

A 4500ATOPM9 HEATPOHN

1970

Ю.П. Попов, М. Пшитула, К.Г. Родионов, Р.Ф. Руми, М. Стэмпиньски, В.И. Фурман

СПЕКТРЫ АЛЬФА-ЧАСТИЦ РАСПАДА РЕЗОНАНСНЫХ СОСТОЯНИЙ 146 Nd

P3 - 5073

Ю.П. Попов, М. Пшитула, К.Г. Родионов,Р.Ф. Руми, М. Стэмпиньски, В.И. Фурман

СПЕКТРЫ АЛЬФА-ЧАСТИЦ РАСПАДА РЕЗОНАНСНЫХ СОСТОЯНИЙ 146 Nd

8343/2 20

Направлено в ЯФ

CGLegungueli Macturys CREEDEN LOCARDORNEL BKERKOTEKA

1. Въедение,

Исследование спектров *а* -частиц, образующихся при распаде отдельных резонансных состояний атомных ядер, является новым направлением, позволяющим получить специфическую информацию как о структуре высоковозбужденных состояний, их спинах, так и о самом процессе-*a* распада.

В частности, изучая тонкую структуру *a* -распада составного ядра, образующегося после захвата резонансных нейтронов, мы получаем сведения об амплитудах генеалогического разложения компаунд-состояния на *a* -частицу и ядро-продукт, остающееся как в основном, так и в возбужденном состояниях. Кроме того появляется возможность сравнить величины приведенных нейтронных и *a* -ширин для одного и того же распадающегося состояния, что представляет интерес в связи с известными соображениями Бете^{/1/} относительно использования нейтронных ширин для оценки ^{*a*} -ширин,

Настоящая работа является продолжением начатых нашей группой в 1967 году измерений парциальных а -ширин в отдельных резонансах² Исследования а -спектров после захвата тепловых нейтронов проводились рядом авторов³⁻⁶⁷, однако физическая интерпретация этих данных не всегда однозначна, кроме того эти измерения не позволяют проследить флуктуации а -ширин для различных начальных состояний а -распада.

II. Методика и результаты измерений

Изучение спектров а -частиц распада отдельных резонансных состояний, образующихся в реакции ¹⁴⁵ Nd(n, a) ¹⁴²Ce, проводилось на пучке нейтронов от импульсного реактора ИБР Объединенного института ялерных, исследований. Спектрометрия нейтронов осуществлялась по времени пролета с разрешением 0,6 мксек/м. Спектры а -частиц измерялись с помощью двойной ионизационной камеры с сеткой. На рис. 1 представлена зависимость счёта а -частиц от времени пролета, а также расположение аппаратуры на пучке нейтронов. В отличие от прошлых измерений /2/ мишени облучались с помощью щелевого коллиматора размерами 2 х 30 см² нейтронами под скользящим углом. Это позволило значительно снизить чувствительный объём камеры, облучаемый фоновыми У -лучами и нейтронами от реактора, и, следовательно, улучшить энергетическое разрешение ионизационной камеры в рабочих условиях, несмотря на значительное повышение мощности реактора. Теперь разрешение камеры на пучке составляет ≈ 170 кэв для Е = 8,58 Мэв.

Импульсы с двух коллекторов ионизационной камеры усиливались малошумящими предусилителями и усилителями и подавались по длинному кабелю в систему многопараметрической регистрации. На магнитную лен-

коллиматор 3 – двухсторонняя мишень ¹⁴⁵ Nd ; 4 – коллектор одной из камер; 5 – пучок торых анализировались спектры а -частии (см. рис. 2). Вверху показана схема распонейтронами базы 100 м. Пунктиром со стрелками показаны временные интервалы, в коложения детектора на пучке нейтронов. 1 - вакуумированный нейтроновод; 2 - щелевой ¹⁴⁵Nd(n, a)¹⁴² Се от времени пролета а -частии в реакции Рис. 1. Зависимость счёта нейтронов. ту записывалась вся информация о поступающих импульсах - коды амплитуды, времени и номера датчика⁷⁷. В спектрометрическом тракте была предусмотрена система автоматической амплитудной коррекции во время измерения спектра. В качестве реперного импульса использовалась линия 4,18 Мэв от *а* -частиц естественного распада²³⁸ U; находившегося в каждой половине камеры рядом с мишенью.

Мишени представляли собой сложенные подложками (по 0,5 мм алюминия) слои окиси ¹⁴⁵ Nd (обогащение 84,6%) толщиной 0,2 мг/см². Полная площадь мишени составляла 0,15 м², время измерений ≈ 200 часов.

На рис. 2 представлены спектры a -частиц в резонансах с $E_0 = 4,36$ и 43,1 эв, а также спектр a -частиц от постоянного a -источника, одновременно измерявшийся во временном окне, соответствующем, резонансу с $E_0 = 4,36$ эв. Пунктиром представлен фон, измеренный в промежутке между резонансами.

