M-217

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

P3 - 4929

6/10-20

Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов

. *

АНАЛИЗ ПОЛНЫХ РАДИАЦИОННЫХ ШИРИН НЕЙТРОННЫХ РЕЗОНАНСОВ ЯДЕР

P3 - 4929

£

Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов

АНАЛИЗ ПОЛНЫХ РАДИАЦИОННЫХ ШИРИН НЕЙТРОННЫХ РЕЗОНАНСОВ ЯДЕР

Представлено на 2-ю Международную конференцию по ядерным данным для реакторов Хельсинки, июнь 1970 г.

8236/2 45

Малэцки Х., Пикельнер Л.Б., Саламатин И.М., Шарапов Э.И. РЗ-4929

Анализ полных радиационных ширин нейтронных резонансов ядер

Для большого числа ядер в интервале массовых чисел от 80 до 247 проведено сравнение экспериментальных полных радиационных ширин с теорией. Предложена эмпирическая зависимость для радиационных ширин.

Препринт Объединенного института ядерных исследований. Дубна, 1970

Malecki H., Pikelner L.B., Salamatin I.M., Sharapov E.I. P3-4929

Analysis of the Total Radiation Widths of the Nuclear Neutron Resonances

For a large number of nuclei in the mass number range from 60 to 247 a comparison is made of the experimental total radiation widths with theory. An empirical dependence is suggested for the radiation widths.

Preprint. Joint Institute for Nuclear Research. Dubna, 1970

Í

Введение

В течение последних лет в Дубне на импульсном реакторе ИБР с инжектором-микротроном проводились измерения параметров нейтронных резонансов ядер в области массовых чисел 70+90. Среди исследовавшихся ядер были изотопы германия (A = 70, 72, 73, 74, 78)¹¹, селена (A = 74, 76, 77, 78, 80)²¹, галлия (A = 69, 71)³¹, рубидия (A = 85, 87)⁴⁴. Для всех перечисленных изотопов найдены полные радиационные ширины Γ_{γ} . Помимо наших данных в иоследнее время в литературе появилось значительное количество данных по радиационным ширинам, полученных другими группами. Наличие большого экспериментального материала позволяет провести сравнение его с теорией с лучшей точностью, чем это было сделано, например, в ^{/5-10/}.

В данной работе мы ставили своей целью проследить зависимость радиационных ширин от таких параметров, как массовое число, энергия связи нейтрона, плотность уровней, используя для анализа возможно более широкий круг данных о полных радиационных ширинах. Естественно, что при таком подходе не могут быть учтены индивидуальные особенности каждого конкретного ядра, однако, нам представлялось, что такой анализ позволит проследить некоторые общие закономерности и сопоставить их с теорией.

Теория .

Подробное рассмотрение электромагнитного излучения ядер было проведено Вайскопфом^{/11/}. Используя полуклассический подход и одночастичную оценку для матричного элемента, он получил выражение для полной радиационной ширины, отвечающей электрическому излучению мультипольности ℓ , в виде

$$\Gamma_{E\ell} \approx \frac{18(\ell+1)(2\ell+1)}{\ell(\ell+3)^{2} [(2\ell+1)!!]^{2}} \frac{e^{2}}{\hbar c} (\frac{R}{\hbar c})^{2\ell} \frac{1}{D_{0}} \int_{0}^{E_{b}} (\hbar \omega)^{2\ell+1} \frac{D_{\ell}(E_{b})}{D_{\rho}(E_{b}-\hbar \omega)} d(\hbar \omega). (1)$$

Здесь ћ — энергия у - излучения, R - радиус ядра, пропорциональный A^{1/3}, E_b - энергия возбуждения ядра при захвате нейтрона, D_ℓ(E_b)- расстояние между уровнями при энергии возбуждения E_b, D₀ - расстояние между низшими уровнями, между которыми могут идти переходы рассматриваемого типа и порядка.

В предположении, что основной вклад в Г_у вносит электрическое дипольное излучение, выражение (1) может быть записано в виде

$$\Gamma_{E1} \approx 0.2 \text{ A}^{2/3} - \frac{1}{D_0} \int_0^{E_b} E_{\gamma}^3 - \frac{D(E_b)}{D(E_b - E_{\gamma})} dE_{\gamma}, \qquad (2)$$

где Γ_{E1} в эв, а D_0 , D и E_γ – в Мэв.

Для получения явной зависимости Г_{E1} от Е_b необходимо использовать выражение для расстояния между уровнями, стоящее под интегралом в (2).

