

P3 - 5112

3K3. HHT. 3ANA

В.Н. Кононов, М.А. Куров, Е.Д. Полетаев, Ю.С. Прокопец, Ю.В. Рябов, Со Дон Сик, Ю.Я. Стависский, Н. Чиков

измерение отношения сечений Радиационного захвата и деления (α) для плутония-239 в области энергий нейтронов 0,1 - 30 кэв

1970

Spitsping hertponnom

P3 - 5112

В.Н. Кононов^{*}, М.А. Куров, Е.Д. Полетаев^{*}, Ю.С. Прокопец^{*}, Ю.В. Рябов, Со Дон Сик, Ю.Я. Стависский^{*}, Н. Чиков

измерение отношения сечений Радиационного захвата и деления (а) для плутония-239 в области энергий Нейтронов 0,1 - 30 кэв

Направлено в АЭ

* Физико-энергетический институт ГК АЭ СССР

1. Введение

Величина а для ²⁰⁰ Ри относится к числу ключевых констант, определяющих технические и экономические основы современного состояния ядерной энергетики. От величины а в значительной мере зависит значение коэффициента воспроизводства ядерного топлива, поэтому детальная информация по а имеет принципиальное значение при выборе оптимальных направлений создания промышленных реакторов на быстрых нейтронах. Экспериментальная точность определения величины а для ²³⁹ Ри , необходимая для расчетов мощных реакторов, анализировалась рядом авторов. В табл. 1 приводится результат анализа Гриблера и др. ^{/1/}.

Энергия ней- тронов (кэв)	0,1	1	10	100	1000	10000
Требуемая точ- ность		5%	3%		5%	10%
Имеющаяся точность		→ 100 - 15	0%1		- 12-20	% —

Таблица 1

В табл. 1 также дается оценка точности совокупности экспериментальных данных, которые были опубликованы до 1968 года.

В связи с неудовлетворительным состоянием экспериментальных анных о величине а(Е), особенно для области энергий нейтронов 0,1+30 кэв, в настоящей работе были предприняты измерения а(Е) аля Ри-239 в указанной энергетической области.

2. Экспериментальный метод

А. Аппаратура

Измерения a (E) = σ_{nγ}(E) / σ_f(E) проводились методом времени пролета на пролетном расстоянии L = 250 м с разрешением ≈220 нсек/м и ≈15 нсек/м. В качестве источника резонансных нейтронов в первом случае использовался импульсный быстрый реактор ОИЯИ, но втором – импульсный быстрый реактор с электронным инжектором – микротроном /2/.

Методика эксперимента заключалась в сравнении счетов ионизационной делительной камеры, содержащей "тонкие" слои Pu-239, и большого жидкостного сцинтилляционного детектора, регистрирующего в зависимости от времени пролета у -лучи из "толстого" образца Pu-239, возникающие в результате радиационного захвата и деления.

В опыте использовалась высокоэффективная ионизационная камера маление ^{/3/}, содержащая 120 мг ²³⁹ Ри . Эффективность регистрации событий деления в камере составляла ≈ 70%. Высокая эффективность регистрации осколков деления в присутствии большого фона *а* -частиц 3,2·10⁸ *а* -частиц/сек) была достигнута благодаря эначительному увеичению быстродействия ионизационной камеры. Длительность импульсов эт камеры на выходе усилителя, определяющая уровень фона многократ-

4

ных наложений а -частиц, составляла ≦ 20 нсек. Значительное увеличение быстродействия камеры было получено в результате непосредственного использования импульсов тока, возникающих в камере, и их последующего усиления и дискриминации с помощью широкополосных токовых устройств.

