0341.3 22/1-70 Д-3 БШЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P3 - 5081 Дерменджиев, Ц. Пантелеев E.

РАСЧЕТЫ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ ОСКОЛКОВ ДЕЛЕНИЯ И ЗНАЧЕНИЙ U ДЛЯ МИШЕНЕЙ РАЗНОЙ ТОЛЩИНЫ

1970

HENTPOHN

PAGENAGAA

P3 - 5081

Е. Дерменджиев, Ц. Пантелеев

РАСЧЕТЫ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ ОСКОЛКОВ ДЕЛЕНИЯ И ЗНАЧЕНИЙ U ДЛЯ МИШЕНЕЙ РАЗНОЙ ТОЛЩИНЫ

8366/2 ng

OGAGLETISMERIÄ ERONISTE CHAPTER DOCTORODO **BMBANNOTERA**

Введение

В работе^{/1/} сообщалось о наблюдении небольшой вариации средней кинетической энергии \vec{E}_k осколков в нейтронных резонансах²³⁵ U. Использовался метод определения вариации \vec{E}_k по изменению относительных выходов осколков W из двух урановых мишеней разной толщины/2/. При оценке изменения \vec{E}_k для упрощения предполагалось, что все осколки имеют один и тот же пробег R, равный среднему пробегу R. Авторы/1/ нашли, что изменение средней суммарной кинетической энергии парных осколков $2\overline{\Delta E}_{} = 0,74 \pm 0,32$ Мэв.

В настоящей работе приводятся результаты расчётов энергетических спектров осколков²³⁵ U для мишеней разной толщины ρ . Определены эффекты изменения площадей расчётных спектров (над энергетическим порогом $E_{\rm II}$) при изменении $2\overline{\Delta E}_{\rm k}$ в пределах 0,4 – 1,4 Мэв по сравнению со спектрами, для которых $2\overline{\Delta E}_{\rm k}=0$. Вычисленные эффекты сравниваются с экспериментальными из работы/1/.

Далее приводятся результаты расчётов среднего числа нейтронов на акт деления $\tilde{\nu}$ (по спектру зарегистрированных осколков) для мишеней с разными ρ и для разных величин E_{π} . Значения $\tilde{\nu}(\rho, E)$ сравниваются с "истинным" расчётным значением ($\bar{\nu}$) рассч. для $\rho << \bar{R}$. Вычисления проводились на ЭВМ БЭСМ-6 ОИЯИ.

Расчёты энергетических спектров осколков

Для получения энергетических слектров осколков N(E) при разных значениях *р* использовалась методика расчёта, аналогичная методике, описанной в работе/3/. Начальный спектр осколков N(E') так же, как и в/3/. аппроксимировался выражением

$$N(E') = 0,072 [0,685 e^{-a(E'-67)^2} + e^{-\delta(E'-98)^2}], \qquad (1)$$

где $45 \le E' \le 115$ Мэв, a = 0,00693 и $\delta = 0,0177$. Коэффициенты а и β в выражении $R = \beta E^a$ /4/ в нашем случае были равны 0,5 и 1 соответственно. Число осколков с остаточной энергией Е подсчитывалось по формуле (2)/3/:

$$N(E,\Omega) = \frac{1}{8\pi} \cdot \frac{\beta \cdot \cos \theta}{\sqrt{E}} \cdot \int_{E}^{E_{max}} N(E') dE', \qquad (2)$$

где

$$E_{max} = \left(\frac{\rho}{\beta \cos \theta} + \sqrt{E}\right)^{2},$$

р - толщина мишени.

Расчёты проводились по программе LASERF . Величина Е менялась с шагом в 2 Мэв. Для того чтобы расчётные спектры можно было сравнивать с экспериментальными спектрами из работы/5/ нами выбирались такие же значения ρ , как и в/5/. На рис. 1 энергетические спектры осколков N(E) для $\rho = 0,714$; 1,36; 3,93 и 7,54 мкм представлены вместе с экспериментальными спектрами для тех же значений ρ из работы/5/.

В ряде работ^{/6,7/} высказывались предположения о возможном малом изменении величины \vec{E}_k в зависимости от значения спина J и природы соответствующего канала деления.