Если принять для плотности уровней экспоненциальную формулу:

$$\rho(\mathbf{E}) = \frac{1}{\mathbf{D}(\mathbf{E})} \approx \exp\left(\frac{\mathbf{E}}{\mathbf{T}}\right), \qquad (3)$$

где Е – энергия возбуждения, Т – ядерная температура (постоянная для данного ядра), то выражение (2) после интегрирования приводится к виду

$$\Gamma_{\rm E} = 0.2 \,{\rm A}^{2/3} - \frac{1}{D_{\rm o}} T^4 \left\{ 6 - \exp\left(-\frac{E_{\rm b}}{T}\right) \left[\left(-\frac{E_{\rm b}}{T}\right)^3 + 3\left(-\frac{E_{\rm b}}{T}\right)^2 + 6\left(-\frac{E_{\rm b}}{T}\right) + 6 \right] \right\}.$$
(4)

Легко видеть, что в таком представлении радиационная ширина практически не зависит от энергии связи E_b . Действительно, при изменении отношения E_b/T от 7 (что может считаться нижним пределом для средних и тяжелых ядер) до бесконечности величина Γ_{γ} возрастает менее, чем на 10%.

Существенно другой результат получается при использовании формулы для плотности уровней в виде

$$\rho(\mathbf{E}) = \frac{1}{\mathbf{D}(\mathbf{E})} \approx \frac{1}{\mathbf{a} \mathbf{U}^2} \exp\left(2\sqrt{\mathbf{a} \mathbf{U}}\right), \qquad (5)$$

где а- параметр плотности одночастичных состояний вблизи поверхности Ферми, U - эффективная энергия возбуждения, равная $E - \Delta$, Δ - энергия спаривания (см., например, ^{/12/}). Если подставить это выражение в (2), то расчёты приводят к зависимости для Γ_v вида

$$\Gamma_{\rm E1} = 5.8 \,{\rm A}^{2/3} \frac{1}{D_0} \quad (E_{\rm b} - \Delta)^{1.8} / {\rm a}^{2.2} , \qquad (6)$$

т.е. зависимость от Е, становится весьма существенной.

В работе Аксела^{/13/} вероятность радиационного перехода при распаде возбужденного состояния ядра, образующегося в результате захвата медленного нейтрона, связывается с характеристиками гигантского дипольного резонанса. Им предложены следующие выражения для силовой функции парциального перехода:

$$<\frac{\Gamma_0}{D}>=2,2\cdot10^{-5}\left(\frac{E_{\gamma}}{7\text{ M}_{9\text{B}}}\right)^5\left(\frac{A}{100}\right)^{8/3}\left(\frac{\Gamma_g}{5\text{M}_{9\text{B}}}\right)$$
 (7)

для Е_v≈7Мэви

$$<\frac{\Gamma_0}{D}>=1.6\cdot10^{-5} \left(\frac{E_{\gamma}}{7\ M_{BB}}\right)^4 \left(\frac{A}{100}\right)^{7/8} \left(\frac{\Gamma_g}{5\ M_{BB}}\right).$$
 (8)

для Е_γ≲ 3 Мэв. Г_в - ширина гигантского резонанса. Выражения (7) и (8) Аксел связывает с полной радиационной шириной:

$$\Gamma_{\gamma} \approx 3 \int_{0}^{E_{b}} \frac{(\Gamma_{0}/D) \cdot D(E_{b})}{D(E_{b}-E_{\gamma})} dE_{\gamma}.$$
(9)

Здесь, как и в случае, рассмотренном выше, использование экспоненциальной зависимости для плотности уровней приводит к выражению

$$\Gamma_{\gamma} \approx 0.48 \left(\frac{A}{100}\right)^{7/3} T^{5} \left\{1 - \exp\left(-\frac{E_{b}}{T}\right) \left[\frac{1}{24} \left(\frac{E_{b}}{T}\right)^{4} + \frac{1}{6} \left(\frac{E_{b}}{T}\right)^{3} + \frac{1}{2} \left(\frac{E_{b}}{T}\right)^{2} + \frac{E_{b}}{T} + 1\right] \right\},$$
(10)

в котором зависимость от Е _b слабая (изменение $\frac{E}{T}$ от 7 до ∞ увеличивает Γ_{γ} на 20%). В случае применения формулы (5) для нахождения плотности уровней мы снова приходим к более сильной зависимости от Е :

$$\Gamma_{\gamma} \approx \frac{A^{7/3} (E_{b} - \Delta)^{2,2}}{a^{2,8}}.$$
 (11)

Следует еще отметить, что в подходах Вайскопфа и Аксела получается существенно различающаяся зависимость $\Gamma_{\mathbf{v}}$ от массового числа А.

