5297

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна

P3 - 5297

Экз. чит. зала

Ю.В. Рябов, Со Дон Сик, Н. Чиков, Н. Янева

ОТНОСИТЕЛЬНЫЕ ИЗМЕРЕНИЯ У ПРИ ДЕЛЕНИИ U - 235 И Pu - 239 РЕЗОНАНСНЫМИ НЕЙТРОНАМИ

P3 - 5297

# Ю.В. Рябов, Со Дон Сик, Н. Чиков, Н. Янева

# ОТНОСИТЕЛЬНЫЕ ИЗМЕРЕНИЯ **У** ПРИ ДЕЛЕНИИ U - 235 И Ри - 239 РЕЗОНАНСНЫМИ НЕЙТРОНАМИ

Направлено в ЯФ

Впервые влияние состояний переходного ядра на распределение реализующейся энергии при делении между  $\tilde{\mathbf{E}}_k$  -средней кинетической энергией осколков и  $\tilde{\mathbf{E}}^*$  -средней энергией возбуждения осколков было предсказано В.Н. Андреевым<sup>/1/</sup> и экспериментально обнаружено в энергетической зависимости  $\tilde{\mathbf{E}}_k$  и  $\tilde{\mathbf{E}}^*$  при делении U -233 и U -235 sи Р -нейтронами<sup>/2/</sup>.

Аналогичные эффекты, по-видимому, должны иметь место и при делении только в -нейтронами в зависимости от реализуемого состояния переходного ядра.

Критерием возбуждения осколков, по современным представлениям, является количество испускаемых нейтронов и  $\gamma$  -квантов на акт деления. При этом число  $\gamma$  -квантов слабо зависит от A и практически не зависит от энергии взаимодействующих нейтронов. Таким образом, можно считать, что возможное изменение среднего числа нейтронов на акт деления  $\bar{\nu}$ , по современным представлениям, полностью определяет изменение  $\bar{\mathbf{E}}^*$ .

Так как величина  $\overline{\nu}$  играет важную роль в ядерной энергетике, то еще в первых работах<sup>/3,4/</sup> было показано, что ее изменения вблизи тепловой энергии не превышали 1% при точности (0,5-1)% для U -235 и Pu -239, а в резонансной области энергий для Pu -239 максимальные

изменения  $\bar{\nu}$  от резонанса к резонансу достигали 13% при точности ~ (3-5)%<sup>/5/</sup>. Весьма малые, но вполне заметные в эксперименте изменения от резонанса к резонансу  $\bar{E}_k$  также наблюдались в работах<sup>/6,7/</sup>.

Соэдавшаяся ситуация стимулировала измерения вариаций  $\bar{\nu}$  для U -235 и Pu -239 со значительно лучшей точностью и в более широком диапазоне энергий взаимодействующих резонансных нейтронов. Предварительные данные этих измерений сообщались авторами в работах /8,9,10/

#### Измерения

Измерения были проведены методом времени пролета с импульсным быстрым реактором ОИЯИ в качестве источника резонансных нейтронов /11/. Разрешение составляло ~ 60 нсек/м.

Для регистрации нейтронов деления использовался жидкостный сцинтилляционный детектор объемом 500 литров с введенным в раствор кадмием, подобный описанному в<sup>/12/</sup>. При использованной концентрации кадмия среднее время жизни нейтрона до захвата в детекторе  $\overline{\tau}$  составляло ~ 8 мксек. Импульсы от камеры деления или мгновенных

у -лучей деления  $^{/12/}$  открывали временные ворота на время  $(2+3)_{\overline{r}}$ , число зарегистрированных импульсов детектора запоминалось триггерами и по окончании регистрации вместе с меткой "эффект" переносилось на многомерный анализатор с памятью на магнитной ленте  $^{/13/}$ . Для измерения фона ворота открывались вторично через время  $5\overline{r}$  после момента деления и число зарегистрированных импульсов с меткой "фон" также переносилось на многомерный анализатор. После этапа накопления производилась сортировка информации с помощью памяти интегрирующего типа. Устройство отбора многомерного анализатора позволило получать временные спектры, соответствующие регистрации 0,1,2... импульсов на акт деления отдельно для эффекта и фона.