Был рассмотрен простейший случай, для которого предполагалось, что при любых типах деления составного ядра ²³⁶U суммарная кинетическая энергия парных осколков Е'₁ + E'₂ меняется на одну и ту же' величину $2\overline{\Delta E}_k$. Она, в свою очередь, распределяется между осколками пропорционально их энергиям Е'₁ и Е'₂. Значение ΔE_k , которое добавлялось к Е', находилось из соотношения $\Delta E_{k}=a+bE'$. Коэффициенты а и b (для данного значения $2\overline{\Delta E}_{k}$) определялись при Е'₁ = 67 Мэв и Е'₂ = 98 Мэв, которые соответствовали энергиям наиболее вероятных тяжелых и легких осколков.

В расчётах мы не учитывали небольшого (≈ 30%/8/) изменения выхода осколков симметричного деления, которое наблюдается в нейтронных резонансах ²³⁵U.

Далее при определенных ρ и E_{Π} сравнивали площадь (над порогом E_{Π}) спектра N(E), для которого $2\overline{\Delta E}_{k}=0$, с площадью спектра N*(E), для которого $2\overline{\Delta E}_{k}>0$. На рис. 2а и в относительные изменения ϵ площадей спектров для $E_{\Pi} = 60$ и 80 Мэв приводятся вместе с экспериментальными эффектами при $E_{\Pi} = 55$ и 80 Мэв, которые были получены в работе/1/. Из рис. 2 видно, что обе экспериментальные точки лежат в пределах $2\Delta E_{k} \approx 0.5 - 0.8$ Мэв, или, в среднем $(2\Delta E_{k})$ рассч. \approx ≈ 0.65 Мэв. Эта величина хорошо согласуется со значением $2\overline{\Delta E}_{k} =$ $= 0.74 \pm 0.32$ Мэв из работы/1/.

Согласно работам^{6,7}, изменение \vec{E}_k может, в принципе, служить мерой величины энергетического интервала между двумя каналами деления с $J = I \pm 1/2$. Для составного ядра²³⁶ Линн⁹/ дает две сушественно отличающиеся оценки величины энергетического интервала между каналами с $J^{\pi} = 3^{-}$ (K = 0) и $J^{\pi} = 4^{-}$ (K = 1): ≈ 0.3 и ≈ 0.8 Мэв. Результаты наших расчётов в совокупности с экспериментальными данными работы¹/ несколько лучше согласуются с величиной ≈ 0.8 Мэв, приводимой Линном.

Рис. 2. Сравнение расчётных значений с экспериментальными эффектами из работы/1/. а – порог Е $_{\Pi}$ = 60 Мэв, в – Е $_{\Pi}$ = 80 Мэв. Значения 2 $\Delta E_{,k}$ в Мэв нанесены около соответствующих кривых $\epsilon = f(\rho, E)$.

О эначениях $\bar{\nu}$ в резонансах делящихся ядер.

Изменение величины ν в нейтронных резонансах делящихся ядер изучалось в работах/10,11/. В работе/10/ сообщается о разделении резонансов на две спиновые группы по величине ν в резонансах, причем эффект изменения $\bar{\nu}$ составил \approx 1,5% и \approx 4-5% для 235 U и 239 Pu соответственно.

Из 8 резонансов ²³⁹ Ри , которые исследовались в работах/10,11/, для 6 резонансов в работе/11/ получены обратные эффекты. В противоположность работе/10/ делается вывод о том, что $\bar{\nu}(J^{\pi}=0^{+}) > \bar{\nu}(J^{\pi}=1^{+})$ на $\approx 2,6\%$.

• Такая противоречивая ситуация требует, по нашему мнению, тщательного анализа условий экспериментов по определению ν в нейтронных резонансах делящихся ядер.

Возможные аппаратурные эффекты

Рассмотрим более подробно некоторые методические особенности экспериментов по измерению величины ν в резонансах.

