3-217 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна.

102

P 3- 5609

5/10-71

Х.Малэцки, Л.Б.Пикельнер, И.М.Саламатин, Э.И.Шарапов

РАДИАЦИОННЫЕ ШИРИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ УРАНА-238

Направлено в АЭ

Х.Малэцки, Л.Б.Пикельнер, И.М.Саламатин, Э.И.Шарапов

РАДИАЦИОННЫЕ ШИРИНЫ НЕЙТРОННЫХ РЕЗОНАНСОВ УРАНА-238

Направлено в АЭ

Исследование нейтронных резонансов²³⁸ U производилось в целом ряде лабораторий^{/1,2,3/}. Интерес к этому ядру был обусловлен теми благоприятными возможностями, которые оно дает для получения силовой функции и распределений приведенных нейтронных ширин и расстояний между уровнями. Это связано с тем, что я -нейтроны возбуждают в ²³⁸U одну систему уровней со спином 1/2 при удобном для наблю дения среднем расстоянии между ними (D≈10 эв). Не менее важным факт ром являлось значение урана для реакторостроения.

Новый интерес к ²⁸⁸U возник в связи с появлением работы⁴⁴, посвяшенной в основном радиационным ширинам Γ_{γ} резонансов этого ядра. Значения Γ_{γ} были известны и ранее из ряда работ^{5,64}, причём отклонения отдельных ширин от среднего значения $\Gamma_{\gamma} \approx 24$ Мэв не выходили, как правило, за ошибку измерения. В работе Гласса и др.⁴⁴, выполненной при подземном атомном взрыве в США, были приведены Γ_{γ} для значительного числа уровней в области энергий до 2 кэв, существенно отличающиеся от полученных ранее.

На рис. 1 приведены данные работы^{/4/} (крестики) в интервале энергии до 1,4 кэв. Главный результат этой работы заключался в том, что было получено периодическое изменение Г_у с энергией, как это

Рис. 1. Радиационные ширины резонансов ²³⁸ U в зависимости от энергии нейтронов. Крестики – значения Γ_y из работы⁴. Пунктирная кривая проведена авторами⁴ для удобства рассмотрения. Черные точки – результаты данной работы.

показано на рис. 1 пунктирной линией, причём диапазон колебаний был очень велик: от 12 до 33 Мэв. Такое поведение Γ_{γ} в ²³⁸U авторы работы ставили в один ряд с другими известными фактами проявления промежуточной структуры в эффективных сечениях. Результаты этой работы ставят под сомнение справедливость статистического подхода к полным радиационным ширинам компаунд-состояний ядер.

В связи с важностью вопроса нами были проведены измерения пропускания и радиационного захвата нейтронов ураном-238.

Измерения проводились на импульсном реакторе ИБР с линейным электронным ускорителем в качестве инжектора. При пролетном расстоянии 500 метров разрешение составляло в нсек/м. Образцы представляли собой диски естественного металлического урана диаметром 160 мм (радиационный захват) и 190 мм (пропускание). Пропускание было измерено для трех образцов толщиной 1,4 и 12 мм, измерения радиационного захвата сделаны с образцом толщиной 1 мм (п =4,8.10²¹ яд/см²). В качестве детектора радиационного захвата использовался секционированный жидкостный сцинтилляционный детектор объемом около 250 литров, имеющий цилиндрический канал вдоль оси пучка нейтронов. Чувствительный объем детектора составляют в симметрично расположенных секций с боковыми плоскостямй, параллельными оси пучка. Электроника детектора позволяет отбирать импульсы от каждой секции, лежащие выше заданного лорога, регистрировать суммарный импульс от всех секций, двойные и тройные совпадения между любыми секциями.

Важным вопросом в измерениях радиационного захвата является аккуратное определение произведения потока нейтронов П(Е) на эффективность детектора по отношению к акту захвата нейтрона ϵ_{γ} , которое входит в выражение

$$\Sigma N_{i} = \Pi (E) \epsilon_{\gamma} A \frac{\Gamma_{\gamma}}{\Gamma} .$$
 (1)

полученный с 1 мм образца урана. Цифры над резонансами - энергия B 3B.