Детектор, использовавшийся для регистрации У -лучей захвата и деления, представляет собой большой сцинтилляционный бак объемом 500 литров. Детектор имеет центральный канал, в котором располагался образец в геометрии, близкой к 4 л, и через который проходит пучок нейтронов. Для уменьшения фона от радиоактивности образца и космических лучей детектор разделен на две половины, включенные на совладения. Для уменьшения фона, связанного с регистрацией рассеянных образцом нейтронов, в сцинтиллятор введен бор. Специальный опыт показал, что эффективность регистрации нейтронов, рассеянных образцом, не превышает 0,3%. Эффективный порог регистрации У -лучей для обеих половин детектора составлял ≈ 0,8 мэв. При этом эффективность регистрации захвата составляла ≈ 20%. Использование совпадений импульсов от двух половин детектора, которое позволило значительно уменьшить фон, приводит к заметному уменьшению эффективности регистрации событий, сопровождающихся испусканием только одного у -кванта. Но это не влияет существенно на энергетическую зависимость эффективности при незначительных изменениях спектра у -лучей радиационного захвата

Аппаратурные спектры, полученные с камерой деления и сцинтилляционным детектором для двух режимов измерений, представлены на рис. 1-4. На рисунках также показан уровень фона, который определялся экспериментально с помощью поглощающих резонансных фильтров (Na-2,85 кэв, Mn - 0,337 кэв, Co - 0,132 кэв, Ag - 5,2 эв),которые исключали из пучка нейтроны с данной энергией. К сожалению, такую

В табл. 1 также дается оценка точности совокупности экспериментальных данных, которые были опубликованы до 1968 года.

В связи с неудовлетворительным состоянием экспериментальных данных о величине *a*(E) , особенно для области энергий нейтронов 0,1+30 кэв, в настоящей работе были предприняты измерения *a*(E) для Ри-239 в указанной энергетической области.

2. Экспериментальный метод

А. Аппаратура

Измерения $a(E) = \sigma_{n\gamma}(E) / \sigma_{f}(E)$ проводились методом времени пролета на пролетном расстоянии L = 250 м с разрешением ≈220 нсек/м и ≈15 нсек/м. В качестве источника резонансных нейтронов в первом случае использовался импульсный быстрый реактор ОИЯИ, во втором – импульсный быстрый реактор с электронным инжектором – микротроном

Методика эксперимента заключалась в сравнении счетов ионизационной делительной камеры, содержащей "тонкие" слои Pu-239 , и большого жидкостного сцинтилляционного детектора, регистрирующего в зависимости от времени пролета у -лучи из "толстого" образца Pu-239, возникающие в результате радиационного захвата и деления.

В опыте использовалась высокоэффективная ионизационная камера деление ^{/3/}, содержащая 120 мг ²³⁹ Ри . Эффективность регистрации событий деления в камере составляла ≈70%. Высокая эффективность регистрации осколков деления в присутствии большого фона *а* -частиц (3,2·10⁸ *а* -частиц/сек) была достигнута благодаря значительному увеличению быстродействия ионизационной камеры. Длительность импульсов от камеры на выходе усилителя, определяющая уровень фона многократ-

4

ных наложений а -частиц, составляла ≤ 20 нсек. Значительное увеличение быстродействия камеры было получено в результате непосредственного использования импульсов тока, возникающих в камере, и их последующего усиления и дискриминации с помощью широкополосных токовых устройств.

Детектор, использовавшийся для регистрации У -лучей захвата и деления, представляет собой большой сцинтилляционный бак объемом 500 литров. Детектор имеет центральный канал, в котором располагался образец в геометрии, близкой к 4π , и через который проходит пучок нейтронов. Для уменьшения фона от радиоактивности образца и космических лучей детектор разделен на две половины, включенные на совпадения. Для уменьшения фона, связанного с регистрацией рассеянных образцом нейтронов, в сцинтиллятор введен бор. Специальный опыт показал, что эффективность регистрации нейтронов, рассеянных образцом, не превышает 0,3%. Эффективный порог регистрации у -лучей для обеих половин детектора составлял ≈ 0,8 мэв. При этом эффективность регистрации захвата составляла ≈ 20%. Использование совпадений импульсов от двух половин детектора, которое позволило значительно уменьшить фон, приводит к заметному уменьшению эффективности регистрации событий, сопровождающихся испусканием только одного у -кванта. Но это не влияет существенно на энергетическую зависимость эффективности при незначительных изменениях спектра у -лучей радиационного захвата /4/

Аппаратурные спектры, полученные с камерой деления и сцинтилляционным детектором для двух режимов измерений, представлены на рис. 1-4. На рисунках также показан уровень фона, который определялся экспериментально с помощью поглощающих резонансных фильтров (Na-2,85 кэв, Mn - 0,337 кэв, Co - 0,132 кэв, Ag - 5,2 эв),которые исключали из пучка нейтроны с данной энергией. К сожалению, такую

процедуру измерения фона удалось надежно провести только до энергии нейтронов ~ 5 кэв. При более высоких энергиях нейтронов удобные для измерения фона фильтры отсутствуют, и экстраполяция фона проводилась с учетом провала в спектрах при E₀ = 35 кэв, связанного с фильтрацией нейтронов в алюминиевых заглушках нейтроновода. Однако энергетическое разрешение в настоящих опытах оказалось, по-видимому, недостаточным для надежного определения уровня фона по резонансу 35 кэв в алюминии.

