

P3 - 5113

Ю.В. Рябов, Со Дон Сик, Н. Чиков, М.А. Куров

ИЗМЕРЕНИЕ ОТНОШЕНИЯ СЕЧЕНИЙ РАДИАЦИОННОГО ЗАХВАТА И ДЕЛЕНИЯ (С) ДЛЯ УРАНА-235 И ПЛУТОНИЯ-239 В РЕЗОНАНСНОЙ ОБЛАСТИ ЭНЕРГИЙ НЕЙТРОНО

HEHHER METHTY

BINUTEKA

1970

HENTPORION

LAB@PAT@PMG

P3 - 5113

Ю.В. Рябов, Со Дон Сик, Н. Чиков, М.А. Куров

ИЗМЕРЕНИЕ ОТНОШЕНИЯ СЕЧЕНИЙ РАДИАЦИОННОГО ЗАХВАТА И ДЕЛЕНИЯ (α) ДЛЯ УРАНА-235 И ПЛУТОНИЯ-239 В РЕЗОНАНСНОЙ ОБЛАСТИ ЭНЕРГИЙ НЕЙТРОНОВ

Введение

При проектировании реакторов на промежуточных и быстрых нейтронах необходимо знать энергетическую зависимость величины $\eta(E) = \overline{\nu}\sigma_t(E) / \sigma_a(E)$ (где $\overline{\nu}$ - среднее число испускаемых нейтронов на акт деления, $\sigma_t(E)$ и $\sigma_a(E)$ - сечения деления и поглощения нейтронов, соответственно) в широкой области энергий. Требуемая точность определения должна быть не хуже $\pm 5\%/1/$. Для этой цели были разработаны прямые методы измерения $\eta(E)$ /2,3,4/. Однако до сих пор эти методы применялись в ограниченной области энергий нейтронов (до 200 эв в наиболее благоприятном для измерений случае урана-235/4/).

Энергетическую зависимость $\eta(E)$ можно также получить через параметр *a* -отношения сечения радиационного захвата к сечению деления – из соотношения $\eta(E) = \overline{\nu} / [1 + a(E)]$. Даже невысокая точность измерения величины a(E), не превышающая (10 + 20)%, оказывается достаточной для достижения точности в (2 + 5)% при определении $\eta(E)$ для типичных в промежуточной области энергий величин $a \approx (0, 2 + 0, 4)$.

Использование больших жидкостных сцинтилляционных детекторов с введенным в раствор кадмием/5/ позволяет достаточно надежно измерять a(E) в энергетической области от нескольких эв до нескольких десятков кэв.

Следует отметить, что наибольшие методические трудности при измерениях $\sigma_i(E)$ и a(E) встречаются в энергетической области от 300 – 500 эв до 10 + 20 кэв. В этой области нейтронные спектрометры по времени пролета имеют в большинстве случаев "плохое" разрешение,

а электростатические генераторы в качестве источников монохроматических нейтронов еще не могут быть использованы. Этим, по-видимому, объясняется весьма ограниченное количество данных в этой энергетической области и существенные расхождения в величинах $\sigma_{f}(E)$ и $\alpha(E)$, полученных разлыми авторами.

Методика измерений

Измерения производились методом времени пролета на импульсном быстром реакторе ОИЯИ/6/ при средней мощности 3 квт, частоте следования нейтронных импульсов 5 в сек и пролетном расстоянии 1010 м.

В качестве детектора использовался жидкостный сцинтилляционный детектор объемом 500 литров на основе толуола с добавками пара-терфенила и ПОПОП. С помощью обезвоженного метилового спирта в раствор был введен пропионовокислый кадмий в количестве, обеспечивающем отношение числа ядер кадмия к числу ядер водорода равное 0,004.

Принцип регистрации делений и радиационных захватов основан на том факте, что деление сопровождается испусканием мгновенных у -лучей и нейтронов, а радиационный захват - только У -лучей.

Регистрации акта деления соответствует задержанное совпадение двух событий:

1) испускания мгновенных у -лучей деления, фиксирующих момент деления, и 2) захвата кадмием одного из замедлившихся нейтронов деления, фиксирующего сам факт деления, и дающего в результате каскад в среднем из четырех у -квантов с полной энергией 0,2 Мэв. Время, разделяющее эти события, определяется средним временем жизни нейтрона в детекторе до захвата, которое равняется 8 мксек. Радиационный захват нейтрона образдом сопровождается испусканием нескольких у -квантов с полной энергией, равной энергии связи нейтрона в образовавшемся ядре. Подробные данные о детекторе и его характеристики приведены в работе авторов/5/.

В зависимости от режима работы детектора пороги регистрации у -лучей деления и радиационного захвата устанавливались равными 0,3 + 0,7 Мэв, а нейтронов деления - 0,8 + 1,5 Мэв. При этом эффективности регистрации актов деления и радиационного захвата, измеренные методом, подробно описанным в работе/5/, составляли 40-60% и 20-30%, соответственно.