В конце каждого цикла измерений с помощью системы связи вся информация (суммарная информация включала несколько сотен массивов по 2048 чисел в каждом) передавалась на ЭВМ "Минск-2". Первичная обработка временных спектров, включающая такие простые операции как сортировка и суммирование идентичных серий, введение некоторых поправок, получение сумм отсчётов в определенных энергетических границах и т.д., проводилась с использованием вычислительной системы с визуальным каналом связи в виде осциллографа со световым карандашом<sup>/14/</sup>. Окончательная обработка информации проводилась на ЭВМ М-20.

Основные измерения вариаций  $\bar{\nu}$  от резонанса к резонансу были проведены с использованием регистрации момента деления по мгновенным у -лучам деления<sup>/12/</sup>. Толщины образцов составляли 8,3·10<sup>-5</sup>; 4,3·10<sup>-4</sup>; 2,1·10<sup>-3</sup> ядер/барн для U-235 (обогащение 90%) и 2,8·10<sup>-3</sup> ядер/барн для Ри -239 (обогащение 98,3%). Проверка этой методики измерений была проведена с помощью многослойной ионизационной камеры для детектирования актов деления<sup>/15/</sup>, содержащей около 1г U -235. Оба метода измерений давали хорошо согласующиеся результаты. Методика измерений  $\bar{\nu}$  подробно описана в<sup>/16/</sup>. Блок-схема измерений приведена на рис. 1.

#### Обработка

В общем случае для каждого резонанса в пределах энергетических границ обрезания рассчитывалась величина ( $\overline{\nu \epsilon_n}$ ), в соответствии с выражением

$$\left(\overline{\nu \epsilon_{n}}\right)_{i} = \sum_{j=m}^{m+k} \left(\overline{\nu \epsilon_{n}}\right)_{j} = \sum_{j=m}^{m+k} \frac{\sum_{n=0}^{7} n \left(N_{nj} - \omega_{i} \Phi_{nj} - F_{nj}\right)}{Q \sum_{n=0}^{7} \left(N_{nj} - \omega_{i} \Phi_{nj} - F_{nj}\right)}, \quad (1)$$



Рис. 1. Блок-схема измерений и обработки экспериментальных данных: 1. Импульсный быстрый реактор. 2. Коллиматоры. 3,4. Объемы жидкостного сцинтилляционного детектора. 5. Исследуемые образцы или делительная камера. 6. Фотоумножители. 7. Электронная аппаратура регистрации нейтронов. 8. Многомерный анализатор с памятью на магнитной ленте. 9. Контрольное записывающее устройство. 10. Контрольное пересчётное устройство. 11. ЭВМ "Минск-2". 12. Световой карандаш. 13. ЭВМ М-20. где

N<sub>ni</sub> - число случаев регистрации n импульсов детектора;

- Φ<sub>nj</sub> число случаев регистрации п фоновых импульсов от
   nγ, nп -процессов в образце и реакторного фона ("переменный фон") для того же числа делений;
- F<sub>nj</sub> число случаев регистрации п фоновых импульсов, связанных с фоном образца и радиоактивным фоном помещения ("постоянный фон") для того же времени измерения, что и N<sub>ni</sub>;
- ω<sub>i</sub> поправочный коэффициент на эффект энергетического смещения при регистрации переменного фона методом задержанных совпадений;
  - Q поправочный коэффициент, учитывающий просчёты, связанные с разрешающим временем канала регистрации нейтронов деления.

 $\mathfrak{O}$ 

 $\odot$ 

Таким образом, знаменатель выражения (1) представляет собой число зарегистрированных актов деления, а числитель - соответствующее число зарегистрированных нейтронов.

Нетрудно показать, что число зарегистрированных актов деления связано с истинным числом актов деления в образце N<sub>1</sub><sup>ИСТ.</sup> соотношением

 $\sum_{n=1}^{7} (N_{nj} - \omega_i \Phi_{nj} - F_{nj}) = N_f (1 - C_0) B_0, \qquad (2)$ 

где  $B_0$  - вероятность не зарегистрировать ни одного фонового импульса на акт деления,  $C_0 \approx 1 - \exp\left[-\left(\overline{\nu \epsilon_n}\right)_t\right]$  для распределения вероятности испускания нейтронов на акт деления по закону Пуассона.