Здесь **Σ** N_i - сумма отсчётов детектора по резонансу при вычтенном фоне, Г, и Г – радиационная и полная ширины резонанса, А – площадь резонансного провала на кривой пропускания. В частности, в нашем случае необходимо было убедиться, что $\epsilon_{_{\mathcal{V}}}$ не меняется от резонанса к резонансу. С этой целью измерения проводились при всех перечисленных выше режимах и сравнивались между собой отношения площадей резонансов при измерениях в разных режимах. Так как смягчение спектра, т.е. увеличение множественности У -квантов в каскаде приводит к увеличению эффективности регистрации акта захвата в режиме совпадений с низким порогом, а регистрация в отдельных секциях с высоким порогом (З Мэв) при этом падает, то отношение площадей резонансов в таких режимах является чувствительным указателем изменения характера спектра. В наших измерениях указанные отношения оставались постоянными от резонанса к резонансу в пределах статистической точности (порядка пяти процентов), что позволяет говорить о постоянстве эффективности детектора. На рис. 2 приведен участок аппаратурного спектра 288 U полученный с (n,y) -детектором в режиме двойных совладений. Уровень между резонансами обусловлен в основном собственным фоном детектора и у -активностью образца. Ход потока с энергией был получен из измерений с тонким борным счётчиком, а абсолютная калибровка П (Е) с, осуществля лась путем определения величины А из пропускания для резонансов с $\Gamma_n \ll \Gamma_\gamma$, для которых отношение Γ_γ / $\Gamma_{}$ в выражении (1) почти не зависит от принятых значений Г_пи Г_у. Для калибровки использовались те резонансы, для которых литературные данные по Г лорошо согласовывались между собой и с полученными нами из измерений пропускания.

Пропускание измерялось с тем же детектором, но вместо уранового образца в детектор помешался набор образцов с большими сечениями захвата, чередующихся с тонкими слоями замедлителя. В качестве захватных образцов использовались кадмий, рений, тантал, редкоземельные элементы.

При обработке кривых пропускания использовался метод площадей с учётом интерференции резонансного и потенциального рассеяний. Параметры резонансов, полученные при совместной обработке данных по пропусканию и радиационному захвату, приведены в таблице. Для резонансов, у которых $\Gamma_n > \Gamma_{\gamma}$, основным источником информации о. Γ_{γ} является измерение радиационного захвата, как это было показано в работе ^{/7/}. В тех случаях, когда это было нужно, вводилась поправка на захват нейтронов после рассеяния.

Как это видно из таблицы, радиационные ширины в области энергии нейтронов до 1200 эв, различаются незначительно. Среднее значение $\bar{\Gamma}_{\gamma}$ =24 Мэв, и отклонения от среднего практически не выходят за ошибку измерения, которая составляет около 10% для большинства резонансов. Возможно, что увеличение точности измерений позволит обнаружить малые флуктуации в величинах Γ_{γ} , но во всяком случае флуктуации, приведенные в работе⁴⁴, как это видно из рис. 1, явно нереальны. Среднее значение $\bar{\Gamma}_{\gamma}$ =19 Мэв, полученное в⁴⁴, также представляется существенно заниженным.

Основные результаты по радиационным ширинам урана-238 были доложены нами ранее^{/8/}, а опубликованные в то же время данные бельгийской группы^{/9/} показали хорошее согласие с нашими.

В заключение авторы выражают благодарность Т.С. Афанасьевой и Н.Т. Хотько за помощь в проведении измерений.

Литерату ра

 L.M. Bollinger, R.E. Cote, D.A. Dahlburg, G.E. Thomas. Phys. Rev., <u>105</u>, 661 (1957).