Куклин^{/14/} провел расчёты полных радиационных ширин, используя феноменологическую модель конечных ферми-систем при отличной от нуля температуре. Изменения дипольного момента ядра и связанные с этим радиационные переходы являются, согласно этой модели, результатом взаимодействия квазичастиц. Расчёты, выполненные для квазичастиц в бесконечной прямоугольной потенциальной яме в предположении, что состояние системы не изменяется существенно при рождении и аннигиляции квазичастиц (т.е. в предположении одной и той же температуры Т для начального и конечных состояний при у – переходах), дают:

$$\Gamma_{\gamma} = 3 \cdot 10^{-4} \, \mathrm{g} \, \mathrm{A}^{4/3} \, \mathrm{T}^{7} = 1,2 \cdot 10^{-5} \, \mathrm{A}^{7/3} \, \mathrm{T}^{7}. \tag{12}$$

Здесь $g = \frac{3}{2} \frac{A}{E_F}$ - плотность одночастичных состояний в квазиклассическом приближении.

Из предположений, сделанных при выводе, ясно, что формулу (12) не следует использовать для оценки энергетической зависимости Γ_{γ} в конкретном ядре путем простой замены температуры Т на $\sqrt{E/a}$; в формуле (12), как в и в формулах (4), (10), температура Т-константа для конкретного ядра.

Рассмотренные выше подходы к расчёту полных радиационных ширин показывают, что получающиеся зависимости Γ_{γ} от таких параметров ядра, как А. Т. а. Е. весьма сильно различаются между собой. Это делает особенно полезным сравнение их с экспериментальными данными.

Экспериментальный материал

Для сопоставления экспериментальных данных с теоретическими выражениями, приведенными выше, использовался материал, представленный в таблице I. В первом и втором столбце указаны заряд и массовое число компаунд-ядра, в третьем – спин I ядра-мишени. Значения температуры Т для компаунд-ядер, взятые из работы Камерона^{/15/}, даны в четвертом столбце. В пятом столбце приведены значения параметра а , вычислявшиеся нами на основании данных о нейтронных резонансах из уравнения

$$\rho_{\text{HAG},I} = \frac{1}{2} \sum_{J} \rho(U_{b}, J), \qquad (13)$$

связывающего наблюдаемую плотность уровней ρ с теоретическим набл. с теоретическим раначением $\rho(\mathbf{U},\mathbf{J})$:

$$\rho(\mathbf{U}_{b},\mathbf{J}) = \frac{\sqrt{\pi}}{12 a^{1/4} U_{b}^{5/4}} \exp\left(2\sqrt{a} U_{b}\right) \frac{2\mathbf{J}+1}{2\sqrt{2\pi}\sigma^{3}} \exp\left[-\frac{(\mathbf{J}+1/2)^{2}}{2\sigma^{2}}\right] .$$
(14)

Более подробное описание этого вопроса можно найти, например, в /16/

Таблица І

Ż	A	I	T	α,	Ug	۲٫۶	STy?	TX.M36	
			Мэв	M36-1	Mab	мэв	мэв	no(19)	ЛИТ.
1	2	3	_ 4	5	6	7	8	9	10
27	60	3,5	1+14	7,7	7,49	480	40	394	18
29	64	1,5	1,00	8,6	7,92	510	50	408	19
29	66	1 - 5	0,94	9,5	7,06	340	4 0	339	19
30	68	2,5	0,88	10,1	6,97	500	100	303	18
30	64	0,0		10,9	3,44	180	30	243	18
31	70	1,3			4 6 2	2/0		363	3
31	71	0.0		12.5	6.05	162	96	234	
32	73	0.0		13.9	5.47	160	24	202	
32	74	4.5	0.83	14.1	6.57	197	29	187	i
32	75	0,0	••••	13.1	5,13	195	4 0	193	1
30	77	0,0		14.0	4,67	120	25	166	i
33	76	1,5		13.4	7 ; 33	300	60	254	18
34	75	0,0	0,84	13,9	6,69	290	50	237	2
34	77	0,0	0,84	14,2	6,02	230	4.0	208	-2
i 4	78	0,5	0,82	14,1	6,92	390	70	234	2
z 4	79	6,0		14,3	5,70	220	4.5	193	2
34	81	0,0		15,0	5,28	220	50	17.1	2
35	80	1,5		13,0	7,88	313	40	265	18
35	82	1,5		13,0	7,80	304		250	18
37	00	2,5		10,2	6,04	140	30	291	
37	60	4.5		10.9	8.02	306	20	313	
40	92	2.5	6.74	12.6	6.35	120	26	107	28
41	94	4.5		12.6	7.21	160	2 1	17.5	18
40	95	0,0	0,87	53.8	6.09	260	80	177	18
45	96	2,5	0,73	15,6	6,33	170	20	159	21
42	97	0,0	0,70	15,2	5,46	160	30	149	21
42	98	2,5		15,9	5,87	150	30	144	21
42	99	0,0	0,72	20,8	4,58	130	25	105	21
42	101	0,0	0,66	21,8	4,11	105	30	91	21
43	100	4,5		15,9	6,60	140	30	134	22
44	102	2,5	0,64	18,0	6,03	180	25	133	18
4.5	104	0,5	0.00	1719	7,00	161	15	160	18
46	100	2,3	0,00	17,0	0,33	132	20	134	18
- 24	110	0,5	0,30	1/10	6.82	185	10	162	18
40	112	0,5	0-66	1717	6.31	120	1.6	114	18
40	114	0.5	0.64	19.6	6.07	1.1.0	15	193	23
49	116	4.5		18.0	6.73	110	30	112	18
50	113	0.0		17.0	6.60	110	21	145	23
50	118	0,5	0,58	17,6	6,28	82	20	131	24
s 1	122	2,5		17.4	6,80	115	20	129	18
51	124	3,5		16,4	6,43	120	15	117	18
- 52	124	0,5	0,62	18,9	6,60	100	21	126	18
52	126	0,5		17,7	6,39	145	60	125	18
55	134	3,5	0,53	16,9	6,70	125	34	112	18
56	136	1.5		15,8	6,80	110	20	129	18
59	142	2,5		17,1	5,85	84	17	99	18
60	144	3, 5	0,57	19,1	5,34	76	11	79	25
0 A	145	0,0		19,7	4,08	78	12	78	25