Измерения и обработка

Временные спектры регистрировались двумя 4096-канальными анализаторами с ширинами каналов в группах 32, 16 и 8 мксек для энергетических интервалов 0,15 + 5 эв; 5 + 100 эв и 0,1 + 30 кэв, соответственно.

Корректный учёт фона в спектрах деления и радиационного захвата, особенно в области энергий выше 500 + 1000 эв, является основной проблемой при измерениях на нейтронном спектрометре по времени пролета. В настоящих измерениях различные компоненты фона учитывались следующим образом:

1. <u>Постоянный фон.</u> создаваемый радиоактивностью помещения, космическим излучением и естественной у -активностью образца, не зависит от времени и учитывается достаточно точно в измерениях без работаюшего реактора. Кроме того, между чувствительным объемом детектора и образцом помещался свинцовый фильтр толщиной 0,6 см, что позволило понизить постоянный фон в 2-3 раза по сравнению с работой/7/ за счёт уменьшения эффективности регистрации "мягких" у -квантов, возникающих в результате интенсивного а -распада ядер образца.

2. Фоны, связанные с нейтронным пучком реактора

а) Для исключения фона от рецикличных нейтронов в области энергий до 20 эв измерения проводились с помещенным в пучок кадмиевым фильтром (п о ^T_{Cd} = 22,4), а выше 20 эв – с борным фильтром (п о ^T_B = 15).
б) Для определения фона случайных совпадений при регистрации делений использовался метод задержанных совпадений. Величина задержки составляла 40 мксек, что в 5 раз превышает среднее время жизни нейт-

рона до захвата в детекторе. Этот метод достаточно точно учитывает фон в том случае, когда сечение меняется плавно (в области неразрешенных резонансов) и когда аппаратурная полуширина резонанса более чем в 3 раза превышает величину задержки (в области разрешенных резонансов при низких энергиях).

В том случае, когда полуширина резонанса превосходит задержку при измерении фона не более, чем в 3 раза, экспериментальная кривая фона умножалась на фактор $k = [1 - (\tau/2\theta)^2]^{-1}$, где 2θ – аппаратурная полуширина резонанса, τ – задержка при измерении фона. Вид поправки определен в работе авторов/8/.

в) Для учёта фона, связанного с рассеянием нейтронов пучка на коллиматорах, заглушках нейтроновода, конструкционных материалах детектора и т.д., а также фона запаздывающих нейтронов реактора, нейтронный пучок перекрывался фильтрами из серебра, кобальта, марганца, натрия и титана с толщинами 2.9. 10-3 ядер-барн : (в σ = 5,3 для E_{o} = 5,2 эв); 2,8 · 10⁻³ ядер/барн; (п σ = 11,0 для E_{0} = 132 эв); 5,3 · 10⁻³ ядер/барн; (п $\sigma = 21$ для $E_0 = 337$ эви п $\sigma = 2,7$ для $E_0 = 2350$ эв); 1,9 ·10-² ядер/барн (пσ = 8,7 для Е₀ = 2850 эв) и 4 •10-² ядер-барн (в σ = 6,1 для E₀ = 17500 эв), соответственьо. Счёт детектора в резонансах, принадлежащих этим изотопам, принимался равным фону из-за полного выведения из пучка нейтронов соответствующих энергий. Так как этот фон являлся основным фоном при высоких энергиях в канале радиационного захвата, то для его уменьшения по сравнению с первыми измерениями/7/ нейтронный пучок формировался за пределами экспериментального помещения, что заметно снизило рассеяние быстрых нейтронов на конструкционных материалах.

г) Вклад нейтронов, потенциально рассеянных исследуемым изотопом, примесями и упаковкой образца, в экспериментальный спектр радиационного захвата во всем энергетическом интервале определялся из отдельных измерений с образцами свинца, имеющими одинаковые с исследуемым изотопом форму, упаковку, химическое соединение и (п σ) $_{\rm Pb}^{-}$ [(п σ) $_{\rm P}$ $_{\rm p}^{-}$ (п σ) Так как сечения потенциального рассеяния свища, урана и плутония близки по величине (11,0 + 11,4 барн/9/), то, предполагая, что σ_{p} мало изменяется с энергией в исследуемой области, измерения с образцом свинца, заменяющим исследуемый образец, позволяют достаточно надежно определить экспериментальный вклад потенциального рассеяния. Однако для улучшения отношения эффект-фон и уменьшения возможных систематических ошибок при определении вклада нейтронов потенциального рассеяния в спектр радиационного захвата между чувствительным объемом детектора и образцом помещался цилиндрический фильтр из ⁶ Li толщиной 3 см (n $\sigma_{na} \approx 8.4$ для E = 10 эв; n $\sigma_{na} \approx 2.9$ для E = 100 эв и $n\sigma_{na} \approx 1.1$ для E = 1 кэв/7/).В настоящей работе использовались фильтры из ¹⁰ В с парафином, позволившие увеличить п σ_{na} в 3 + 4 раза. Для уменьшения рассеяния нейтронов пучка на воздухе внутри цилиндрического отверстия детектора этот объем откачивался до давления 1 мм рт. ст.