- 2. F.W.K. Firk, J.E. Lynn, M.C. Moxon, Nucl. Phys., <u>41</u>, 614 (1963).
- L.B. Garg, L. Rainwater, J.S. Petersen and W.W. Havens, Jr., Phys.Rev., <u>134</u>, B 985 (1964).
- N.W. Glass, A.D. Shelberg, L.D. Tatro, J.H. Warren. Proc. 2nd Conf. on Neutron Cross Section Technology, Washington. ed. by D. Goldman, p. 573 (1968).
- 5. J.L. Rosen, J.S. Desijardins, J. Rainwater and W.W. Havens., Jr., Phys.Rev., <u>118</u>, 687 (1961).
- 6. M. Asghar, C.M. Chaffey, M.C. Moxon. Nucl. Phys., <u>85</u>, 305 (1966).
- 7. Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов. ЯФ, <u>9</u>, вып. 6, 1119 (1969).
- 8. Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов. Советско-французский семинар по ядерным данным (Дубна, 22-24 июня 1970 года).
- 9. G. Rohr, H. Weigmann, J. Winter. 2nd Intern. Conf. on Nucl. Data for Reactors, CN 26/18, Helsinki, 15-19 June 1970.

Рукопись поступила в издательский отдел 5 февраля 1971 года.

Таблица

Параметры нейтронных резонансов урана - 238.

Е. Эв	Ligb	ЦЭВ	Е. Эв	Г <u>л</u> Мәв	/, ЦЭВ
66+U.I	24+1,5	25 <u>+</u> 2	621 <u>+</u> 0,9	33 <u>+</u> 10	24 <u>+</u> 3
8017+0.I	2,2+0,2	·	629 <u>+</u> 0,9	7 <u>+</u> I	
102.4+0.1	70+3	26 <u>+</u> 2	662 <u>+</u> I	150 <u>+</u> 20	22 <u>+</u> 2
116.9+0.I		23 <u>+</u> 2	694 <u>∔</u> I	40 <u>+</u> I0	24 <u>+</u> 2
145.8+0.1	0,84+0,06		709 <u>+</u> I	20 <u>+</u> 5	26 <u>+</u> 3
165.4+0.I	3+0.3		733 <u>+</u> I,I	·3,5 <u>+</u> 0,6	
189.5+0.2	I64+5	22 <u>+</u> 2	767 <u>+</u> I,2	7 <u>+</u> I`	
208.4+0.2	48+2	26 <u>+</u> 3	792 <u>+</u> I,2	6 <u>+</u> I	
237.6+0.2	27+3	26 <u>+</u> 3	822 <u>+</u> I,3	66 <u>+</u> I6	24 <u>+</u> 3
273.9+0.25	22+3	25 <u>+</u> 3	853 <u>+</u> I,4	•	26 <u>+</u> 3
297 2+ 0,25	IS.4+2	23+2	857 <u>+</u> I,4	•	25 <u>+</u> 3
3TT. 7+0.3	0.9+0.I	-	869 <u>+</u> I,4	5 <u>+</u> 2	••••
348. T+0. 35	78+10	22 <u>+</u> 2	907 <u>+</u> 1,5	40 <u>+</u> I0	25 <u>+</u> 3
377±1).4	0.9+0.15	-	939 <u>+</u> I,6	120 <u>+</u> 20	24 <u>+</u> 3
398.1+0.45	4.7÷0.5		960 <u>+</u> I,6	130 <u>+</u> 20	22 <u>+</u> 3
4T0.7+0.45	20+3	25 <u>+</u> 4	994 <u>+</u> I ,7	•	27 <u>+</u> 3
434 64).5	8+I	Ŧ	1026 <u>+</u> 2	8 <u>+</u> 2	• •
494,0 <u>4</u> 0,9	5÷0.5	•	1057 <u>+</u> 2	90<u>+</u>30	22 <u>+</u> 3
404,1 <u>7</u> 0,22	3.5+0.5		1100 <u>+</u> 2		25 <u>+</u> 3
FTOLD 7	42+6	23+2	1142 <u>-</u> 2		26 <u>+</u> 3
519 <u>7</u> 0,1	55175	23+2	1170 <u>+</u> 2		23 <u>+</u> 3
500,2 <u>+</u> 0,7	3616	23 1 2	1179 <u>+</u> 2		22 <u>+</u> 3
500, (<u>+</u> 0,0	93≟T0	<u></u> 24+2	1197 <u>+</u> 2		26 <u>+</u> 4
554,0 <u>+</u> 0,0	<u>, , , , , , , , , , , , , , , , , , , </u>				• ·