного реактора ОИЯИ. В качестве детекторов а -частиц использовались газовый сцинтилляционный детектор типа^{/5/} при измерениях с мишенями Zn и многосекционная пропорциональная камера при измерениях с разделенным

изотоном ¹⁷⁷Нf. Мишени представляли собой слои ZnO и HfO₂ толщиной соответственно 4,15 и 3,45 мг/см², нанесенные на алюминиевые подложки толщиной 0,5 мм методом, описанным Томиковой⁶. Энергия нейтронов, приводящих к *а* -распаду, определялась по времени пролета ими базы 100 м. Временное разрешение и также некоторые характеристики мишеней приведены в таблице 1.

Изменение скорости счёта в зависимости от времени пролета нейтронов для естественной смеси изотопов цинка вместе с одной мишенью калибровочного элемента ¹⁴³ Nd показано на верхней кривой рис. 1. Видно ¹⁴³Nd (выделены увеличение счёта как в области положения резонансов пунктиром), так и в области положения резонансов изотопов цинка 64 Zn $(E_0 = 281 \text{ эв})$ и ⁶⁷ Zn $(E_0 = 1548 \text{ эв})$. Дополнительное измерение без мишени¹⁴³ Nd подтвердило, что увеличение счёта в области положения резонанса с Е. = 1548 эв (нижняя кривая рис. 1) обусловлено реакцией ⁶⁷ Zn(n, a). Кроме того лучшие фоновые условия позволили обнаружить увеличение счёта также в области положения резонанса ⁶⁴ Zn _с E₀ =2637_{ЭВ}. В этом дополнительном измерении были использованы только 4 мишени из 7, поэтому статистическая точность оказалась недостаточной для явного выделения резонанса ⁶⁴ Zn с E₀ = 281 эв. В то же время прежние измерения/1/ исключают предположение об увеличении счёта в области положения этого резонанса за счёт реакции ¹⁴³Nd(n, a).

При поиске реакции ¹⁷⁷*Hf(n,a)* временное разрешение было достаточно только для разрешения резонансов ¹⁷⁷*Hf*, энергия которых ниже 10 эв. Результат измерений показан на рис. 2. Для иллюстрации приведена кривая интенсивности захватных у -лучей, полученная с помощью у -детектора Моксона-Рея в аналогичных условиях для тех же мишеней гафиия.

В таблице 2 приведены полученные нами значения a -ширин для⁶⁴ Zn, ⁶⁷ Zn и ¹⁷⁷Hf. Обработка результатов производилась методом, описанным в работе/2/.

3. Обсуждение результатов

Прежде чем перейти к обсуждению результатов, обратимся к схемам а -распада⁶⁵ Zn , ⁶⁸ Zn и ¹⁷⁸ Hf (вставки на рис. 1 и 2). При захвате s -нейтронов ядрами мишеней образуются состояния составного ядра

Таблица	I
---------	---

Ядро- ми- шень	Е ^{х)} мзв	Вид образ- ца	Содер- жание изото- па %	Вес образ- ца гр.	Ило щадь образ ца см2	Тип дөтөк- тора	Время измерений час	Времен- ное раз- решение мксек/м
⁶⁴ Zn	3,7	Zn0	48,9	26	6300	Газовый сцинтил- ляцион- ный де- тектор	^{I4I с I43} Nd I49 без I43 Nd	0,04
⁶⁷ Zn	4,6	ZnO	4 , I	26	6300	То же	То же	0,04
177 Hf	9,7	Hf0₂	84,6	8,35	2400	Много- секцион- ная пропор- ная камера	18 2	0,7
I43 Nd	9,42	Nd203	73,2	3,44	484	для калибровки Г _А изотопов цинка		
			73,2	2,0	280	для калибровки Г _о изотопа ¹⁷⁷ Нf		

ж) Взято из работы /7/

гис. 1. Зависимость числа отсчетов детектора a -частиц от времени пролета нейтронов в измерениях с естественной смесью изотопов цинка и разделенного изотопа ¹⁴³ Nd (верхняя кривая) и естественной смесью изотопов цинка (нижняя кривая). Стрелками обозначено положение резонансов согласно/8/. Пунктиром выделены резонансы ¹⁴³ Nd. E_n - энергия нейтронов в электронвольтах, B - энергия связи нейтрона в ядре, J^{π} спин и четность резонансных состояний составного ядра, I^{π} - спин и четность состояний дочернего ядра, E - энергия возбужденных состояний в Мэв.