Кроме того, по всей длине 1000-метрового нейтроновода в пучке оставлялось минимальное количество посторонних материалов (алюминиевые вакуумные заглушки), которые в первых измерениях/7/ не только уменьшали нейтронный поток, но и искажали его вблизи нейтронных резонансов марганца ($E_0 = 0,337$ и 2,35 кэв) и алюминия ($E_0 = 36$ кэв), что также могло привести к появлению систематических ошибок в этих энергетических областях.

Все это позволило понизить суммарный фон в канале регистрации актов радиационного захвата в наиболее трудной для измерений области энергий 10 + 30 кэв с $\approx 50\%/7/$ до $\approx 30\%$ для U_{-235} и с $\approx 70\%/7/$ до $\approx 40\%$ для P_u –239 . Суммарный фон в канале регистрации актов деления в той же области энергий для U_{-235} и P_u –239 уменьшился приблизительно на 30%.

Вклады всех рассмотренных фонов считались статистически независимыми и при обработке суммировались, что, по-видимому, справедливо, так как просчёты из-за наложения импульсов в пределах мертвого времени регистрирующих систем не превышали 1% и учитывались при обработке.

6

Измерения временных спектров деления и радиационного захвата велись одновременно на двух анализаторах, серии измерений эффекта и фона чередовались, и полученная информация периодически по кабелю передавалась на электронную вычислительную машину (ЭВМ), где записывалась на магнитную ленту. По окончании все измерения серий одного типа с магнитной ленты передавались в память ЭВМ, суммировались, исправлялись на просчёты и обрабатывались в соответствии с описываемой ниже процедурой.

Сечение деления определялось из выражения

$$\sigma_{t}(E_{t}) = \frac{N_{t}(t)}{N_{BF_{t}}(t)} \frac{\Delta N_{BF_{3}}^{T}}{\Delta N_{t}} \sigma_{t}(E_{T}) \sqrt{\frac{E_{T}}{E_{t}}}, \qquad (1)$$

где $N_t(i)$ и ΔN_t^T – число актов деления, зарегистрированных в і -том канале анализатора и при энергии E_T ; $N_{BF_3}(i)$ и $\Delta N_{BF_3}^T$ – число отсчётов "тонкого" борного счётчика в том же канале анализатора и при энергии E_T ; σ_t (E_T) – сечение деления при энергии E_T ; E_1 – энергия, соответствующая і –каналу анализатора.

Калибровка по тепловым сечениям, которые принимались равными (582<u>+</u>5) барн для U-235 и (742<u>+</u>4) барн для Ри-239 /9/, осуществлялась с использованием рецикличных нейтронов и подробно описана в работах/10,11/.

Ход нейтронного потока измерялся глоской батареей из 10 "тонких" счётчиков, наполненных обогащенным BF₃ (87,4%¹⁰ В) при давлении 600 мм рт ст. Фон счётчиков при работающем реакторе определялся с помощью перекрывающих пучок резонансных фильтров, о которых упоминалось выше.

Величина отношения сечений радиационного захвата и деления

 $\alpha(\mathbf{E}_{i}) = \sigma_{c}(\mathbf{E}_{i})/\sigma_{f}(\mathbf{E}_{i})$ определялась из выражения $\alpha(\mathbf{E}_{i}) = \frac{N_{f}(i)}{N_{f}(i)} - \frac{\epsilon_{f}}{\epsilon_{c}} - \frac{W}{\epsilon_{c}},$ где $N_{\gamma}(i)$ – число зарегистрированных в і -канале анализатора импульсов по каналу регистрации актов радиационного захвата; $N_{r}(i)$ – число зарегистрированных в том же канале анализатора актов деления; ϵ_{r} , ϵ_{c} – эффективности регистрации детектором актов деления и радиационных захватов; Ψ – "эффективность" регистрации по каналу радиационного захвата актов, относящихся к делению.