ŧ

Таблица I(продолжение) 🧃

-	2	3	6	*	6	7	9	9	10
<u>~</u>									
6.0	140	3,5		211	-5,07	30		70	25
60	147	0,0		23,7	4,12	33	8		25
• 0	144			20,3			14	22	25
60	191	0,0	· · ·	23,0	•,25		12		25
62	148	3,3	0,34	21.5	3, 44	33	15		1.
62	150	3,5	0,50	25/2	3,24				3.
62	155	0,0		24,2	5,00		10		1.
63	152	2,5		24,5		• •	17		18
63	154	2,3		23,0		100	20		1.
64	153	0,0	0,53	25,3	3,44	57	15		20
• 4	125	0,0	0,34	25,2	2.1		15		2.
64	150	1+3	8,49	23,3		100	20		20
64	157	0.0	0,50	23,0	3,03		15		20
64	158	1.3	0,49	21.0	• • 1 •		20		20
64	124	0,0		2151	5,00		15		2.
64	161	0,0		22,1	4,62	100	15		26
65	160	1.2		21,9		31	12	80	1.
67	100	3,5	0,49	20,2	6,33		14		1.
68	167	0,0	0,47	21.1	5,63		13		27
68	168	3,3	0,51	21,2	. 13	72			27
68	167	0,0		21+1	5,30		10	75	27
69	170	0,3		22,0	0,39		10		1.
70	172	0,5	0,48	22,3			11		
70	174	81.5		2010		<u>.</u>			3.
71	170	3,3		2110			10	70	28
12	1/0	3,3	0144	23,0	5,73				10
73	102	912		21,0		30	10		
74	183	0,0	0,31	22,1	3,31	24			1.
74	189		0,44	22.0	5,00	- 52			
74	185	0,0	0,45	2119	3,21	1.5			
74	187	0,0		24,1			12	3.	
7.5	190	2,5		22/1	4 7 7 7		12	12	1.
75	180	275		2311	3,73	33	12	67	1.
76	140	1,5	0133	23,3	5,04	71	15		1.
<u>77</u>	142	1,2		22,0	4 10		10		1.
77	144	1,3				40	14		
1	143		0,33	20,0	3,37	40	10		
1	193	0,0	0,37	20,0		100	20		
28	190	0,3	0,51	6211	5,00	124	20		
	140		0,34	1911	4.02	120		74	
8 U	177	0.0	0194	1410	4.31	25	13	- 12	
90	231	0,0		34,3	A . 18	22	3	14	27
70	233			3217	5.52			45	
	232	1.5		3171	5,12	48		42	
71	234	2.5	0.4.	2. 2	6.39	40	14	42	
12	234	2,3	0.4.	31,5	4 4	24		.,	
92	235	1.4	0,40	31,7	4.97	41			
72	230	0.0	0.30	3012	4.41	29	,		
72	237	0.0	0104	33.4	4.89	24	5		
72	237	0.5	0.30	30.1	5.13	40	-	43	
74	244	0.0		30.8	4.47	3.1			
79	949	024		30.4	4.94	37		3.8	
94	242	0.0		31:1	4.97	25	ž	34	
74	240	0.4		20.7	6.48	41	3	43	
73	244	0.0	0.41	34-3	4.44	37	2		1
76	243	0,0	*143		4.42	3.5		17	
78	297						3		

Значения U_b эффективной энергии возбуждения, соответствующей энергии связи нейтрона, приведены в шестом столбце. Для вычисления их использовалось выражение

$$U_{b} = E_{b} - \Delta, \qquad (15)$$

где $\Delta = \begin{cases} 0$ для нечётно-нечётных ядер, δ_p или δ_n для ядер с чётным Z или N, $\delta_p + \delta_n$ для чётно-чётных ядер.