θ

с Ј⁷⁷ = 2⁻ или 3⁻ для ⁶⁸ Zn , 3⁻ или 4⁻ для ¹⁷⁸ Нf и 1/2 для ⁶⁵ Zn . Из возбужденного состояния 68 Zn с $J^{\pi} = 2^{-}$ а -распад в основное состояние ⁶⁴ Ni запрещен по четности и возможен на первое возбужденное состояние, которое на 1.34 Мэв выше основного состояния. Соответствующие оценки показывают, что проницаемость кулоновского барьера в этом случае примерно в 200 раз меньше, чем для перехода в основное состояние⁶⁴ Ni. Из-за большого относительного изменения энергии а -частиц для перехода в первое возбужденное состояние в наших условиях измерений эффективность регистрации для а -частиц (с) с Е = 3,26 Мэв в 4 раза меньше, чем ϵ_{α} для $E_{\alpha} = 4,6$ Мэв. Так как экспериментальное эначение Г_а для резонанса с **Е**₀ = 1548 эв близко к рассчитанному на основе статистической теории ядра (Γ_{a}^{cm}), то есть основания приписать этому резонансу спин 3, в противном случае оно было бы в 1000 раз больше Гас, что, согласно/2,4/, крайне маловероятно. Верхнее значение Г, для резонанса с Е = 2246 эв приводится в предположении, что оно определяется переходом в основное состояние, в то время как для резонанса с $E_{a} = 223$ эв ($J^{\pi} = 2^{-}$) учитывается, что основной вклад должен давать переход в первое возбужденное состояние дочернего ядра.

В случае *a*-распада составных ядер ⁶⁵ Zn и¹⁷⁸ Hf первое возбужденное состояние дочернего ядра расположено очень близко к основному состоянию, поэтому в измеряемых значениях Γ_a должны присутствовать переходы как в основное, так и в низколежашее возбужденные состояния. Поэтому значения *a* -ширин для ¹⁷⁸ Hf с $J^{\pi} = 3^{-}$ или 4⁻ должны отличаться очень мало, что и подтверждается результатами измерений. Небольшое число резонансов, для которых была измерена *a* -ширина, не позволяет сделать заключение относительно закона распределения *a*-ширин^{4/}. Зная статистические закономерности, можно ожидать, что распределение *a*-ширин будет довольно узким, типа хи-квадрат с числом степеней свободы $\nu = 4-5$. Полученные результаты не противоречат этим предположениям.

Из величин а -ширин резонансов была оценена нижняя граница величины теплового сечения (n,a) реакции с учётом ошибок в определении Γ_a . Наше значение σ_a^T для изотопов⁶⁴ Zn и⁶⁷ Zn (см. таблицу 2) в несколько раз выше значения, непосредственно измеренного

Ядро мишени	Е ₀ (эв)	ງະ	NL	Г₄ (эв)	Г _с ст (эв)	Д (эв)	б√ (мкбарн) жж
64_	281	Σ	186 <u>+</u> 58	(0,52+0,2).10-4	4.10-4	4 ,3. 10 ³	
Zn	2637	Ī	148 <u>+</u> 51	(1,2 <u>+</u> 0,5).10 ⁻⁴			> 23
67 Zn	223 448 1548 2246	2 3 3 ⁻ *	50 <u>+</u> 40 34 <u>+</u> 48 600 <u>+</u> 103 94 <u>+</u> 71	<0,8.10 ⁻⁴ <0,3.10 ⁻⁴ (7,5 <u>+</u> 40).10 ⁻⁴ <11.10 ⁻⁴	0,15.10 ⁻⁴ 25.10 ⁻⁴	1,2.10 ³ 0,86.10 ³	>40
Hf	I,098 2,38 5,89 6,57 8,87	3 4 3 4 4	556 <u>+</u> 59 196 <u>+</u> 44 84 <u>+</u> 24 70 <u>+</u> 25 64 <u>+</u> 28	$(3,7\pm0,4).10^{-9}$ $(1,1\pm0,3).10^{-9}$ $(4,2\pm1,6).10^{-9}$ $(1,5\pm0,9).10^{-9}$ $(4,2\pm2,0).10^{-9}$	14,5.10 ⁻⁹ 9.10 ⁻⁹	5,3 4,I 5,3 4,I 4,I 4,I	>6

Таблица 2

Энергия и слины резонансов взяты из работы /8/. Среднее расстояние между уровнями Д_{ноЕл} взято из работы /9/.