Выражение (2) является линейным уравнением, связывающим счёт детектора N_v(i)/N_c(i) с определяемой величиной $\alpha(E_i)$. Коэффициенты $A = \epsilon_t / \epsilon_c$ и $B = W / \epsilon_c$ этого уравнения могут быть найдены из нормировки на известные значения а, и в основном характеризуют методику измерений. В работе авторов/7/ при нормировке использовались значения ao для тепловой энергии a (U-235) = 0.17: а (Ра-239) = 0,37, известные с точностью (1 + 5)%. Эффективности с и с определялись в отдельных измерениях. Однако такой метод нормировки при относительно высокой точности не дает уверенности в "линейности" методики регистрации актов деления и радиационного захвата при определении а(Е) в интервале 0,5 - 2,0, которому принадлежат и значения а(Е) в представляющеи наибольшии интерес области энергий нейтронов 0.1 + 20 кэв. Поэтому в настоящих измерениях при нормировке использовались значения а для 12 и 14 хорошо разрешенных резонансов Ри-239 и U-235, соответственно. Погрешность нормировочных значений а, для отдельных резонансов лежит в пределах от 10 до 40%. Для определения коэффициентов А и В методом наименьших квадратов были использованы все известные данные по а с учётом их веса, определяемого в соответствии с указанной авторами ошибкой. Нормировка измерений а(Е) U-235 проводилась по хорошо согласующимся данным работ/12,13,14/ Нормировочные значения для Pu-239 /15/ приведены в таблице 1. При расчёте коэффициентов А и В учитывался также вес отношения <u>N_Y(i)</u>

для каждого резонанса, который определялся в соответствии с величиной его статистической ошибки.

В дополнительных измерениях с образцом U-238 , помещенным на место исследуемого образца U-235, был экспериментально определен вклад радиационного захвата примесей в а для U-235 .

8

(2)

-239, использованные 2

Таблица I разрашенных резонансов для калибровки **~*** Значения

,82<u>+</u>0,09 0,35<u>+</u>0,08 I,54<u>i</u>0,I6 I,0440.08 80,0408 0,85±0.02 1 1 1 NRNO OHIN 8.7 ,58<u>+</u>0,04 2,45±0,I0 0,91<u>+</u>0,05 9,38<u>i</u>0,30 ORNU-RPI ង Harwell [13] BN1 [9] Ö *AN*4 I,86±0,35 [3] 0,66<u>+</u>0,I I, 0<u>1</u>12, I 9,61<u>4</u>0,9 0,84<u>i</u>0,2 [,07<u>+</u>0,2 0.46+0 0,1340, Saclay [19] 0,51<u>7</u>0,14 I,25±0,07 I, I5+0, 0 [,75±0,2] 0,71±0,0 0,84,20,1 0,31<u>1</u>0, 3,5<u>1</u>0,4 5,25<u>1</u>0, 9,2840, Лаборатория 7,83 11,97 14,75 14,75 22,33 26,31 26,31 26,31 26,31 52,13 52,13 52,13 52,13 52,13 52,13 52,13 52,13 52,13 52,8 8 • **.** [2]

10

5,22<u>f</u>0,20

Подобная поправка на вклад радиационного захвата изотопа Ри-240 при измерениях а для Ри-239 не вводилась и соответствующая ошибка включалась в систематическую ошибку определения а(Е)

При обработке считалось, что эффективности с, и с постоянны в исследуемой области энергий нейтронов, так как полная энергия и множественность У -лучей деления и радиационного захвата, а также среднее число мгновенных нейтронов на акт деления сушественно не изменяются/16.17/. К тому же используемая методика регистрации актов деления и радиационного захвата мало чувствительна к небольшим изменениям множественности у -лучей и числа нейтронов на акт деления. Поэтому считалось. что коэффициенты А и В являются постоянными во всей исследуемой области энергий. Метод проверки постоянства эффективностей в резонансной области энергий подробно рассмотрен в работе авторов/5/.

Описанная выше методика измерений позволяет получать достаточно высокую статистическую точность (1 + 3%) за относительно короткое время измерений (10 + 20) час. Однако окончательная точность результатов определяется систематическими ошибками. связанными с учётом в экспериментальных спектрах переменного фона и вклада нейтронов, рассеянных образцом. а также ошибки нормировочных констант А и В . В проведенных различных сериях измерений величины А в В лежали, соответственно, в пределах 1.2 + 1.4 и 0.2 + 0.8 и были определены с точностью не хуже 5 и 15 + 20%, соответственно.

Значения а , полученные в настоящей работе, приведены в таблинах II и III . Окончательные результаты получены путем усреднения по сериям измерений с образцами различной толшины, а указанные ошибки характеризуют среднеквадратичный разброс данных этих серий. Усреднение также проводилось по энергетическим интервалам 0,1; 1,0; 5,0 и 10 кэв для того, чтобы иметь возможность сравнивать полученные данные с данными других авторов, по возможности исключая влияние разрешения нейтронных спектрометров по времени пролета.