2. Обработка экспериментальных данных

Число отсчетов камеры деления и детектора у -лучей в отдельном временном канале анализатора после исключения фона можно представить в виде

$$N_{t} = n_{t}^{0} \epsilon_{t} ,$$
$$N_{t} = n_{t} \epsilon_{t} + n_{t} \epsilon_{t}$$

Здесь $\mathbf{n}_{t}, \mathbf{n}_{t}$ – число делений в камере и образце, $\mathbf{n}_{n\gamma}$ – число событий радиационного захвата нейтронов в образце, $\epsilon_{t}, \epsilon_{\gamma t}, \epsilon_{n\gamma}$ – эффективности регистрации событий деления в камере и событий деления и радиационного захвата в образце.

Из этих соотношений можно получить величину а

 $a = A \frac{N\gamma}{N_{\star}} - B,$

где $A = \frac{m^0}{m} \frac{\epsilon_f}{\epsilon_{n\gamma}}$, $B = \epsilon_{\gamma f} / \epsilon_{n\gamma}$ (m и m⁰ - количество ²³⁹ Pu в образце и камере) - константы, которые, очевидно, не зависят от энер-

6

гии нейтронов, если предполагать, что є слабо чувствительна к

возможным изменениям спектра ў -лучей радиационного захвата.

Для определения величин A и B были использованы эначения a_0 для хорошо разрешенных резонансов. Калибровка в сериях с лучшим разрешением производилась по 12 хорошо разделенным резонансам, а в сериях с худшим разрешением – по 7 резонансам. При калибровке учитывалась толщина образца с помощью известных параметров резонансов

Кроме величины а , в настоящем эксперименте были получены сечения деления ²³⁹ Р_и до энергий нейтронов 30 кэв. Абсолютная нормировка сечений деления производилась согласно выражению

$$\sigma_{f}(E) = \frac{KR_{f}(E)E}{\Delta E},$$

 $lN(F)F^{q}$

где ΔE – энергетическая ширина временного канала, E – относительный ход нейтронного потока, измеренный с помощью пропорционального счетчика с BF₃ , k – константа нормировки сечения, определяемая по известным значениям $\frac{\pi}{2} \sigma_0 \Gamma_t$ нескольких изолированных резонансов.

В настоящей работе были проведены 3 серии измерений с образцом, 1 серия с камерой деления в микротронном режиме и по одной серии с камерой и образцом в реакторном режиме. Вся обработка экспериментальных данных производилась на ЭВМ CDC 1604 А.

3. Результаты и обсуждение

А. Сечение деления. Для нормировки сечения деления были использованы значения $\sigma_0 \Gamma_t$, приведенные в работах ^{/5,6,7/}. Точность, с которой известен этот параметр для низколежащих резонансов, составляет 2%, но неопределенность в полученных в настоящем эксперимен-

Таблица 2

Средние сечения $<\sigma_{f}(E) > P_{u}-239$, полученные в сериях измерений с разрешением 15 нсек/м

г кэв	$<\sigma_{t}(E)>+15\%$,	(настоящая работа) < o (E)> /10/		
Е,	барн	барн	I	
•		•		
20 - 29,6	2,05	I,57	,	
10,I - 20	2,09	1,71	Ĺ	
9,I - I0,I	2,22	2,06	5	
8 - 9,I	2,32	2,25	5	
7 - 8	2,55	2,14	ŀ	
6 - 7	2,13	2,19	•	
5 - 6	2,36	2,50).	
4 - 5	2,65	2,45	5	
3 - 4	3,65	2,95	5	
2 - 3	3,6I	3,07	7	
I - 2	5,56	3,85	5	
0,9 - I	I0,93			
0,8 - 0,9	7,03			
0,7 - 0,8	6,57			
0,6 - 0,7	7,34			
0,5 - 0,6	I8,33			
0,4 - 0,5	12,30			
0,3 - 0,4	7,30			
0,2 - 0,3	17,88			
0, I - 0, 2	21,63			