В значения Γ_{\star} не включена ошибка за счёт нормировки, которая составляет $\sim 60\%$.

- ж) Снин определен из результатов данной работы.
- жж) Оценке С т определялась как вклад исследованных резонансов в тепловую область без учёта возможных интерференционных эффектов.

Рис. 2. Зависимость числа отсчетов детектора а -частиц от энергии нейтронов(эв) в измерениях с разделенными изотопами ¹⁷⁷ Hf и ¹⁴³ Nd. В верхней части рисунка – аналогичная кривая для реакции ¹⁷⁷ Hf(n, y).

в работе $^{/10/}$. В то же время измеренная в работе $^{/10/}$ величина E_a на указанных изотопах значительно превосходит значение, которое можно ожидать из разности масс, участвующих в распаде составного ядра. Повидимому, как это отмечалось в/11/, результаты/10/ ошибочны.

Отметим еще следующие особенности полученных результатов:

1. Исследованные ядра находятся в той области массовых чисел, где расчёты средних а -ширин на основе оптической модели ядра⁴ очень чувствительны к выбору параметров оптического потенциала. Новые данные вместе с более ранними¹,2 уже довольно четко фиксируют положение максимумов (если они существуют) силовой функции для а -частиц в шкале атомных весов.

2. Обнаружение (n, a) реакций на изотопах цинка важно для оценок радиационных повреждений в конструкционных материалах реакторов за счёт вылетающих a -частиц как в случае наличия в них цинка, так и для более точной экстраполяции сечений реакции (n, a) на такие материалы, применяемые в реакторостроении, как Ti , Cr , Fe , Co и Ni. Такие измерения нужны и для оценок фона при использовании сцинтиллятора ZnS в качестве детектора a -частиц в присутствии нейтронных полей.

3. Величина значений Γ_a для деформированного ядра ¹⁷⁸ Hf представляет интерес для оценки сечений (n, a) реакций на деформированных ядрах, так как предшествующие исследования (n, a) реакций проводились вблизи замкнутых оболочек Z или N, равных 50 или 82. Среднее значение a -ширин для этого ядра оказалось в пять раз меньше рассчитанного по статистической модели. Для однозначных выводов о вкладе ротационных типов возбуждения в резонансные состояния необходимы измерения большего числа резонансов.

В заключение авторы выражают благодарность Г. Глаузиус и Й. Томиковой за изготовление мишеней, С.А. Марушкину за помощь при измерениях, А. Грачевой за помощь при изготовлении радиоаппаратуры, М. Флорековой и Р. Хорват за помощь при обработке результатов.

Литература

1. J. Kvitek, Yu.P. Popov. Nucl. Phys., A154, 177 (1970).

2. Ю.П. Попов, М. Флорек. Ядерная физика, 9, вып. 6, 1163 (1969).

- 3. Ю.П. Попов. Сообщение ОИЯИ ЕЗ-5483 Дубна (1970).
- Ю.П. Попов, М. Пшитула, Р.Ф. Руми, М. Стэмпиньски, М. Флорек,
 В.И. Фурман. "Nuclear Data for Reactors" vol. I, 669 (1970) (Vienna).
- 5. И. Квитек, Ю.П. Попов, К.Г. Родионов, ПТЭ, 2, 90 (1967).
- 6. Й. Томикова, ПТЭ, 6, 202 (1969).
- 7. А.Ф. Дадакина. Бюллетень информационного центра по ядерным данным. Атомиздат, 1966, №3, стр. 226.
- 8. Neutron Cross Section, BNL-325, Suppl. No 2 (1966).
- 9. U.Fachini, E.Saeta-Menichella. Energia Nucleare 15, 54, 1968.
- 10. Faraggi, Bernas and Bonnel, Compt. rend. 234, 1684 (1952).
- 11. В.Н. Андреев, Ю.П. Попов. Бюллетень информационного центра по
- ядерным данным вып. 2, стр. 5, Атомиздат (1965).

Рукопись поступила в издательский отдел 22 июня 1971 года.