В работе/11-/ осколки деления детектируются при помощи многослойной ионизационной камеры деления, которая располагается в центре жидкостного сцинтилляционного детектора нейтронов. Было предположено, что в резонансах, для которых $\overline{E}_{k}(J_{1}) > \overline{E}_{k}(J_{2})$ значение $\tilde{\nu}(\rho, E_{n})_{j}$ по спектру зарегистрированных осколков может несколько возрасти из-за обогащения спектра более высокоэнергетическими осколками (см. дискуссию по работе/11/). Такие осколки, по-видимому, образуются при более асимметричных типах деления составного ядра 236 U , которые, в свою очередь, характеризуются более высоким значением и асимметр. по сравнению с и наиб. вер. для наиболее вероятного способа деления. Можно, по-видимому, предположить и некоторое небольшое дополнительное усиление этого эффекта в камерах с малыми междуэлектродными расстояниями (при $d < 0.2 \ \bar{R}_{_{\rm P}}$, где $\bar{R}_{_{\rm P}}$ - средний пробег осколков в газе камеры, d – величина dE/dR для тяжелых осколков больше, чем для легких осколков/12/).

. Рассмотрим воз можное отличие величин $A = \frac{\nu(4^{-}) - \vec{\nu}(3^{-})}{-(4^{-})}$

и
$$\tilde{\tilde{A}} = \frac{\tilde{\tilde{\nu}}(4^-) - \tilde{\tilde{\nu}}(3^-)}{\tilde{\tilde{\nu}}(4^-)}$$
, которое обусловлено предположенным

выше эффектом. Нетрудно показать, что

Caper Land Carl

$$\tilde{\tilde{A}} = 1 - \frac{(1-A)(1+\epsilon K)}{1+\epsilon}$$
(3)

marter the tests asked

Множитель $K = \langle \nu \rangle / \tilde{\nu}(\rho, E_{\Pi})$, где $\langle \nu \rangle$ – среднее число нейтронов на акт деления для тех осколков, которые появляются над порогом регистрации E_{Π} за счёт возрастания начальной энергии E' на величину ΔE_k в спектрах с $\overline{E}_k(J_1) > \overline{E}_k(J_2)$, а $\tilde{\nu}(\rho, E_{\Pi})$ – среднее число нейтронов на акт деления по спектру $N(E)_{\rho, E_{\Pi}}$ (без таких осколков). Можно от-метить, что при $\epsilon > 0$ всегда $\overline{A} < A$. При некотором значении произведения ϵK величина \overline{A} меняет энак.

Поскольку формула (3) имеет преимущественно иллюстративный характер, то для более точной оценки предполагаемого аппаратурного эффекта нами были рассчитаны величины $\tilde{\tilde{\nu}}(\rho, E_{\Pi})$ для случаев, когда $2\overline{\Delta E}_{k}=0$ и $2\overline{\Delta E}_{k}>0$.

Расчёты величин $\tilde{\tilde{\nu}}(\rho, E_{\Pi})$

Для нахождения величин $\tilde{\nu}$ (ρ , E_п) необходимо знание зависимости $\nu = f(E')$. При построении функции $\nu(E')$ использовались экспериментальные данные Апалина и др. /13/ о величине $\nu = f(M_1/M_2)$ для составного ядра 236 U. В нашем случае функция $\nu(E')$ аппроксимировалась двумя параболами

 ν (E') = $a_1 + b_1 (E' - 67)^{3/2}$ при $45 \le E' \le 82$ Мэвв и ν (E') = $a_1 + b_1 (E' - 98)^{3/2}$ при $82 \le E' \le 115$ Мэв (см.рис.3). Коэффициенты a_1 и b_1 определялись из условия ν (67) = ν (98) = = 2,2 нейтр./акт дел./13/ и ν (E') = 3,7 нейтр./акт дел. при $E' \le 45$ Мэв, E'> 115 М эв и E' = 82 Мэв. Для расчётов величин $\tilde{\nu}(\rho, E_{\Pi})$ использовалась программа NU. Шаг изменения величины Е составлял 5 Мэв (расчёты величины $\epsilon(\rho, E_{\Pi})$ с шагом в 2 и 5 Мэв дали практически одинаковые результаты).

Первоначально проверяли пригодность выбранной нами аппроксимации для функции $\nu(E')$. Расчёты для $\rho = 0,01$ мкм и $E_{\Pi} = 30$ Мэв дали $\tilde{\nu}(0,01; 30) = (\bar{\nu})_{\text{рассч.}} = 2,57$ нейтр./акт дел. "Истинное" расчетное значение $(\bar{\nu})_{\text{рассч.}}$ отличается от $(\bar{\nu})_{\text{ЭКСП.}} = 2,45 \pm 0,03$ нейтр./ акт дел./14/ не более чем на 5%.

