C 341.36 926771 16/1-70 J-364 СООБШЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P3 - 4873

Е. Дерменджиев, Н. Кашукеев, Ц. Пантелеев, Тян Сан Хак

О ВАРИАЦИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ОСКОЛКОВ ПРИ ДЕЛЕНИИ ²³⁵ U НЕЙТРОНАМИ С ЭНЕРГИЕЙ 0,15-1,68 МЭВ

1969

ААБФРАТФРИЯ НЕМТРОННОМ

P3 - 4873

Е. Дерменджиев, Н. Кашукеев, Ц. Пантелеев, Тян Сан Хак

dn 2/5518

О ВАРИАЦИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ОСКОЛКОВ ПРИ ДЕЛЕНИИ ²³⁵ U НЕЙТРОНАМИ С ЭНЕРГИЕЙ 0,15-1,68 МЭВ

При исследовании средней кинетической энергии осколков деления \vec{E}_k и среднего числа нейтронов на акт деления $\vec{\nu}$ для ²³³ U и ²³⁵ U ^{/1/} в зависимости от энергии бомбардирующих нейтронов E_H были обнаружены нерегулярности в ходе $\vec{E}_K(E_H)$ и $\vec{\nu}(E_H)$. Эти нерегулярности были истолкованы авторами работы ^{/1/} как проявление каналов деления разной природы, которые возбуждаются s – и р –нейтронами.

Зависимость $\vec{E}_{K}(E_{H})$ изучалась для ²³⁵U в работах ^{/1,2/}, причем результаты ^{/1/} и ^{/2/} при $E_{H^{\approx}0,1-0,5}$ Мэв не согласуются. В настоящей работе исследовалось изменение средней кинетической энергии осколков ΔE_{K} при делении ²³⁵U быстрыми нейтронами (0,15 Мэв<Е_Н4,68Мэв) по сравнению с $\vec{E}_{KTЕПЛ}$. в тепловой точке. Для этой цели использовался метод изучения вариации $\vec{E}_{K}(E_{H})$ по изменению относительного выхода W осколков деления из двух урановых мишеней ^{/3,4/}.

Методика измерений

В качестве детектора осколков использовалась двойная импульсная ионизационная камера (ИИК) с сетками, одна половина которой регистрировала осколки, вылетающие из первой мишени, а другая половина - осколки, вылетающие из второй мишени. Урановые мишени укреплялись по обе стороны центрального электрода. Электронные импульсы от осколков, возникавшие на собирающих электродах ИИК, усиливались, проходили

через пороговые устройства и считались при помощи пересчетных приборов, которые были подключены к обоим радиотехническим трактам. Подробное описание использовавшейся нами ИИК, радиотехнических блоков и урановых мишеней приводится в работах /4-6/.

Источником нейтронов являлась реакция ¹ Li (p, n) ⁷ Ве . Толщина слоя Li составляла ≈ 0.38 мг/см², диаметр слоя Ø = 1 см. Измерения проводились на электростатическом генераторе ЭГ-5 Лаборатории нейтронной физики ОИЯИ при токе протонов на литиевую мишень $\approx 20-30$ мка. ИИК устанавливалась в направлении пучка протонов, которые попадали на Li -мишень. Расстояние между центральным электродом ИИК и литиевой мишенью составляло ≈ 50 см. Диаметр урановых мишеней Ø = 9.2 см.

Полная неопределенность в значении $E_{\rm H}$, которая обусловлена толщиною Li -мишени, угловой расходимостью пучка нейтронов и пр., в настоящем опыте не превышала величины $\Delta E_{\rm H} \approx 0.08$ Мэв.

Существование угловой анизотропии осколков деления ядер ²³⁵ U быстрыми нейтронами ^{/7/} может при наличии разных порогов регистрации осколков E_i и мишеней с неодинаковым значением толщины слоя урана $\bar{\rho}_{3\phi\phi}$. ^{/4/} исказить ход зависимости $W(E_H)$. Можно показать, что использование 2π -геометрии для регистрации осколков и поворот плоскости мишеней на некоторый угол ψ к направлению пучка нейтронов, должны привести к практически полной компенсации разницы в выходах осколков из обеих мишеней, которая обязана угловой анизотропии осколков. Способ компенсации, который применялся в настоящей работе, обсуждается в приложении.

В настоящем эксперименте выбирались следующие эначения порогов дискриминации: Е і1≈55-60 Мэв и Е і2 ≈20 Мэв. Толщины мишеней -

 $ho_{2 \ 9 \ \varphi \varphi}$, были примерно одинаковыми и имели величину $\approx 1.8 \ \text{мг/cm}^2$. Угол $\psi = 45^{\circ}$.