∆ E an	8,7.IO ⁻⁴	Толщина с 5,8. IO ⁻⁴	юразца ћ яд 2,85.10 ⁻⁴	ер/барн I,42.I0 ⁻³	2,7,10 ⁻³	ح م <i>ر (E)</i> >
I00-2 00	0,82+0,21	I,0I+0,24	0,86+0,I4	0,85+0,I7	0,69+0,13	0,85+0,II
200-300	0,96+0,24	I,0940,26	I,02+0,I6	1,09 <u>+</u> 0,21	0,86 <u>+</u> 0,14	1,00 <u>+</u> 0,10
300-400	0,95+0,26	I, II <u>+</u> 0, 3I	71,09 <u>+</u> 0,17	I, I4 <u>+</u> 0, 22	0,7010,15	I,00 <u>+</u> 0,IB
400-500	0,98 <u>1</u> 0,29	0,9210,23	0,89 <u>+</u> 0,15	0,9140,18	0,75+0,13	0, 0468, 0
500-600	0,9210,23	0,89+0,27	0,82 <u>+</u> 0,13	0,85+0,17	0,71 <u>+</u> 0,12	0,84 <u>+</u> 0,08
600-700	1,02 <u>+</u> 0,20	I,2I+0,36	I,73 <u>+</u> 0,24	2,0510,40	I, I840, I3	I,44 <u>+</u> 0,43
700-800	I,46 <u>+</u> 0,39	I, I940, 33	1,17 <u>+</u> 0,19	I,42+0,27	I,29 <u>+</u> 0,I2	I,31+0,13
800-900	I,36 <u>+</u> 0,36	0,97±0,29	1,17 <u>+</u> 0,19	I,2110,23	I,0210,I4	I, I5 <u>+</u> 0, I6
000I-006	I,35+0,37	I,06 <u>+</u> 0,32	I, I6 <u>+</u> 0, I8	I,43 <u>1</u> 0,28	1,03 <u>+</u> 0,13	1,21 <u>+</u> 0,18
I000-2000	I, I5 <u>1</u> 0, 22	0,9610,29	1,06±0,17	I, 19±0,23	0,85 <u>+</u> 0,14	I, U410, I3
2000-3000	I,34 <u>+</u> 0,25	1,01 <u>+</u> 0,26	1,17 <u>1</u> 0,19	I,0840,26	0,87±0,17	1,09 <u>+</u> 0,18
3000-4000	0,95±0,21	0,7910,20	I,09±0,IB	1,1140,22	0,86±0,15	0,96 <u>4</u> 0,14
4000-2000	0,80 <u>1</u> 0,19	0,7010,21	0,77 <u>+</u> 0,14	0,85 <u>10</u> ,18	0,78 <u>+</u> 0,13	0,7840,05
5000-6000	1,02 <u>+</u> 0,24	0,76+0,I8	0,8840,17	0,83 <u>+</u> 0,I8	0,63 <u>1</u> 0,I4	0,82 <u>+</u> 0,I4
6000-7000	1,07 <u>+</u> 0,21	0,6110,17	0,68 <u>+</u> 0,I4	0,72 <u>1</u> 0,16	0,6910,12	0,75 <u>7</u> 0,18
7000-8000	0,89+0,22	0,5840,15	0,45 <u>+</u> 0,II	0,46 <u>+</u> 0,I3	0,65 <u>+</u> 0,II	0,60 <u>+</u> 0,17
8000-9000	0,62 <u>1</u> 0,20	0,43 <u>+</u> 0,12	0,46 <u>4</u> 0,II	0,51 <u>+</u> 0,16	0,4810,10	0,5010,07
00001-0006	0,44 <u>+</u> 0,I8	0,51 <u>+</u> 0,14	0,50 <u>+</u> 0,13	0,39 <u>+</u> 0,15	0,32±0,11	0,4310,08
0000-20000	0,34 <u>+</u> 0,I5	0,40 <u>+</u> 0,I3	0,41 <u>+</u> 0,14	0,33 <u>+</u> 0,II	0,39 <u>+</u> 0,I0	0,37 <u>+</u> 0,05

13

. Таблица П Усредненные величины < d/с))для U -235

д Е эв	< d(E) >	д Е эв	< d(E) >
T00 - 200	0 776 0 073	3000-4000	0 // 80.0 050
200 - 300	0,538+0.050	4000-4000 4000-5000	0,400 <u>+</u> 0,050
300 - 400	0,500+0.049	5000-6000	0.267+0.029
400- 500	0,374+0,036	6000-7000	0,340+0,033
500 - 600	0,253+0,026	7000-8000	0,287 <u>+</u> 0,032
600 - 700	.0,426 <u>+</u> 0,043	8000-9000	0,332 <u>+</u> 0,037
700 - 800	0,351 <u>+</u> 0,034	9000-10000	0,203 <u>+</u> 0,02I
800 - 900	0,301 <u>+</u> 0,037	10000-15000	0,334 <u>+</u> 0,040
900 - 1000	0,458 <u>+</u> 0,043	15000-20000	0,370 <u>+</u> 0,045
1000-2000	0,552 <u>+</u> 0,037	2000-25000	0,373 <u>7</u> 0,047
2000-2000	0,400 <u>+</u> 0,041	25000-50000	0, <i>547<u>+</u>0</i> ,048