Далее вычислялись эначения $\tilde{\nu}(p, E_{\Pi})$ для $2\Delta E_{k} = 0$ и $2\Delta E_{k} = 0, 6;$ 1,0 и 1,4 Мэв. Расчёты проводились для двух случаев: 1) d > R_{Γ} (d = 5 см) и 2) d < \bar{R}_{Γ} (d = 1,4; 1 и 0,6 см).

Следует отметить, что использованная нами методика вычислений не отражает сложной зависимости величины dE/dR для осколков от E', E, M и Z осколков. Поэтому рассчитанные нами камерные энергетические спектры осколков N(E_{и.к}) и значения $\tilde{\nu}$ (ρ , E_п, d) по спектрам осколков в камере при $d < \overline{R}_r$ являются приближенными. Тем не менее необходимо было установить, по крайней мере качественно, существует ли эффект изменения $\tilde{\nu}$ (ρ , E_п, d) при $2\overline{\Delta E} \gtrsim 0$, каков он по знаку и сохраняется ли с уменьшением d.

На рис. 4 показаны энергетические спектры осколков в камере $N(E_{u.k.})$ для двух значений ρ (1,36 и 2,53 мкм) и при различных междуэлектродных расстояниях d (5см; 1,4 см; 1 см и 0,6 см), а также кривые зависимости ν от $E_{u.k.}$. Видно, что с уменьшением d в интервале $E_{u.k.}$ 50 Мэв происходит небольшое сглаживание кривой ν (E_{Π}). На рис. 5 представлены кривые $\tilde{\nu}$ в зависимости от E для тех же ρ и при значениях d = 5 и 0,6 см. Во всех случаях значения $\tilde{\nu}$ при $2\Delta E_{k} = 1,4$ Мэв больше ν при $2\Delta E_{k} = 0$ на \approx 0,5 - 0,9%.

Из того же рис. 5 видно, что величины $\tilde{\nu}$ отличаются от $(\bar{\nu})_{\text{рассч.}}$ примерно на 2-3%, причем эта разница возрастает с увеличением E_{Π} . При прецизионных измерениях $\bar{\nu}$ с использованием ионизационных камер деления и мишеней с $\rho \leq \overline{R}$ необходимо учитывать отличие $\bar{\nu}$ от $\bar{\nu}$, которое зависит от ρ , E_{Π} и d.

Рис. 3. Энергетический спектр, осколков из тонкой мишени, с P = 0,01 мкм (сплошная линия) и функция $\nu = f(E')$ (пунктирная линия). Значения Е даны в Мэв.

Рис. 4. Расчётные энергетические спектры осколков деления в ионизационной камере. а – ρ = 1,36 мкм, в – ρ = 2,53 мкм. d₁ -d₄ – спектры, которые соответствуют междуэлектродному расстоянию d = 5; 1.4; 1 и 0,6 см. Значения ν в зависимости от энергии осколков, теряемой в междуэлектродном пространстве камеры. Толстая и тонкая линии соответствуют d=5 и 0,6 см; пунктир – d = 1 см, точки – d = 1,4 см.

пунктирная – ту же зависимость при 2ΔЕ k = 1,4 Мэв. Штрихпунктир соответствует зна-чению (\overline{v}) ____ = 2,57. для по спектру осколков в зависимости от порога регистрации $E_{\rm II}$ г 'и ρ = 2,53 мкм (с,д). Междуэлектродное расстояние d = 5 см Сплошная линия дает зависимость 7 от E при $2\Delta E_{\rm k}$ = 0, а (а,с) и 0,6 см (в,д). Силошная линия дает зависимость = 2,57. р = 1,36 мкм (а,в) 'и n 7 рассч. Рис. 5. Значения

Вычисления $\tilde{\nu}(\rho, E_n)$ для случая $d > \bar{R}_{\Gamma}$ показывают, что с изменением $2\Delta E_k$ меняются и значения $\tilde{\nu}$. В тех случаях, когда $d < \bar{R}_{\Gamma}$, значения $\tilde{\nu}(\rho, E_n)$ следует рассматривать как оценочные. На рис. 5 кривые $\tilde{\nu}(\rho, E_n)$ рассчитаны для $2\Delta E_k = 0$ и 1,4 Мэв. Поскольку для 2^{235} U величина $2\Delta E_k \approx 0,7$ Мэв, то и эффект изменения $\tilde{\nu}$ (случай $d > \bar{R}_{\Gamma}$) будет примерно в 2 раза меньше, чем при $2\Delta E_k = 1,4$ Мэв и составит величину $\approx 0,5\%$.