те сечениях деления обусловлена главным образом статистической ошибкой, которая составляла от 5% до 15% в пределах интервала усреднения. Полученные сечения деления приводятся в табл. 2. Наблюдается согласие в пределах ошибок со средними сечениями деления, рекомендованными Джеймсом и Патриком ^{/10/}, но во всем энергетическом интервале сечения, полученные в настоящей работе, систематически на 5+20% выше.

Б. Величина a(E). При нормировке величины a были использованы эначения a_0 для 12 хорошо разрешенных резонансов, взятые из работ ^{/5,6,8/}. Погрешность в величине a_0 для отдельных резонансов лежит в пределах от 10% до 40%. Поэтому для получения нормировочных эначений A и B методом наименьших квадратов были использованы все известные данные по a_0 с учетом их веса, величина которого принималась в соответствии с указанной авторами ошибкой.

Для десяти резонансов, использованных в калибровке, величина a_0 лежит в интервале 0,22-1,66. Эта область эначений представляет наибольший интерес, так как именно этому интервалу принадлежат a(E)для области энергий нейтронов 1+30 кэв. Однако два резонанса с большой величиной a_0 обладают наибольшим весом в определении наклона калибровочной прямой.

К сожалению, именно для этих резонансов величина a_0 известна наименее точно. Величина погрешности в a(E), обусловленная калибровкой и использованием данных табл. З и метода наименьших квадратов для вычисления коэффициентов А и В, указана в табл. 4.

Значения ^а , найденные в настоящей работе, приведены в табл. 5. В экспериментах использовался образец ²³⁹ Р_и толщиной 0,7·10²¹ ядер/см². Результаты для микротронного режима получены путем усреднения по трем сериям измерений, а указанные ошибки характеризуют

разрешенных резонанс

калибровки Значения

Ла	боратор Ео, зе	вия	Saclay /5/	ANL /8/	/1/	Harwell 191	ORNL	-RPI /9/	• ФНИ	оияи /6/
	7,83		0,85±0,09	0,98 <u>+</u> 0,I0	I,04±0,09	Ϊ,0 <u>+</u> 0,Ι	0,85 <u>+</u> 0,02	0,84±0,04	0,87±0,07.	0,85±0,02
	I0,97		0,38 <u>+</u> 0,08	0,22+0,10	0,32+0,08	0,36±0,08	0,27 <u>+</u> 0,05	0,24±0,03	0,27±0,04	0,35±0,08
	16 , 11		I,75 <u>+</u> 0,25	I,86 <u>+</u> 0,35	I,86±0,20	I,59 <u>+</u> 0,20	I,56±0,I0	I,52 <u>+</u> 0,I0	I,38 <u>±</u> 0,2I	I,54 <u>+</u> 0,16
10	I4,36		0,51+0,14	0,66 <u>+</u> 0,I6	0,82 <u>+</u> 0,20	0,67 <u>+</u> 0,I3	0,0510,02	0,58±0,04	0,67 <u>+</u> 0,I0	ı
	I4,75	,	I,25±0,07	I,21+0,18	I,32 <u>+</u> 0,25	I,3I <u>+</u> 0,I3	I,I3 <u>+</u> 0,05	I,II <u>+</u> 0,08	I,25±0,I4	
	I7,69		I, I5±0,04	0,84 <u>+</u> 0,2I	I,0 <u>+</u> 0,2	I, I5±0, I0	I,I4 <u>+</u> 0,05	1	0,92 <u>+</u> 0,I3	I,04±0,08
-	22,33		0,71+0,07	0,46 <u>+</u> 0,24	0,59 <u>+</u> 0,I4	0,76±0,07	0,64 <u>+</u> 0,0I	l	0,71 <u>+</u> 0,06	0,80±0,08
	26 , 3I		0,84±0,17	I,07±0,2I	I,22±0,26	I,2I±0,I5	0,91±0,03	0,91 <u>+</u> 0,05	0,68 <u>+</u> 0,2I	0,82±0,09
	44,6		9,28±0,40	9,61 <u>+</u> 0,91	7,341,7	8,5 <u>+</u> 0,5	9,52 <u>+</u> 1,00	9,38±0,30	4,6±2,5	1
	47,92		0,31+0,10	0,I3 <u>+</u> 0,05	0,16 <u>+</u> 0,07	0,36±0,08	0,32±0,06	1	0,11 <u>+</u> 0,06	ı
	50 , I8		3,5±0,4	I,20 <u>+</u> 0,33	I,27 <u>+</u> 0,23	2,08±0,30	ſ	2,45±0,I0	I,51 <u>+</u> 0,43	1
	52,8		5,25 <u>+</u> 0,20	4,40 <u>+</u> 0,66	4,6 <u>+</u> 1,2	4,99 <u>±</u> 0,49	1	5,22 <u>+</u> 0,20	4,1 <u>+</u> 0,9	1
							4.			
								:		