Эмпирические поправки на остаточное парное взаимодействие нуклонов δ_p и δ_n считались по формулам, предложенным в работе /17/. Средние радиационные ширины ядер $\Gamma_{\gamma}^{\Rightarrow}$ и их ошибки приведены в сельмом и восьмом столбцах таблицы I. Значения $\bar{\Gamma}_{\gamma}^{\Rightarrow}$ получены усреднением по радиационным ширинам изолированных резонансов, а погрешности $\Delta \Gamma_{\gamma}^{\Rightarrow}$ учитывают разброс $\Gamma_{\gamma}^{\Rightarrow}$ и их экспериментальные ошибки. В таблицу были включены все доступные нам значения радиационных ширин как измеренные нами, так и взятые из литературы. В тех случаях, когда использовались данные, содержавшиеся в атласе BNL /18/, мы не давали ссылок на оригинальные работы. Если же использовались более новые данные по $\Gamma_{\gamma}^{\Rightarrow}$, отличающиеся или не содержащиеся в /18/, то ссылки приведены в последнем столбце таблицы.

На рис. 1 приведены экспериментальные ширины для всех 108 ядер, отобранных для анализа, в зависимости от атомного веса ядра.

Расчёты и обсуждение

Соотношения (4), (6), (10), (11) и (12), дающие зависимость радиационных ширин от таких параметров ядра, как А.Т.а.Е. или U.,

в зависимости от массового числа A . о – экспериментальные Γ_y^3 , + – расчёт по эмпирической формуле (19).

показывают, что различные теоретические формулы можно аппроксимировать двумя аналитическими выражениями

$$\Gamma_{\gamma}^{p} = K A^{\beta} U_{b}^{\gamma} a^{\delta}$$
 или $\Gamma_{\gamma}^{p} = K A^{\beta} E_{b}^{\gamma} T^{\delta}$, (16)

где значения **K**,β,y,δ различны и определяются принятым теоретическим подходом.

Для сопоставления экспериментальных данных с теоретическими предсказаниями была разработана программа для ЭВМ, позволяющая по методу наименьших квадратов (МНК) находить лучшие значения констант К, β, y, δ в выражениях вида (16).

При этом минимизировался функционал

$$\chi^{2} = \sum_{i} \left(\ln \Gamma_{\gamma}^{\Theta} - \ln \Gamma_{\gamma}^{P} \right)_{i}^{2} w_{i}.$$

Сумма бралась по всем ядрам, входящим в данный расчёт, а вес точки $\overset{\mathfrak{S}}{\overset{\mathfrak{S}}{}}_{i}$, учитывал экспериментальные погрешности величин $(\Gamma_{\gamma}^{\mathfrak{S}})_{i}$. Программа позволяла проводить расчёт при любой комбинации фиксированных и свободных величин из числа **К**, β , γ и δ .

Результаты проведенных расчётов собраны в таблице II. В первом столбце приведен вид формулы для расчётного эначения Γ_{γ}^{p} , во втором – число ядер, по которому проводился анализ, в третьем – величина χ^2 . В четвертом столбце показано, по каким параметрам отыскивалась зависимость по МНК. Во всех случаях варьировалась константа K. В тех случаях, когда проверялась одна из теоретических формул, показатели степени β, γ и δ фиксировались в том виде, который предсказывала теория, если же искали лучший вариант зависимости, то варьировалось не только K, но и показатели степени у всех параметров, указанных в четвертом столбце.

Таблица П

lete nn	Формула Г _у ^Р	Число ядер	۲²	Искалась зависи- мость от параметров
I.	$\Gamma_{\gamma}^{P} = 0,037 A^{2/3} T^{4}$	51	343	
2.	19.10 6 At/3 T 5	51	683	
3.	53.10 · A 73 T 7	51	923	
4.	16, 6 A ^{-0,91} T ^{1,0}	51	139	А , Т
5.	12,7 A ^{0,91} T ^{1,0} Eg ^{0,13}	51	135	A,T,Eg
6.	0,10 A ^{2/3} U6 a ^{-2,2}	51	207	
7.	$86.10^{-6} A^{7/3} U_6^{2,2} a^{-2,8}$	51	958	
8.	7,64 A ^{-0,61} Ug a	51	76	A,Us,a
9.	$0,10 A^{2/3} U_{4}^{1,8} a^{-2,2}$	108	670	
10.	$81.10^{-6} A^{7/3} U_{4}^{2.2} a^{-2.8}$	108	2162	
II.	8,7 A-0,9 U, 91 a-0,57	108	219	A,Us,a

Ввиду того, что данные по ядерной **д**емпературе в работе $^{/15/}$ приведены для 51 ядра из числа ядер, для которых имелись данные по Γ_{γ}^{9} , все варианты расчёта проводились для этих ядер и кроме того были проведены расчёты для 108 ядер по формулам, не включающим температуру **T**.