С другой стороны, разность противоположных эффектов в $\bar{\nu}$, которые были измерены в работах/10/ и/11/, достигает для ²³⁵ U ≈ 3% (по резонансу 8,78 эв) и, в среднем, ≈ 7-8% для ²³⁹ Pu. Кажется маловероятным, что уменьшение d до значений d<< \bar{R}_{Γ} сможет привести к 6-8-кратному увеличению обсуждаемого аппаратурного эффекта, которым можно объяснить противоречие данных по $\bar{\nu}$.

Влияние изменения выхода симметричных осколков в резонансах 239 Pu оценивалось для мишени с $\rho = 0,01$ мкм и при E_п = 30 Мэв. Предполагалось, что относительная вероятность симметричного деления составляет $\approx 0,01$, и что имеется примерно трехкратное увеличение выхода осколков симметричного деления в резонансах с $J^{\pi}=0^{+}$ по сравнению с резонансами, для которых $J^{\pi}=1^{+}$ /15/. Расчёты приводят к тому, что $\tilde{\nu}(J^{\pi}=0^{+}) > \tilde{\nu}(J^{\pi}=1^{+})$ на $\approx 1,5\%$. Такая оценка близка к результатам работы/11/.

Ответа на вопрос о том, каковы причины изменения $\bar{\nu}$ в резонанcax ²³⁵ U и ²³⁹ Pu, по-видимому, следует искать в новых экспериментах. В заключение авторы приносят свою искреннюю благодарность проф. Ф.Л. Шапиро за постоянный интерес к работе и ценные замечания. Мы признательны Л. Владимирову за помощь в составлении программ и проф. Н. Кашукееву, Л.Б. Пикельнеру, Ю.И. Попову и Ю.В. Рябову за полезные обсуждения.

- Литература
- 1. С. Бочваров, Е. Дерменджиев, Н. Кашукеев. Труды II Симпозиума по физике и химии деления (Вена, 1969 г.) Доклад SM - 122/73; Препринт. ОИЯИ, Р3-4110, 1968.
- 2. E.Melkonian, G.K.Mehta, "Physics and Chemistry of Fission" (IAEA, Vienna, 1965), vol. II, p. 355.
- 3. R.F. Redmond et al. J. of Appl. Phys., 33 (1962) 3383.
- 4. J.M.Alexander, M.F.Gazdik. Phys. Rev., <u>120</u> (1960) 874.
- 5. S. Kahn et al. Nucl. Sci. Engineering, 23 (1965) 8.
- 6. В.Н. Андреев. "Тезисы докладов совещания по делению ядер", Ленинград, 1961, Изд. АН СССР.
- 7. J.A. Blyumkina et al. Nucl. Phys., 52 (1964) 648.
- 8. G.A. Cowan et al. Phys. Rev. 122 (1961) 1286.
- 9. J.E. Lynn, "Nuclear Data for Reactors" (JAEA, Vienna, 1967) vol.II, p.89.
- 10. Ю.В. Рябов и др. Сообщ. Международного Симпозиума по структуре ядра, Дубна, 1968, стр. 88.
- S. Weinstein et al. Phys. Rev. Lett., <u>22</u> (1969) 195,
 II Symp. Phys. and Chemistry of Fission" (JAEA, Vienna, 1969) p.
- Н. Лассен. Труды I Международной конференции по мирному использованию атомной энергии (Женева, 1955) т. 2, стр. 243, Москва, 1958.
 В.Ф. Апалин. и др. ЖЭТФ, <u>46</u> (1964) 1197.
- Дж. Юз, Труды II Международной конференции по мирному использованию атомной энергии (Женева, 1958) т. 2, стр. 39, Москва, 1959.
 G. Cowan et al. Phys. Rev., <u>144</u> (1966) 979.

Рукопись поступила в издательский отдел 27 апреля 1970 года.