В сериях измерений с ионизационной камерой деления в качестве образца знаменатель выражения (1) представлял собой просто число отсчётов камеры за вычетом фона в пределах рассматриваемого резонанса.

Величина "постоянного фона" для большинства резонансов не превышала ~ 3% ( U -235) и ~ 10% ( Pu -239) от полного счёта по резонансу. Максимальная величина "переменного фона" достигала ~ 5% для некоторых сильных резонансов Pu -239 в измерениях с толстыми образцами.

Выражение для поправочного коэффициента ω<sub>і</sub> было получено в работе авторов в предположении лоренцевой формы изменения счётной загрузки в пределах резонанса:

$$\omega_{i} = \left\{ \int_{E_{1}-E_{i}}^{E_{2}-E_{i}} \left[ E_{i}^{2} + \left(\frac{c}{2}\right)^{2} \right]^{-2} dE_{i} \right\} \int_{E_{1}-E_{i}}^{E_{2}-E_{i}} \left\{ \left[ \left(E_{i} + \Delta\right)^{2} + \left(\frac{c}{2}\right)^{2} \right] \left[ E_{i}^{2} + \left(\frac{c}{2}\right)^{2} \right] \right\}^{-1} dE_{i} \right\}, (3)$$

где E<sub>1</sub>, E<sub>2</sub> - границы обрезания рассматриваемого резонанса,  $\Delta$  - задержка при измерении фона и с - аппаратурная ширина резонанса на половине высоты в электронвольтах.

Коэффициенты ω<sub>i</sub> для каждого резонанса рассчитывались на ЭВМ. Величины ω<sub>i</sub> лежат в пределах от 1 до 1,1 и только для резонансов при энергиях 40-480 эв ω<sub>i</sub> возрастает до величины 1,3.

Распределение вероятности регистрации нейтрона деления в пределах временного окна схемы пропускания имеет экспоненциальный характер. Это приводит к тому, что даже при сравнительно малом числе регистрируемых нейтронов возможно наложение двух импульсов в пределах разрешаюшего времени электронной аппаратуры, вероятность которого при достаточно широком окне схемы пропускания Т равна  $k \approx 2r_{9_0} \int_{0}^{T} f^2(t) dt$ , где  $r_9$  - разрешающее время электронной аппаратуры, f(t)- нормированное распределение времени жизни нейтрона в детекторе.

Экспериментально определенная величина  $k = 0.083\pm0.004$  при T =20мксек и  $\tau_{3} = 0.25$ мксек. Поправочный коэффициент в выражении (1)  $Q = 1 - \frac{k}{2} (\nu \epsilon_{n})_{i}^{3$ ксп.

Каждая серия измерений, характеризуемая толщиной образца и  $\epsilon_n$ , обрабатывалась в соответствии с формулой (1). Для сопоставления набора значений  $(\overline{\nu \epsilon_n})_i$  в различных сериях измерений рассматривалась величина  $(\overline{\nu \epsilon_n})_i / < (\overline{\nu \epsilon_n})_i >$ , где через  $< \dots >$  обозначено усреднение по всем исследованным резонансам. Эта величина в разумном предположении постоянства  $\epsilon_n$  от резонанса к резонансу соответствует вариациям  $\overline{\nu_i}$  относительно  $<\overline{\nu_i} >$  – среднего по всем исследованным резонансам.

Статистическая ошибка определялась в соответствии с выражением

$$\sigma(\overline{\nu \epsilon_{n}}) = \{\sum_{n=0}^{7} \sum_{j=m}^{m+k} {n \choose n_{j}} + \omega_{i} \Phi_{nj} + F_{nj} \} - [\sum_{n=0}^{7} \sum_{j=m}^{m+k} {n (N_{nj} + \omega_{i} \Phi_{nj} + F_{nj})}]^{2} \times (4)$$

$$\times [\sum_{n=0}^{7} \sum_{j=m}^{m+k} {(N_{nj} + \omega_{i} \Phi_{nj} + F_{nj})}] \}^{1/2} \{Q \sum_{n=0}^{7} \sum_{j=m}^{m+k} {(N_{nj} - \omega_{i} \Phi_{nj} - F_{nj})}\}^{-1},$$

где обозначения такие же, как в (1). В статистическую ошибку  $\bar{\nu}_i / <\bar{\nu_i} >$  каждой серии включалась и ошибка величины  $<\bar{\nu}_i >$ .