Сопоставление величин χ^2 , полученных при расчёте для 51 ядра, показывает, что из теоретических выражений (4), (10) и (12), где использована экспоненциальная зависимость плотности уровней (3), меньшее значение χ^2 соответствует формуле Вайскопфа (4), однако значительно лучше описывает экспериментальные данные эмпирическое выражение, приведенное в четвертой строке таблицы II. В пятой строке приведено выражение, которое получилось при включении энергии связи E_b в число параметров, однако, как и следовало ожидать на основании сказанного выше, влияние E_b очень слабое и по существу не сказывается на величине χ^2 .

Переход к плотности уровней в виде (5) отражен в 6,7 и 8 строках таблицы, где приведены расчёты по формулам (6) и (11), а также эмпирическое выражение, найденное в данном расчёте. Видно, что согласие между Γ_y^{9} и Γ_y^{p} еще улучшается для формулы Вайскопфа, становится хуже для формулы Аксела, а наилучшее согласие получается для эмпирического выражения. Наконец, последние три строчки таблицы содержат аналогичные результаты, полученные для 108 ядер. Обращает на себя внимание различие показателей степени у А и а в эмпирических формулах для 51 и 108 ядер (восьмая и одиннадцатая строки таблицы II). Такое различие может быть объяснено тем, что между величинами а и А существует сильная корреляция: параметр плотности уровней а примерно пропорционален А, поэтому увеличение степени у одного из них компенсируется соответствующим уменьшением степени у другого. Причиной же изменения степени могло послужить то,

что 51 ядро, для которых данные по температуре были взяты из работы Камерона^{/15/} - это ядра, в большинстве своем лежащие далеко от магических. Для них величина а плавно меняется с А. Когда проводился расчёт для 108 ядер, то добавилось значительное количество ядер, близких к магическим, для которых а испытывает большие отклонения от плавной зависимости. Уменьшение показателя степени у а ослабляет влияние этих нерегулярностей.

На рис. 2 приведены графики, на которых точками обозначены отэ ношения $\Gamma_{\gamma}^{P} / \Gamma_{\gamma}^{P}$ для всех 108 ядер, включенных в анализ. Графики а, b и с соответствуют формулам, приведенным в 9,10 и 11 строках таблицы II й иллюстрируют характер расхождения экспериментальных и расчётных данных. На графиках разными символами обозначены ядра, различающиеся по чётности Z или N, чтобы иметь возможность проследить, влияет ли она на расположение точек. Видно, что систематических отклонений, зависящих от чётности, нет.

Полученная эмпирическая формула

$$\frac{\Gamma_{\gamma}}{\gamma} = 8.7 \cdot U_{b}^{0,9} A^{-0,9} a^{-0,6}, \qquad (17)$$

где Г_у выражена в эв, U_b – в Мэв и а – в Мэв⁻¹, удовлетворительно отражает общий характер поведения радиационных ширин.

После того, как была получена формула (17) и рассмотрено поведение точек на графике с (рис. 2), было обращено внимание на то, что у ядер-мишеней с высоким спином точки лежат в среднем выше, т.е. имеют большее отношение $\Gamma_{\gamma}^{p}/\Gamma_{\gamma}^{9}$, чем у ядер с малым спином.

Рассчитанные значения " среднего спина"

$$P(I) = \frac{1}{n} \sum_{i=1}^{n} I_{i}$$
 (18)

Рис. 2. Отношение $\Gamma_{\gamma}^{P}/\Gamma_{\gamma}$ расчётных и экспериментальных значений радиационных ширин.

a -
$$\Gamma_{\gamma}^{P} = 81 \cdot 10^{-6} A^{7/3} U^{2/2} a^{-2.8};$$

B - $\Gamma_{\gamma}^{P} = 0.10 A^{2/3} U^{1.8} a^{-2.2};$
c - $\Gamma_{\gamma}^{P} = 8.7 A^{-0.9} U^{0.9} a^{-0.57}.$
+ - Heyëtho (Z) - Heyëthie (N) , Δ -y-y , O -y- H - KOM-
NayHQ-SQDA.