Таблица Ш

∆E »B	< ឡ (E) >	<u> < जु > [18]</u>	< জু>[13]
10-20	46.09		49.63
20-30	35.05	_	40,02 35 66
30-40	52.12	52 20	50 //9
40-50	32.21	31 9T	20,40
50-60	51,10	62.55	55 74
50-70	17,88	15.13	16 2T
70-80	30,37	34.24	29,22
80-90	25,68	28,65	25.63
90-100	23,00	21,91	23.98
I00-200	21,39	2 I 56	21.31
200-300	20,83	21,75	20,52
300-400	I3,II	13,21	£4,38
400-500	12,98	I4,69	13,19
500-600	15,00	15,43	I4,59
600 -7 00	12,00	11,48	II.72
700-800	II,IO	10,99	10,89
800-900	8,93	7,82	8,59
900-1000	8,74	7,93	7,87
1000-2000	7,84	7,65	7,55
2000-3000	5,70	5,46	5,76
3000-4000	4,88	4,72	4,89
4000-5000	4,54	4,0I	4,50
5000-6000	3,79	3,46	4,27
6000-7000	3,56	3,15	3,79
7000-8000	2,65	3,03	3,55
8000-9000	3,25	3,03	3,5I
00001-0009	3,45	3,25	3,42
10000-15000	3,14	2.77	2 80
15000-20000	2,8I		2,00
20000-25000	2,60		-
25000-30000	2,42	-	-

-235 ниц ндво 10 8 (ə) G Таблица У резонансных интегралов Срывнение

						I			
ΔE_{i}	[2]	[2]	Настоя- щая работе	, [4]	[13]	[13]	[18]	[61]	[61]
0,15 - 0,35	I45,I			I49,I					
0,35 - 0,45	28,6	28,2		30,4				- ,	
0,45 - 0,50	8,8	8,6		10,7	9,45			9,3	
0,50 - 0,55	6 1 9	7,2		7,0	7,59			7,46	•
0,55 - 0,70	15,0	I4,8		15,4°	I6,07			I5,26	
0,70 - I,00	19 , 61	19,2		20,1	20,49			20,33	
I,0 - I,3	IB,0	17,4		I8,8	I8,88	•	20,54	I8,76	
I,3 - I,8	5,6	5,5	5,8	5,2	5,86		5,55	5,59	
I,8 - 4,5	I6,0	I4,9	I6,39	I4,9	15,74		I6,36	I5,8I	
4,5 - 5,0	0,88	0,84	0,89	0,8	0,8		0,85	0,8	
5,0 - 7,4	8 ' 8	8,2	9,7	0° 6	9,7		I0,49	9,8	
7,4 - IO,0			21,93	22,6	24,3	23,83	26,12	24,7	
IO,O - I5,O			I5,99	I5,7	17 , 4	I6,93	I8,03	I7,2	
I5,0 - 20,5			15,27	15,1	I6,9	I5,60	I7,07	1,1	
20,5 - 33,0			I6,I9	I6 , 3	18,0	.I ć ,76	19 . 1	16 , 4	I2 ' 2I
33,0 - 41,0			I2,79	9 , II	13 , 5	12,32	I5 , 2	13,8	I3,68
41,0 - 60			I5,87	I6,3		I6,43	19 . 9	17 , 9	I8, I2
60 - 73			4,56	3,7		4 , 5	5 , I		4,59
73 - I00			8,07	6,8	•	7,4	6 ' 8		7,81
I00 - II3			2,22	I,8		2,2	2,3		* 2 , 05