Для каждого резонанса окончательная величина  $\bar{\nu}_i / \langle \bar{\nu}_i \rangle$  получалась как средневзвешенная по всем сериям измерений, так как статистическая точность отдельных серий была неодинакова. Однако взвешенное среднее мало отличается от простого среднего, и статистическая ошибка близка к величине среднего отклонения. Отсюда следует для распределения экспериментальных значений, подчиняющихся нормальному закону, что влияние методических ошибок на результаты не было определяющим. При обработке было сделано предположение, что спектр мгновенных нейт-

ронов и вероятность деления без испускания нейтрона не изменяются существенно от резонанса к резонансу.

## Результаты и обсуждения

Значения  $\overline{\nu}_i / \langle \overline{\nu}_i \rangle$  для отдельных резонансов U -235 и Pu -239 показаны на рис. 2 и 3.

При внимательном рассмотрении можно заметить, что значения  $\vec{v}_i / \langle \vec{v}_i \rangle$  для различных резонансов как U -235, так и Pu -239, группируются около двух значений, одно из которых больше, а другое меньше единицы. При нормальном распределении величин  $\vec{v}_i / \langle \vec{v}_i \rangle$  в каждой группе полное распределение могло быть представлено в виде суммы двух распределений Гаусса. Описание экспериментального распределения квадратов дало следующие значения средних  $\overline{\vec{v}_i / \langle \vec{v}_i \rangle}$  для соответствующих двух групп U -235.

0,984<u>+0</u>,006 и 1,006<u>+0</u>,008 ( $\chi^2$  =3,45) и Pu \_239 0,97<u>+0</u>,01 и 1,013<u>+0</u>,007 ( $\chi^2$  =1,59).

. Доверительная вероятность такого разделения на две группы по критерию  $\chi^2$  на уровне 0,75 для U -235 и 0,9 для Pu -239<sup>/18/</sup>.

На рис. 2,3 приведены также характеристики относительного выхода осколков симметричной массы  $M_C/M_A$  <sup>(9)</sup> и результаты прямого для  $P_u -239^{/20}$  и косвенного для U -235<sup>/21/</sup> определения спинов. Для получения математической характеристики связи между этими величинами, а также параметрами резонансов  $\Gamma_n^0$ .  $\Gamma_t$  и  $\sigma_0 \Gamma_t$  <sup>(17,22)</sup> рассматривался коэффициент корреляции  $r(a_1 b_1)$  между наборами величин  $a_1$  и  $b_1$ , где  $a_1$  соответствует набору  $\overline{\nu_t}$  / $\langle \overline{\nu_t} \rangle$ , в  $b_1$  – последовательным наборам значений  $M_C/M_A$ , g (статистический спиновый фактор, равный 0,25 и 0,75 для Pu -239 и 0,44 и 0,56 для U -235),  $\Gamma_n^0$ ,  $\Gamma_{f1}$ и ( $\sigma_0 \Gamma_t$ ) <sup>(23)</sup>. Рассчитанные значения  $r(a_1 b_1)$  приведены в табл. 1.

Таблица 1 Значения коэффициентов корреляции г(а, b,) для U-235 и Рц -239

|                                                             | r(a <sub>i</sub> b <sub>i</sub> )                              | V -235                                              | Pu -239                     |
|-------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| $\frac{\overline{\nu_i}}{\langle \overline{\nu_i} \rangle}$ | относительный<br>выход осколко<br>симметричной<br>массы. Мс/Ма | а<br>ов 0,42 <u>+</u> 0,16                          | <b>-</b> 0,59 <u>+</u> 0,14 |
| $\frac{\bar{\nu}_{i}}{<\bar{\nu}_{i}>},$                    | спин уровней<br>( g -фактор)                                   | 0,34 <u>+</u> 0,18<br>0,50 <u>+</u> 0,17 (до 20 эв) | 0 <b>,</b> 84 <u>+</u> 0,08 |
| $\overline{\nu_i} / \langle \overline{\nu_i} \rangle$       | $\Gamma_{_{fi}}$                                               | - 0,46 <u>+</u> 0,16                                | -0,56 <u>+</u> 0,15         |
| $\overline{\nu}_i/<\overline{\nu}_i>$                       | , Γ <sub>ni</sub>                                              | - 0,11 <u>+</u> 0,20                                | -0,02 <u>+</u> 0,22         |
| $\overline{\nu_1} / < \overline{\nu}_1 >$                   | $(\sigma_0 \Gamma_f)_i$                                        | -0,07 <u>+</u> 0,20                                 | 0,04 <u>+</u> 0,22          |