для точек, лежащих выше и ниже линии $\Gamma_{\gamma}^{P}/\Gamma_{\gamma}^{P} = 1$, получились соответственно равными $P_{B}(I) = 1,7$ и $P_{H}(I) = 0,9$. Аналогичное усреднение, сделанное по пяти отдельным участкам массовых чисел, показало, что такое различие наблюдается по всей области массовых чисел за исключением самых тяжелых ядер (от тория и выше). Для последнего участка характерно то, что экспериментальные эначения Γ_{γ}^{P} для чётно-чётных ядер-мишеней Th , U и Pu лежат систематически ниже расчётных, образуя выделенную группу, что приводит к обратному соотношению между $P_{B}(I)$ и $P_{U}(I)$.

Для учёта проявляющегося спинового эффекта в Γ_{γ}^{P} был проведен дополнительный расчёт по МНК. С использованием полученной ранее формулы (17) отыскивались константы К и С в выражении:

$$\Gamma_{\gamma}^{p} = K U_{b}^{0,9} A^{-0,9} a^{-0,6} (1 - C I^{2}).$$

В результате была получена эмпирическая формула

$$\Gamma_{\gamma}^{P} = 9.0 \ U_{b}^{0.9} \ A^{-0.9} \ a^{-0.6} \ (1 - 0.01 \cdot I^{2}) \ . \tag{19}$$

Для нее величина χ^2 оказалась равной 197, тогда как при расчёте по формуле (17), без учёта спина, χ^2 = 219. Значения Γ_{γ}^{P} , вычисленные по формуле (19), приведены в девятом столбце таблицы I.

Качественно характер слиновой зависимости может быть получен, если рассмотреть плотность уровней, входящую в выражение (2), по модели Ферми-газа и не пренебрегать спиновым членом (см. формулу (14)). Легко видеть, что в этом случае под интегралом в (2) будет стоять выражение

$$E_{\gamma}^{3} \frac{D(E_{b})}{D(E_{b}-E_{\gamma})} \exp \left[\frac{(J+1/2)}{2} \left(\frac{1}{\sigma^{2}(U_{b})} - \frac{1}{\sigma^{2}(U_{b}-E_{\gamma})}\right)\right] dE_{\gamma} .$$
 (20)

Мы опускаем эдесь суммирование по слиновым состояниям конечного ядра, чтобы не усложнять выражение, которое служит только для качественной иллюстрации. Так как спиновый параметр плотности уровней $\sigma^2 \approx \sqrt{aU}A^{2/3}$, то показатель экспоненты отрицателен. В случае малого I , (а, следовательно, и малого J), экспоненциальный член близок к единице, а с увеличением J становится более существенным и ведет к уменьшению Γ_{γ} . Более точные расчёты показали, что это уменьшение составляет всего 5 + 7% для ядер со спином 9/2, причем для тяжелых ядер эффект еще меньше, так что количественного согласия с формулой (19) не получается. Несколько лучшее согласие будет в том случае, если использовать в подинтегральном выражении (20) более высокую степень E_{γ} , на возможность существования которой указывалось в работе Боллингера^{/32/}.

На рис. 1 приведены экспериментальные значения радиационных ширин вместе с рассчитанными по формуле (19). Видно, что эмпирическая формула довольно хорошо передает общий ход зависимости Γ_{γ} от A , включая такие нерегулярности в ходе, как заметные провалы в районе массовых чисел A = 100 и 150.

Заключение

Сопоставление экспериментальных данных по радиационным ширинам с теоретическими выражениями и найденной эмпирической зависимостью для Г_у позволяет сделать следующие заключения:

1. Выделенная в явном виде (формула (19)) зависимость радиационных ширин от массового числа ведет себя, грубо говоря, как А⁻¹.

2. Полученная в формуле (19) линейная зависимость Г_у от энергии возбуждения U_b слабее, чем ожидаемая на основании (6) и (11), но сильнее, чем полученная в формулах (4) и (10), где для

плотности уровней использовалась экспоненциальная зависимость (3). Возможно, это связано с тем, что у большинства ядер истинная плотность уровней лучше описывается экспоненциальной зависимостью в области малых энергий возбуждения, а при энергиях, близких к энергии связи нейтрона, предпочтительнее формула (5), что и при – водит к некоторой средней зависимости.

3. Эмпирическая формула (19), включающая зависимость Г_у от спина ядра-мишени, описывает экспериментальные данные лучше, чем формула без спиновой зависимости. Без ухудшения качества описания формула (19) может быть записана в более удобном виде:

$$\Gamma_{v}^{p} = 10.5 \text{ U}^{1} \text{ A}^{-1} \text{ a}^{-1/2} (1-0.01 \cdot \text{ I}^{2}).$$

4. Наряду с общим удовлетворительным описанием радиационных ширин формулой (19) для ряда ядер наблюдаются отклонения, значительно превышающие экспериментальные ошибки Γ_{γ} . К числу таких ядер относятся, например, ядра-мишени ⁷⁷ Se, ⁹¹ Zr, ¹⁹⁷ Au, ²³² Th, ²³⁴ U. Для таких ядер особенно интересно детальное исследование свойств γ - спектров с целью выявления особенностей, обусловливающих отклонение их радиационных ширин от средней по многим ядрам зависимости.