Таблица ІУ

Сравнение средних сечений < 5, (с) для U -235

14

•				
[18]	2,52 8,51 7,7 5,0 3,3		1	
	н		(11)	210,2200,2200,2200,2200,2200,2200,2200,
[18]			[^{4]}]	210,1 2,10,1 2,11,2 4,11,2 4,11,2 4,11,2 1,2,9 1,2,9 1,2,9 1,9,9 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,8 1,99,90,90000000000
		7- 35	[18]	447,2 492,0 310,0 666,0
[13]	5,5 5,5 5,5 5,5 7,5 7,5 7,5 7,5 7,5 7,5	ний сенде	[18]	4,39 3,9 17,04 17,04 4,1 4,1 8,45 4,52 4,52 4,55 4,52 215,7 215,6 415,6 415,6 415,6 415,6 415,6 415,6 415,6 415,6 415,6 415,6
[13]		, 5,18) dE 0	[13]	112,40 111,00 110,00 110,00000000
₽ [+]	I0, 2	иннолод 11 ви	[EI]	23,97 3,97 9,96 21,1,25 21,15 3,8 4,6,4 5,4,4 5,10,9 4,59,8 4,59,8 4,59,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,8 4,49 5,9 5,9 5,95 5,95 5,95 5,95 5,95 5
астояща работа	2,05 4,61 7,61 2,09 1,04	Табли	[+]	34,58 111,63 4,96 3,65 3,65 2,10 7,9 7,9 7,9 7,5 116,73 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5 7,5
7			настоя- щая работа	8,85 48,0 4,3 5195,3 2105,3 2105,3 210,9 236,4 236,9 236,9 236,9 236,9
7		И ВИОНИО	[ני]	11,13 3,79 11,11 19,56 13,99 13,99 13,99 13,99 13,99 13,79 13,79 14,100 14,10000000000
[1]		Cpor	[1]	34,82 4,19 3,60 3,60 19,88 19,88 19,99 14,12 2,5 1,4 1,2 2,5 1,4 1,2 2,5 1,4 1,12 2,5 1,4 1,12 2,5 1,4 1,12 2,5 1,4 1,12 1,4 1,42 1,42 1,42 1,42 1,42 1
ΔΕ.	II3 - 200 200 - 300 300 - 1000 3000 - 10000 2000 - 3000 2000 - 3000		<i>۵۴ غ</i> لا	0,15 - 0,35 0,35 - 0,45 0,45 - 0,45 0,55 - 0,45 0,55 - 0,55 1,3 - 1,8 1,3 - 1,8 1,3 - 1,8 1,4 - 5 1,4 - 10,0 7,4 - 10,0 7,4 - 10,0 7,4 - 10,0 10,0 - 15,0 15,0 - 20,5 20,5 - 21,3 73,1 - 100 10,0 - 15 73,1 - 100 10,0 - 113 73 - 100 100 - 113
				17

1 = X = X

Таблица УП

Сраввение средвих сечений (5/а),для 12-239

∆Е эв	< জু <i>(</i> ह) >	< 6j(E)> [3]	<6j/e)> [19]	< §j(E) > £ 20]
5,5 - 10,0	26,2	-	_	-
10,0-20,0	9 I ,8	103,8	-	-
20,0-30,0	26,4	32,8	36,5	42,I
30,0-40,0	3,5	3,8	2,7	2,2
40,0-50,0	19,0	26,1	28,5	24,6
50,0-60,0	50,8	71,8	77,4	72,3
60,0-70,0	46,6	53,8	64,0	54,9
70,0-80,0	47,6	63,5	70,2	59,5
80,0-90,0	6I,9	66,4	80,4	61,5
90,0-100,0	3I, 4	27,7 .	37,4	26,I
100,0-200,0	I8,I	19,6	21,7	17,8
200,0+300,0	17,8	17,5	20,8	16,8
300,0-400,0	5,8	9,8	12,9	16,8
400,0-500,0	3,7	10,1	10,6	16,8
500,0-600,0	16,4	10,8	16,I	20,4
500,0-700,0	4,6	3,7	5,3	21,0
700,0-800,0	6,I	5,5	6,4	27,I
300,0-900,0	6,I	6,2	6,0	33,I
900,0-1000,0	8,5	7,7	8,I	39,6
1000-2000	4,9	4,0	5,4	6,2
2000-3000	3,2	3,4	3,9	2,6
3000-4000	3,I	3,5	3,4	2,7
4000-5000	2,6	2,7	2,9	2,3
5000-6000	I,8	2,8	3,2	2,7
6000-7000	I,9	2,7	-	2,2
7000-8000	2,1	I,9	-	2,2
8000-9000	2,0	2,I	-	2,5
9000-10000	I.8	2,3	· ·	2,1
10000-15000	I.5	3 7	-	2.2
15000-20000	I.6	7,1		C1C

I798,0 I876,0 I750,5 2059,0 2032,0 I767,9 8106,0 8106,0 6974,0 I3310,0 I3278,0 13278,0 27370,0 22770,0 26690,0 26690,0 13278

I642,0

1589**,**0

II3 - 200 200 - 300 300 - 1000 1000 - 3000 3000 - 10000 10000 - 20000 20000 - 3000

18

I821,3 2058,1 8129,7 13241,4 26665,0 30914,0 25774,0

Результаты и обсуждения

На рис. 1,2,3,4 представлены сечения деления σ_{f} (E) и a (E) для U-235 и Pu-239 в исследованном энергетическом интервале.

Сравнение полученных в настоящей работе данных о сечениях деления с опубликованными экспериментальными данными других авторов проводится в таблицах IV , V , VI в VII . Несмотря на то, что сечения деления U-235 и Pu-239 тщательно исследуются, последние 10 + 15 лет в различных лабораториях/2,4,13,14,18,19,20,21/ разброс значений $<\sigma_{f}(E) >$ для U-235 определен в (5 + 10)%, а для Pu-239 в (20+500)%.

При этом разброс данных значительно превышает ошибки, указанные авторами, и, в основном, относится к энергетической области выше 100 эв. Следует отметить, что от всех данных существенно отличаются данные работы/20/ для Pu-239 , полученные при ядерном вэрыве с высоким энергетическим разрешением и низким фоном, что соответствует наилучшим, по мнению авторов этой работы, условиям измерений. Для объяснения такого разброса данных следует предположить, что в указанной области энергий на точность измерений влияют некоторые плохо учитываемые факторы, зависящие, по-видимому, от характеристик нейтронных спектрометров по времени пролета и используемых методов регистрации актов деления.