Хорошо видно, что значения  $\bar{\nu}_1 / \langle \bar{\nu_1} \rangle$  коррелируют с величинами  $M_C/M_A$  для U -235, антикоррелируют для Pu -239 и в обоих случаях коррелируют с g . Отсутствие корреляций между  $\bar{\nu}_1 / \langle \bar{\nu}_1 \rangle$  и  $\Gamma_{n1}^0$  и  $(a_0 \Gamma_f)_1$  подтверждает вывод о том, что систематические ошибки в экспериментальных данных, связанные с учётом фонов (максимальное влияние на резонансы с малыми  $a_0 \Gamma_f$  и  $\Gamma_n^0$ ) и возможными просчётами при измерениях с толстыми образцами. (максимальное влияние на резонансы с большими  $\sigma_0 \Gamma_f$  и  $\Gamma_n^0$ ), не были существенными.

В таблице 2 приведены также средневзвешенные значения  $\overline{\nu_i} / \langle \overline{\nu_i} \rangle$  при разделении резонансов U -235 и Pu -239 на две группы в соответствии с величинами g и  $M_{C}/M_{A}$ .

Все методы разделения дают основания сделать однозначный вывод о наличии разницы в среднем числе нейтронов на акт деления для двух групп резонансов. Из корреляции величин  $\bar{\nu}_i / \langle \bar{\nu}_i \rangle$  и g следует, что группам резонансов с большим и меньшим значениями  $\bar{\nu}_i / \langle \bar{\nu}_i \rangle$  можно приписать спины 4 и 3 для U -235 и 1 и 0 для Pu -239.

| Способ разделения                           | Уран -235                              |                               | Плутоний -239        |                               |
|---------------------------------------------|----------------------------------------|-------------------------------|----------------------|-------------------------------|
|                                             | Группа 1                               | Группа 2                      | Группа 1             | Группа 2                      |
| Сумма двух распредел                        | ІЄНИЙ                                  |                               |                      |                               |
| Гаусса (МНК)                                | 1,006 <u>+</u> 0,008                   | 0 <b>,</b> 984 <u>+</u> 0,006 | 1,013 <u>+</u> 0,007 | 0 <b>,</b> 974 <u>+</u> 0,010 |
| По спину                                    |                                        |                               |                      |                               |
| ( g -фактор )                               | 1,005 <u>+</u> 0,002                   | 0,990 <u>+</u> 0,002          | 1,014 <u>+</u> 0,003 | 0,977 <u>+</u> 0,005          |
| По относительному вы                        | ходу                                   |                               | đ                    |                               |
| осколков симметрично                        | й мас-                                 |                               |                      | 0.070.0.000                   |
| сы ( M <sub>C</sub> /M <sub>A</sub> )       | 1 <b>,</b> 007 <u>+</u> 0 <b>,</b> 002 | 0,990 <u>+</u> 0,002          | 1,007 <u>+</u> 0,003 | 0,973 <u>+</u> 0,008          |
| По величине                                 | < \[ \[ \]                             | U -235                        | <Γ <sub>1</sub> >    | Pu-239                        |
| $\bar{\nu}_i / \langle \bar{\nu}_i \rangle$ | 31+3                                   | 70+6                          | 50+8                 | 432+85                        |

Таблица 2

Средние значения  $\overline{
u_i} / < \overline{
u_i} >$ и Г, для двух групп уровней U -235 и Ри -239 Обнаружение спиновой зависимости в  $\bar{\nu}$  указывает на наличие глубокой связи между двумя последовательными стадиями процесса деления: переходными состояниями ядра при критической деформации, с одной стороны, и моментом разделения на два осколка и их разлетом, с другой.