Литература

- Х. Малэцки, Л.Б. Пикельнер, И.М.Саламатин, Э.И. Шарапов. АЭ, <u>24</u>, 2, 173 (1968).
- Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов, ЯФ, <u>9</u>, 6, 1119 (1969).
- Х. Малэцки, Л.Б. Пикельнер, И.М. Саламатин, Э.И. Шарапов. Препринт ОИЯИ Р3-4152, Дубна 1968.

- 4. М.К. Гребенюк, П.Ш. Ковач, Х. Малэцкиј И.М. Саламатин. Сообщение ОИЯИ РЗ-4357, Дубна 1969.
- 5. J.S. Levin, D.J. Hughes. Phys. Rev., <u>101</u>, 4 (1956) 1328.
- 6. G.A.Bartholomew. Annual. Rev. of Nucl.Sci., <u>11</u>, 259 (1961).
- 7. V.M.Strutinsky, Yu.V.Adamchuk. "Comp. Rend. du Congress International de Physique Nucléaire". Paris, 1959.
- С.М. Захарова, А.В. Малышев. Материалы рабочего совещания по взаимодействию нейтр. с ядрами, Дубна, 9-12 июня 1964.
- 9. A.G.W. Cameron. Can.J.Phys., <u>35</u>, 5, 666 (1957); <u>37</u>, 3, 322(1959).
- 10.A. Stolovy and J.A. Harvey. Phys. Rev., 108, 2, 353 (1957).
- Дж. Блатт и В. Вайскопф. "Теоретическая ядерная физика", ИИЛ, М., 1954.
- 12. T.D. Newton, Can. J. Phys., <u>34</u>, 8, 804 (1956).
- 13. P. Axel. Phys.Rev., <u>126</u>, 2, 671 (1962).
- 14. Р.Н. Куклин. ЯФ, <u>7</u>, 3, 541 (1968).
- 15. A. Gilbert and A.G.W. Cameron, Can.J.Phys., <u>43</u>, 8, 1446 (1965).
- 16. U. Faccini, E. Saetta-Menichella. Energia Nucleare <u>15</u>,1,54(1968).
- 17. P.E. Nemirovsky, Y.V. Adamchuk. Nucl. Phys., <u>39</u>, 4, 553 (1962).
- 18. Neutron Cross Sections. BNL-325, 2-nd ed., Supplement 2(1966).
- 19. H. Weigmann and J.Winter. Z. für Physik 213, 5, 411 (1968).
- 20. J. Morgenstern, R.N. Alves, J. Julien et C. Samour. Nucl.Phys., A123, 3, 561 (1969).
- 21. H. Weigmann and Schmid. Nucl. Phys., <u>A104</u>, 3, 513 (1967).
- 22. T. Watanabe and S.D. Reader, Unpublished.
- J. Julien, R. Alves, S. de Barros et al. Nucl. Phys., <u>A132</u>, 1 129 (1969).
- Ю.В. Адамчук, В.С. Зенкевич, С.С. Москалев и др. ЯФ, <u>10</u>, 1, 18 (1969).
- Э.Н. Каржавина, Нгуен Нгуен Фонг, А.Б. Попов, А.И. Таскаев, ЯФ,
 <u>8</u>, 4, 639 (1968).

- 26. Э.Н. Каржавина, Нгуен Нгуен Фонг, А.Б. Попов. Препринт ОИЯИ РЗ-3882, Дубна 1968.
- 27. Э.Н. Каржавина, А.Б. Попов, Ю.С. Язвицкий. ЯФ, 7, 2, 225 (1968).
- J. Brunner and F. Widder. "Nuclear Data for Reactors" <u>1</u>,61 (1967); R.L. Zimmerman et al., "Nuclear Data for Reactors" 1, 53 (1967).
- 29. С.М. Калебин, Р.Н. Иванов, П.Н. Палей и др. "Nuclear Data for Reactors" <u>1</u>, 71 (1967).
- M.A. Ashgar, C.M. Chaffey, M.C. Moxon et al. Nucl. Phys., <u>76</u>
 1, 196 (1966).
- M.A. Ashgar, C.M. Chaffey and M.C. Moxon. Nucl. Phys., <u>85</u>, 2, 305 (1966).
- 32. L.M. Bollinger and G.E. Thomas. Phys.Rev. Lett., <u>21</u>, 4, 233 (1968).

Рукопись поступила в издательский отдел 13 февраля 1970 года.