Для обоих резонансов четко проявились *а* -переходы в основное и первое возбужденное состояния дочернего ядра. Сравнительно большой фон не позволил наблюдать линии, соответствующие *а* -переходам в более возбужденные состояния остаточного ядра ^{/8/}, отмеченные на рисунке стрелками.

Из остальных резонансов, известных в исследуемом диапазоне энергий нейтронов $^{/9/}$, в наших измерениях проявилась только группа в районе 103 эв, где расположены резонансы с $E_0 = 102.2$ и 103,5 эв. Однако число *а*-частиц, зарегистрированное в данной группе, слишком мало, чтобы можно было проанализировать их спектр. Результаты измерений и их анализа суммированы в таблицах I и II.

6

and and and

Рис. 2. Справа – спектры a –частиц при распаде резонансных состояний в реакции ¹⁴⁵ Nd(n, a)¹⁴² Ce с E₀ = 4,36 эв (внизу) и E₀ = 43,1 эв (вверху). Пунктиром указан фон, измеренный в промежутке между резонансами (см. рис. 1). Цифры рядом со стрелками указывают энергии a –переходов в основное и возбужденное состояния конечного ядра. Слева – спектр контрольного источника во временном окне, соответствующем резонансу с E₀ = 4,36 эв.

III. Обсуждение результатов

. При захвате в -нейтронов ядром ¹⁴⁵ Nd составное ядро ¹⁴⁶ Nd оказывается в одном из высоковозбужденных состояний с Ј 7 = 3 или 4 (см. рис. 3). Поскольку переходы 4 → 0 запрещены согласно закону сохранения чётности, то наличие а -переходов в основное состояние дочернего ¹⁴² Се в резонансах с 'Е₀ = 4,36 и 43,1 эв подтверждает значение $J^{\pi} = 3$, приводимое для них в

.В таблице I приведены характеристики состояний ядра-продукта 142 Ce), число зарегистрированных. а -распадов в данное конечное состояние f и величины парциальных а -ширин Г., для і -го уровня составного ядра (резонанса). Используя результаты работы где измерялись полные а -ширины для отдельных резонансов Γ_{ai} . можно получить абсолютные значения парциальных а -ширин:

$$\Gamma_{afi} = \Gamma_{ai} \frac{N_{afi}}{\sum_{i} N_{afi}}$$
(1)

Исходя из значений парциальных а -ширин были рассчитаны согласно стандартному Y 2: соответствующие приведенные ширины определению

1 1 1 1 1 17 1

$$\frac{2}{n} = \frac{\Gamma_{\alpha n}}{2P_{\alpha n}},$$
 (2)

8

الأرتية أأرابي معريد الجاجرات

- 45 m + 2 + 1 (3) / 3

где.

$$P_{\alpha t i} \equiv P_{\circ} = \frac{k_{\circ}R_{\circ}}{f_{\circ}^{2}(k_{\circ}R_{\circ}) + g_{\circ}^{2}(k_{\circ}R_{\circ})}$$

and the second second

è

ТАБЛИЦА I Приведенные «-ширины распада нейтронных резонансвых состояний I46Nd с E_o = 4,36 и 43,I эв в основное и возбужденное состояния.

0,47 0,33	2,54 0,60	0,12 <u>+</u> 0,04 0,02 <u>+</u> 0,01	128 <u>+</u> 12 19 <u>+</u> 7	0+ 2+	0,65	43 , I
2,8	0,60	0,17 <u>+</u> 0,05	267 <u>+</u> 17	2‡	0,65	
I,0	2,54	0,26±0,07	409 <u>+</u> 21	t 0	0	6 4,36
yαfi , 36	$\sum_{T} Q_{afi} \cdot 10^{7}$	Rafi, mkab	$N_{\alpha\beta}i$	IT	Евозб, Мав	Резонанс Ео, зв

известный фактор проницаемости для канала реакции "с", k_o – волновое число, R_o – радиус канала, а f_o(kR) и g_o(kR) – соответственно регулярная и нерегулярная волновые функции относительного лвижения в канале "с".

Величины γ_{ati}^2 , приведенные в таблице I, получены с использованием факторов проницаемости P_{ati} , рассчитанных с учётом ядерного потенциала. Радиус канала R_o выбирался в соответствии с предлоложением Вогта ^{/11/} так, чтобы обеспечить устойчивость величины P_{ati} при малых вариациях радиуса канала. В случаях, когда при а-переходе возможен одновременный вклад более чем одного значения орбитального момента а -частиц ℓ , предполагалось, что приведенные ширины γ_{atif}^2 одинаковы для различных значений ℓ .

Рассмотрение результатов, приведенных в таблице I, указывает на заметные флуктуации приведенных а -ширин как с изменением начального, так и конечного состояний а -распада.