Физическая картина изменения полной энергии ядра в пространстве деформаций может быть получена в рамках капельной модели с учётом влияния оболочек без конкретизации спектра и природы делительных каналов /24/

Обычно в процессе деления можно условно выделить квазистатическую стадию в окрестности седловой точки и неквазистатическую – при разделении ядра на осколки и разлет осколков под действием кулоновских сил отталкивания.

На квазистатической стадии движение ядра происходит таким образом, что в каждый момент времени энергетическое состояние является наинизшим. После седловой точки начинается неквазистатическая стадия, характеризующаяся быстрым освобождением энергии коллективных степеней свободы и формированием нуклонных оболочек в осколках. На этой стадии происходит образование шейки между будушими осколками, но энергия возбуждения их внутренних степеней свободы соответствует энергии возбуждения всего ядра. Этот процесс заканчивается разделением на осколки. В момент разрыва шейки первоначальная форма осколков далека от равновесной. В результате обмена энергий между коллективными и нуклонными степенями свободы происходит нагрев ядерного вешества, причём нагрев должен быть тем больше, чем больше отклонение формы осколка от равновесной в момент разрыва шейки.

Кинетическая энергия осколков, приобретаемая в результате кулоновского отталкивания, определяется в основном расстоянием между центрами будущих осколков.

Таким образом, кинетическая энергия осколков деления характеризует деформацию переходного ядра перед его разрывом, а энергия возбуждения осколков – их деформацию в момент разрыва.

Так как в пределах энергетической шели спектр переходных состояний (каналов) делящегося ядра имеег сходство со спектром стабильных деформированных ядер при энергии возбуждения, равной с. = Е -EЕ (1) - высота і -того -энергия связи нейтрона в составном ядре, (E барьера деления), то каналы, соответствующие определенным комбинациям спина и чётности, могут отличаться высотой барьера и, возможно, соответствующей энергией возбуждения коллективных и внутренних степеней свободы. Это предположение согласуется с косвенными данными о высоте барьеров деления, следующими из вероятностей деления четно-чётных составных ядер /17,22/. В этом случае при возбуждении внутренних степеней свободы можно воспользоваться понятием температуры ядерной жидкости, которая будет зависеть от 🤄 . Из теории ферми-жидкости вязкость ядерной жидкости  $\,\approx\,T^{-2}\,$  . Принимая такую зависимость вязкости от температуры, получаем, что для высоколежащих переходных состояний ) при спуске ядра с барьера из-за большой вязкости шейка (малые ε, не будет разрываться до малой толщины и следовательно, большой длины. Это приведет к большой деформации образующихся после разрыва шейки осколков. а. значит, большей энергии их возбуждения и меньшей кинетической энергии, из-за большого расстояния между центрами осколков в момент разделения. Для низколежащих состояний (большие с. ) разрыв шейки происходит при больших толщинах шейки и приводит к обратному результату.

В рассмотренной модели энергия  $\epsilon_i$  связана с возбуждением внутренних степеней свободы в седловой точке. Аналогичный результат может быть получен и при предположении, что  $\epsilon_i$  связана с кинетической энергией коллективных степеней свободы делящегося ядра, но время дви-



Рис. 2. Значения  $\overline{\nu_i}$  / $<\overline{\nu_i}>$  для U -235. А.С - преимущественно ассиметричное и симметричное деление/19/, $\Box$ -I=4<sup>-</sup>;0-J=3<sup>-</sup>/21/.





жения от седловой точки до точки разрыва велико по сравнению с характерным нуклонным временем. Тогда за счёт "трения", т.е. обмена энергией между коллективными и нуклонными степенями свободы, также будет происходить нагревание ядерного вещества в процессе скатывания с потенциального барьера к точке разрыва.

В работах<sup>/1,2/</sup> для объяснения возможных коррелированных изменений в  $\bar{\nu}$  и  $\bar{E}_k$  были сделаны различные альтернативные предположения относительно природы делительных каналов и времени спуска с вершины потенциального барьера до момента разделения. В конечном итоге полученные результаты аналогичны рассмотренным выше. В работе<sup>/25/</sup> делается конкретное предположение о природе каналов с k=2, связанных с колебаниями поверхности ядра в направлении, перепендикулярном оси симметрии ядра. Считается, что только эти каналы, слабо связанные с относительным движением частей ядра в направлении разлета осколков, не дают вклада в  $\bar{E}_k$ . В этом случае при делении через низколежащие каналы ( K = 0,1) энергия возбуждения осколков ( и  $\bar{\nu}$  ) должна быть меньше, а  $\bar{E}_k$  – больше, чем при делении через высоколежащие каналы, где вклад каналов с большими K является определяющим.