Сравнение полученных в настоящей работе данных об отношении сечений радиационного захвата и деления с имеющимися экспериментальными данными/18,13,21,22/ для U-235 и P_u -239 проводится на рис. 5 и 6. На рисунках также приведены кривые a(E), рассчитанные/23/ на основе каналовой теории деления при различных предположениях об энергии делительных каналов/24/ и средних параметрах уровней U-235 и P_u -239.

Из сравнения результатов следует, что все имеющиеся данные об энергетической зависимости a(E) для U-235 согласуются в пределах указанных ошибок (20 + 30)% между собой и с расчётами, выполненными в рамках каналовой теории деления.

Для Ри-239 результаты настоящих измерений a(E) согласуются с опубликованными данными в области энергий ниже 3 кэв и не противоречат им в пределах ошибок выше 3 кэв. Но в области энергий 2 + 6 кэв данные

Ри –239.

RUD

Рис. 4. а(Е)

25

Рис. 6. Сравнение величин (a(E)> для Ри-239-данные настоящей работы, данные работы авторов/7/, --О--- данные работы/23/, ...-- данные работы/9/. Сплошные кривые – расчёт по каналовой теории/24/. работы авторов/7/ лежат систематически ниже, а данные работы/22/ в области энергий 2 + 20 кэв - системетически выше данных, полученных в настоящей работе.

На данном этапе исследований, по-видимому, можно считать, что результаты, полученные в настоящей работе, удовлетворительно описывают энергетическую зависимость a(E) (с точностью ≈ 20%) и согласуются при энергии 20 + 30 кэв с данными, полученными в измерениях на электростатических генераторах/9/.

Хорошее согласие ваблюдается и с расчётами, выполненными в рамках каналовой теории деления.

В заключение авторы выражают благодарность Л. Седлаковой и Ц. Пантелееву за помощь при вычислениях на ЭВМ и Ю. Колгину за помощь при проведении измерений.

Литература

- 1. G. Hanna. Physics and Chemistry of Fission 2, IAEA, Vienna (1965).
- 2. Г. Палевский и др. Атомная энергия, 1, 71 (1956).
- Л. Боллингер и др. Труды Второй Международной конференции по мирному использованию атомной энергии (Женева, 1958), т. 2, Атомиздат, 1959, стр. 123.

4. F. Brooks et al., AERE-M 1670 (1966).

5. Ван Ши-ди, Ю.В. Рябов. ПТЭ, 14, 87 (1965).

6. Г.Е. Блохин и др. Атомная энергия, 10, 437 (1961).

7. Ю.В. Рябов и др. Атомная энергия, т. 24, 4, 351 (1968).

8. Ю.В. Рябов, Ван Юл-чан и др. Препринт ОИЯИ, Р-2713, Дубна, 1966; ЯФ 5, вып. 5, 925 (1967).

9. Neutron Cross Sections, Suppl. 2, BNL-325, N.Y. (1966).

10. Л.Б. Пикельнер и др. Препринт ОИЯИ, Р-1547, Дубна, 1964.

11. Ван Ши-ди и др. Атомная энергия 19, 43 (1965).

12. Ван Ши-ди и др. Physics and Chemistry of Fission, 1, IAEA, Vienna (1965).

26

- 13. A. Michaudon et al. Nucl. Phys., 69, 545 (1965).
- 14. M.G. Cao et al., Journal of Nucl.Energy, 22, 211 (1968).
- 15. Материалы совещания экспертов МАГАТЭ по а (Ри-239), 30 июня 1969, ВИНФРИТ (Англия).
- 16. Ю.А. Александров, Ю.В. Рябов и др. Препринт ОИЯИ Р-2014, Дубна, 1965.
- 17. Yu.V. Ryabov et al. International Symposium on Nuclear Structure, Contributions, SDubna, 88 (1968).
- 18. G. de Saussure et al., ORNL-TM-1804 (1967).
- 19, H. Derrien et al. Proceedings of Conference on Nucl.Data for Reactors, IAEA, Vienna, 2, 195 (1967).
- 20. А. Hammendinger (Частное сообщенне).
- 21. G.D. James, B.H. Patrick, AERE-M 2065. (1968).
- 22. M.G. Sowerby et al., Fast Reactor Phys., v.1, p.289, IAEA, Vienna (1968).
- 23, Y. Kikuchi, S.An. Journal of Nucl, Science and Technology <u>5</u>, 86 (1968).
- 24. I. Lynn, Nuclear Data for Reactor, IAEA, Paris, CN-23 122

Рукопись поступила в издательский отдел

13 мая 1970 года.