Изучение реакции (n, a) позволяет провести непосредственное сравнение вероятностей существования нейтронов и a -кластеров на поверхности составного ядра. Подобное количественное сравнение сильно затруднено в случае a -распада основных состояний ядер, поскольку методы получения приведенных нуклонных и a -ширин сильно отличаются и относительная нормировка этих ширин представляется ненадежной.

Указанное сравнение имеет еще и тот интересный аспект, что оно дает возможность прямой проверки известного предположения Бете // относительно допустимости использования приведенной нейтронной ширины в качестве оценки для приведенной *а* -ширины. В таблице II собраны данные для семи ядер, исследовавшихся в работах /2,4,6,10,12/, а также в настоящей работе. Необходимо отметить, что для ядер⁹⁵ Мо , ¹²³ Те и ¹⁴³ Nd вместо парциальных *а* -ширин использовались полные ширины. В данном случае это вполне оправдано, поскольку энергии первых

возбужденных состояний дочерних ядер велики (≥ 1 Мэв)^{/8/}, так что с большой степенью точности можно положить Г = Г . Кроме того в случае ядра ¹⁴⁹ Sm при усреднении были использованы а -переходы на состояния дочернего ядра, лежащие ниже энергии спаривания нуклонов. Это связано с тем, что для Е возб > Е спар возб спар существующие экспериментальные данные указывают на наличие некоторого увеличения приведенных а -ширин ^{/13/}, а для всех остальных ядер имелись данные только для Е возб < спар

В таблице II рядом со значениями средних а -ширин в скобках указывается N - число значений ширин, по которым получены усредненные величины

$$\overline{\gamma_a^2} = \frac{1}{N} \sum_{if}^{N} \gamma_{afi}^2$$

Для вычисления приведенных нейтронных ширин использовалось выражение

$$\overline{\gamma}_{n}^{2} = \frac{1}{N} \sum_{i}^{N} \frac{\Gamma_{ni}}{2k_{n}R}$$

Сравнение приведенных нейтронных и а -ширин, показывает, что нейтронные ширины в общем значительно больше а -ширин. Однако получившиеся конкретные значения отношений этих ширин должны рассматриваться с известной осторожностью ввиду сравнительно малого количества экспериментальных а -ширин.

12

All frequest.

ТАБЛИЦА П

Сравнение приведенных нейтронных и парциальных «- ширин

155Gd [6]	0,23	0,005(2)	0,02	
149 Sm [4]		0,007(6)	0,006	
⁴⁴⁷ Sm [2]	Ι,9	0,08(9)	0,042	
445 Nd	61	0,6(4)	0,32	
¹⁴³ Nd [10]	0	0,8(5)	0 , I6	
123_6 [I2]	6 • I	0,5(4)	0,26	
³⁵ Mo [I2]	4 ,3	0,21(5)	0,05	
ири - ядро-ши- ири - щень bedённод	<u>X</u> <u>z</u>	$\overline{\chi_{\star}^2}(N)$	Jun Xun	

Литература

- 1. H.A. Bethe. Rev. Mod. Phys., 9, 69 (1937).
- 2. Ю.П. Попов, М. Стэмпиньски. Известия АН СССР, сер.физ., т. 32 (1968) 1994.
- R.D. Macfarlane, I. Almodovar. Phys.Rev., <u>127</u>, 1665 (1962).
 E. Cheifetz, J. Gilat, S.G. Cohen. Phys.Lett., <u>1</u>, 289 (1962).
 В.Н. Андреев, С.М. Сироткин. Ядерная физика, <u>1</u>, 252 (1965).
 F. Poortmans et al. Nucl.Phys., <u>82</u>, 331 (1966).
- 4. N.S. Oakey, R.D. Macfarlane, Phys.Lett., <u>24B</u>, 142 (1967),
 - 5. N.S. Oakey, R.D. Macfarlane, Phys.Lett., 26B, 662 (1968).
 - 6. K. Beg, R.D. Macfarlane, Nucl. Phys., <u>A129</u>, 571 (1969).
 - Г.П. Жуков, Г.И. Забиякин, К.Г. Родионов и др. Труды V научно-технической конференции по ядерной радиоэлектронике, т. 2, ч. 2, стр. 115, Атомиздат, М., 1963.
 - 8. C.M. Lederer, J.M. Hollander, J. Perlman. Table of Isotopes, 6th ed., New York (1967).
 - 9. Neutron Cross Section, BNL-325, II Edition, v.IIB (1966).
- 10. И. Квитек, Ю.П. Попов. Препринт ОИЯИ РЗ-4982, Дубна, 1970.
- 11. E. Vogt. Rev. Mod. Phys., 34, 723 (1962).
- 12. Ю.П. Попов, М. Флорек. Ядерная физика, 9, 1163 (1969).
- 13. Ю.П. Попов. Материалы III зимней школы по теории ядра и физике высоких энергий, часть II , Ленинград (1968) 127.

Рукопись поступила в издательский отдел 27 апреля 1970 года.