Как следует из вышеизложенного, привлечение различных моделей в рамках каналовой теории позволяет качественно объяснить обнаруженную спиновую зависимость  $\overline{\nu}$  для U -235 и Pu -239.

Используя известные данные  $^{/26/}$  о величине  $d\nu/dE$  для U -235 и Pu -239 в области нескольких Мэв, можно оценить эффективную разность в высоте барьеров деления на основе полученных  $\Delta\nu$  · для переходных состояний ядра 4<sup>-</sup> и 3<sup>-</sup> и 1<sup>+ и</sup>и 0<sup>+</sup>, равную  $\Delta E_{3\phi} = 0.33\pm0.16$ Мэв и 0.93±0.27 Мэв, соответственно. Эти значения  $\Delta E_{3\phi}$  согласуются с последними определениями положения колебательных уровней U -236 и Pu -240 из анализа ( d.pf ) и (t.pf ) экспериментов, которые дают величину  $\Delta E_{3\phi}$  от 0.15 до 0.5 Мэв для U -236 и от 0.7 до 1.4 Мэв для Pu -240

В работе<sup>/6/</sup> проведены относительные измерения в области энергий ниже 9 эв для U -235. В качестве критерия  $\bar{E}_k$  в отдельных резонансах использовалось отношение выхода осколков из толстой мишени (больший вклад осколков с большей кинетической энергией) к выходу осколков из тонкой мишени (весь спектр осколков). Этот метод, как отмечается в работах<sup>/6,7,28/</sup>, обладает высокой чувствительностью к изменению  $\bar{E}_k$  осколков в зависимости от толщины мишени и электронных порогов регистрации осколков (эффект может достигать 30-40%). Для

U -235 наблюдается чёткая антикорреляция выхода v и E , от резонанса к резонансу ( г =-0,74±0,14), что подтверждает реальность представленной выше связи между состояниями переходного ядра, моментом разделения и разлета образовавшихся осколков.

На рис. 4 показана зависимость  $\overline{\nu}$  от полной кинетической энергии осколков для спонтанного деления <sup>252</sup>Сf (аналогичная зависимость должна быть для U-235 и Pu-239)<sup>/29/</sup>. Хорошо видно, что осколкам





Хорошо видно, что осколкам с большей кинетической энергией соответствует меньшая энергия возбуждения. Отсюда, учитывая результаты работ  $^{/6,7,28/}$ , следует, что необходимо осторожно подходить к интерпретации результатов измерений  $\overline{\nu}$ в совпадениях с интегральными ионизационными камерами, содержащими относительно большое количество делящегося изотопа. Если

обсуждаемая выше связь между  $\tilde{\nu}$  и  $\tilde{E}_k$  для различных каналов деления справедлива, то измерения в совпадениях с интегральными камерами деления могут привести к уменьшению эффекта в  $\tilde{\nu}$  или даже к изменению его знака. Это, по-видимому, может быть одним из возможных объяснений несогласия наших результатов и результатов работы  $^{/30/}$ . Следует также принимать во внимание угловое распределение нейтронов в лабораторной системе координат, коррелированное с направлением разлета осколков.

В заключение авторы выражают глубокую признательность профессору Ф.Л. Шапиро, В.Н. Андрееву за плодотворные обсуждения, И. В. Кирпичникову и Г.Н. Смиренкину за предоставление на время измерений образцов и камеры, Г.П. Жукову, Ю.И. Кольгину, Т.С. Афанасьевой за большую помощь при измерениях и обработке.