Таблица 4

Значение а	Ошибка, связанная с калибровкой	~
0,2	35%	
0,5	14,8%	
1	7,4%	
1,5	4,9%	

среднеквадратичный разброс данных этих серий. Неопределенность в а, связанная со статистической ошибкой измерений отношения N $_{\nu}/N_{f}$ и учетом фона для каждой серии, составляет 20-50%. Окончательные данные для микротронного режима получены путем усреднения сечений деления и радиационного захвата по интервалам 0,1; 1; 20 кэв. Для реакторного режима оценка точности результатов измерений, основанная на учете статистических ошибок в отношении N_w / N, , статистических ошибок определения уровня фона, ошибок, связанных с калибровкой, приводит к величине неопределенности в а, равной +15-20%.

Сравнение полученных результатов с имеющимися в настоящее время экспериментальными данными (рис. 5) показывает удовлетворительное согласие с результатами работы Гвина и др. /9/, а также выходящие за пределы ошибки расхождения с результатами работы /11/ в области энергий 2+5 кэв и работы /12/ в области энергий 2+30 кэв. Следует отметить хорошее согласие во всей области энергий с последними измерениями, выполненными в Дубне при разрешении 60 нсек/м /14/ Вместе с тем можно отметить, что в тех случаях, когда энергетическое разрешение спектрометров оказывается достаточно высоким (область энергий ниже 1 кэв), данные различных работ о структуре величины а(Е) , определяемой флюктуациями делительных ширин, хорошо согласуются.

Таблица 5

Усредненная величина <a> для ²³⁹ Ри , полученная в сериях измерений с разрешением 15 нсек/м (1) и 220 нсек/м (2)

Интервал усреднения, Е, кэв	< a > (1)	$\langle a \rangle$ (2)
10,1 - 29,5	0,48 <u>+</u> 0,IU	0,36 <u>+</u> 0,08
9,I - 10,I	0,43 <u>+</u> 0,06	0,46 <u>+</u> 0,09
8 - 9,I	0,49 <u>+</u> 0,06	0,43 <u>+</u> 0,08
7 - 8	0,46 <u>+</u> 0,07	0,44 <u>+</u> 0,08
6	0,97 <u>+</u> 0,08	0,59 <u>+</u> 0,I0
5 - 6	0,90 <u>+</u> 0,05	0,65 <u>+</u> 0,09
4 - 5	0,95 <u>+</u> 0,08	0,71 <u>+</u> 0,08
3 - 4	0,67 <u>+</u> 0,08	0,77 <u>+</u> 0,II
2 - 3	0,89 <u>+</u> 0,14	0,83 <u>+</u> 0,14
, 1 − 2 5,	0,65 <u>+</u> 0,14	0,78 <u>+</u> 0,I3
0,9 - I	0,48 <u>+</u> 0,11	0,65 <u>+</u> 0,15
0,8 - 0,9	0,68 <u>+</u> 0,14	0,63 <u>+</u> 0,14
0,7 - 0,9	I,03 <u>+</u> 0,07	0,70 <u>+</u> 0,16
0,6 - 0,7	0,75 <u>+</u> 0,13	0,92 <u>+</u> 0,21
0,6 - 0,6	0,68 <u>+</u> 0,I0	0,70 <u>+</u> 0,10
-0,4 - 0,5	0,48 <u>+</u> 0,16	0,60 <u>+</u> 0,I2
0,3 - 0,4	1,71 <u>+</u> 0,28	0,82 <u>+</u> 0,23
0,2 - 0,3	I,3I <u>+</u> 0,23	0,72 <u>+</u> 0,16
0, I = 0, 2	0,7I <u>+</u> 0,07	0,73 <u>+</u> 0,05