### Литература

- 1. В.Н. Андреев. Тезисы докладов совещания по физике деления атомных ядер. Ленинград, Изд. АН СССР (1961).
- 2. Ju.A. Blumkina et al., Nucl. Phys. 52, 648 (1964).
- 3. B.R. Leonard et al., BAPS, ser II, 1, 8, No1 (1956).
- 4. J. Michel Auclair et al., Compt. Rend 241, 1935 (1955).
- 5. L.M.Bollinger, Conference on Neutron Physics by Time-of-Flight, held at Gatlinburg, Tennessee, Oak Ridge, ORNL-2309 (1956).
- 6. L.G.Miller, M.S.Moore, Phys. Rev. 157, No4, 1055 (1967).
- 7. G.K.Mehta, Диссертация, Колумбийский Университет, Нью-Йорк, 1963.
- 8. Yu.V.Ryabov et al., International Symposium on Nuclear Structure, Contributions, 88, Dubna (1968).
- 9. Yu.V.Ryabov et al., UK/USSR Seminar on Nucl. Data, Dubna, June (1968).

- 10. Ю.В. Рябов и др. Тезисы докладов X1X ежегодного Всесоюзного совещания по ядерной спектроскопии, Ереван, январь (1969).
- 11. Г.Е. Блохин, Д.И. Блохинцев и др. Атомная энергия, 10, в.5, 437 (1961).
- 12. Ван Ши-ди, Ю.В. Рябов. ПТЭ, №4, 63 (1965).
- 13. Г.П. Жуков. Автореферат диссертации, Дубна (1966).
- 14. Ю.В. Рябов, Й. Томик и др. Препринт ОИЯИ, Р10-3761, Дубна (1968).
- 15. Л.И. Прохорова, Г.Н. Смиренкин. Препринт ФЭИ-107 (1967).
- 16. Ю.В. Рябов, Н. Чиков. Препринт ОИЯИ Р , Дубна (1970).
- 17. Ю.В. Рябов, и др. Ядерная физика, <u>5</u>, в.5, 925 (1967); Препринт ОИЯИ Р-2713, Дубна (1966).
- E. Pearson, H. Hartley, Biometrika Tables for Statisticians, Cambridge (1958).
- 19. G.A. Cowan et al., Phys. Rev. <u>130</u>, 2380 (1963). Phys. Rev. <u>144</u>, 3 (1966).
- 20. M.Asghar. Nucl.Phys. A98, 33 (1967).
- 21. M.Asghar et al., Phys.Lett. 26B, 11, 664 (1968).
- 22. Ван Ши-ди и др. "Physics and Chemistry of Fission", IAEA, Vienna, v. 1, 287 (1965).
- 23. D.J. Hudson, Statistics, Geneva (1964).
- 24. L. Wilets, Theories of Nuclear Fission, Clarendon Press, Oxford, 1964.

25. В.М. Стругинский, В.А. Павлинчук. "Physics and Chemistry of Fission", IAEA, Vienna, v. 1, 127 (1965).

- 26. F.L. Fillmore, Journal of Nucl. Energy 22, 79 (1968).
- 27. H.C. Britt, F.A. Richey, Bull. Amer. Phys. Soc. 13, 36 (1968).
- 28. С. Бочваров и др. Препринт ОИЯИ РЗ-4110, Дубна (1968).
- 29. W. Brunner, H. Paul, Annual Phys., 6, 267 (1960).
- 30. S. Weinstein, R. Reed, R.C. Block. Second IAEA Symposium on Physics and Chemistry of Fission, p.477 (1969).

Рукопись поступила в издательский отдел 30 июля 1970 года. 1 NOOB 10.1., CO HOA GAR, INAOB 11., MAEBA 11.

Относительные измерения  $\overline{\nu}$  при делении U -235 и Pu -239 резонансными нейтронами

1 0-0201

Обнаружена спиновая зависимость в выходе среднего числа мгновенных нейтронов на акт деления для U -235 и Pu -239 в области энергий взаимодействующих нейтронов 1-40 эв и 5-85 эв, соответственно.

## Препринт Объединенного института ядерных исследований. Дубна, 1970

Ryabov Yu.V., So Don Sik, Chikov N., Janeva N. P3-5297

Relative Measurements of  $\overline{\nu}$  in the U-235 and Pu-239 Fission by the Resonance Neutrons

The spin dependence is found in the yield of average number of prompt neutrons per fission act for U-235 and Pu-239 in the energy region of interacting neutrons of 1-40 eV and 5-85 eV, respectively.

## Preprint. Joint Institute for Nuclear Research. Dubna, 1970