12

Значительное расхожение результатов измерений величины a(E), полученных в разных лабораториях, в диапазоне энергий нейтронов 1+30 кэв. видимо, нельзя объяснить только недостаточной точностью значений резонансных параметров, которые выбираются для калибровки. Вероятной причиной этих расхождений, скорее всего, является неадекватность процедуры измерения уровня фона методом резонансных фильтров. Это особенно относится к экспериментам на линейных ускорителях, где используются небольшие пролетные базы (25- 35 м), так как переменная составляющая фона, связанная с нейтронами, рассеянными в измерительное помещение, при временах пролета меньше 200 мксек может оказаться значительной. Поэтому для получения более надежных данных по величине а в диапазоне энергий нейтронов 1-30 кэв кажется более целесообразным применение спектрометров с большими пролетными базами. Перспективным также может оказаться распространение в область более низких энергий нейтронов экспериментов на импульсных ускорителях Ван-де-Граафа путем использования в качестве источника нейтронов реакции Li(p, n) ⁷ Be под большими углами или (р.п)реакций на тяжелых ядрах (V,Se).

В заключение авторы выражают глубокую признательность А.И. Лейпунскому , Ф.Л. Шапиро, Л.Н. Усачеву за постоянный интерес к работе, Л.Б. Пикельнеру за предоставленную возможность проведения измерений на сцинтилляционном (n, γ) -детекторе, Л.Н. Седлаковой, Ц. Пантелееву, Ю. Колгину за помощь при обработке результатов на ЭВМ и измерениях.

Литература

- 1. P. Gribler et al. Nucl.Application, No.5, 297 (1968).
- 2. В.Л. Ананьев, П.С. Анцупов, С.П. Капица и др. Атомная энергия, <u>20</u>, 106 (1966).
- В.Н. Кононов, А.А. Метлев, Е.Д. Полетаев, Ю.С. Прокопец. ПТЭ, <u>6</u>, стр. 51 (1969).
- Ю.А. Александров, Ю.В. Рябов, Г.С. Самосват. Препринт ОИЯИ, Р-2014, Дубна, 1965.
- 5.H. Darrien et al. Nucl.Data for Reactors. II, p.195, IAEA, Vienna, 1967.
- 6. Ю.В. Рябов, Ван-Юн-чан и др. Ядерная физика, <u>5</u>, вып. 5, стр. 925 (1967).
- 7. BNL-325, Suppl. 2 (1965).
- 8. Л. Баллингер и др. Труды II Международной конференции по мирному использованию атомн. энергии, <u>2</u>, стр. 123. Атомиздат, 1960.
- 9. Материалы Совещания экспертов МАГАТЭ по а (Ри-239), 30 июня 1969. Винфрит (Англия), 1969.
- 10.G.D. James, B.H. Patrick, AERE M 2068 (1968).
- 11. Ю.В. Рябов и др. Атомная энергия, 4, 351 (1968).
- 12.M.G. Sowerby et al. Fast Reactor Phys., 1, 289, IAEA, Vienna, 1968.
- 13. G. de Saussure et al. Nucl.Data for Reactors, 11, 233, IAEA, Vienna, 1967.
- М.А. Куров, Ю.В. Рябов, Со Дон Сик, Н. Чиков. Препринт ОИЯИ, P3-5013, Дубна, 1970.

14

Рукопись поступила в издательский отдел

13 мая 1970 года.

Рис. 3. Временной спектр импульсов от камеры деления. Разрешение 220 исек/м.

Рис. 5. Результаты измерений величины а в интервале 0,1-100 кэв. - - настоящая работа, разрешение 220 нсек/м.

настоящая работа, разрешение 15 нсек/м (образец

0,7.1021 ядер/см²) \boxtimes

– работа ^{/9/} --- работа /11/ -- ^

-- --- работа /12/ (приводится средний результат по нескольким сериям измерений).