Измерения и результаты

В настоящем опыте одновременно измерялось число делений N fl и N f2 в каналах регистрации осколков с высоким и низким порогом

соответственно. Для сведения к минимуму влияния дрейфа аппаратуры, измерения величин N_{f1,2} при данной Е_н чередовались с измерениями величин N_{f1,2} в тепловой точке (нейтроны замедлялись в парафиновом блоке). Длительность измерений в обоих случаях выбиралась примерно одинаковой и составляла ≈30 мин.

В канале с высоким порогом фон, обусловленный наложением импульсов от a -частиц, был пренебрежимо малым, а в канале с низким порогом средний счет фона $\tilde{N}_{d,2} \approx 2$ мин $^{-1}$.

Максимальная скорость набора статистики в измерениях на тепловых нейтронах не превышала величины ≈200 сек⁻¹, и поэтому поправка на просчеты импульсов не вводилась.

Величина W(Е_н)определялась следующим образом:

$$W(E_{H}) = \frac{\left[N_{f_{1}} / (N_{f_{2}} - N_{\phi_{2}}) \right]_{E_{H}}}{\left[N_{f_{1}} / (N_{f_{2}} - N_{\phi_{2}}) \right]_{E_{TEUII.}}}$$
(1)

Значения $\overline{W}(E_{H})$, полученные в измерениях при разных E_{H} , приводятся в таблице 1 и показаны на рис. 1 вместе с данными работ $^{/1,2/}$. Для величин W и W приводятся стандартные ошибки.

Правильные значения величин \overline{W} могут быть получены при условии достижения компенсации разницы в выходах осколков из обеих мишеней, которая вызвана угловой анизотропией осколков. Тот факт, что $\overline{W} \approx 1,00$ при $E_{H} \approx 0,5$ и $\approx 0,9$ Мэв, а $\overline{\Delta E}_{k}$ при тех же значениях E_{H} , по данным работы $^{/1/}$, близко к нулю, по-видимому, свидетельствует о наличии компенсации при выбранном нами значении ψ .

Переходя к рассмотрению зависимости $\overline{W}(E_{H})$ (рис. 1), можно отметить, что при $E_{H} > 1$ Мэв эначения \overline{W} лежат систематически выше W = 1,00. Такой ход $\overline{W}(E_{H})$ согласуется с работой ^{/2/}, в которой найдено, что при $1 < E_{H} < 1,7$ Мэв \overline{E}_{K} также систематически превышает значение $\overline{E}_{K \text{ тепл.}}$ для нейтронов тепловых энергий. При $E_{H} < < 0,6$ Мэв имеется лишь одно значение $\overline{W}(0,37)=0,991\pm0,005$, отличие которого от W = 1,00 незначительно выходит за пределы ошибок. Поэтому наши данные в районе $E_{H}^{=} 0,37$ Мэв не дают основания предполагать существова ние столь глубокого минимума в значениях \overline{W} , подобного тому, который наблюдался в работе ^{/1/} для $\Delta \overline{E}_{K}$.

 $\Delta \overline{E}_{K}$ u E_{H} даны в Мэв. coorbercrbeннo; **O** - и настоящей работы. E_{H} . Значения Δ_{χ} работ /1/ и /2/ в таблицы 1 настоя ∆Е_кот I по ∆Ё_к , ₩ ~~ ы -данн I B значения Зависимость \triangleleft И t Рис.1

Таблица 1

Ŵ _{Ен}, Мэв • W 0,15 0,995+0,026 I,000+0,006 0,26 0,991+0,005 0,37 I,005+0,020 0,43 I,002+0,004 0,49 0,999+0,004 0,59 I,009<u>+</u>0,006 0,7I I,018+0,009 I,020<u>+</u>0,0I9 0,77 I,0I6<u>+</u>0,006 0,8I 0,998+0,008 0,88 0,996+0,008 0,99 I,005+0,023 I,006+0,008 I,09 I,0I4<u>+</u>0,008 I,2I I,0II<u>+</u>0,0I0 I,38 I,0I3+0,008 I,58 I,0I8<u>+</u>0,0I0 I,68

Величины W получены в предварительных измерениях. Значения W являются средними по результатам нескольких измерений.

Поскольку условия измерений в настоящей работе были примерно такими же, как и в ^{/4/} (измерение 8), то при оценке изменения $\bar{E}_{\rm K}$ по отношению к $\bar{E}_{\rm K\ Tепл.}$ можно воспользоваться результатами работы ^{/4/}, где для изменения средней суммарной кинетической энергии осколков в резонансной области $E_{\rm H}$ было получено значение 0,74±0,32 Мэв. Тогда изменение $\bar{E}_{\rm K}$ по сравнению с $\bar{E}_{\rm K\ Tепл.}$ в районе $E_{\rm H}$ =0,7-0,8Мэв и $E_{\rm H}$ >1 Мэв оценивается величиною ≈ 0,4 Мэв, которая близка к значению 0,33±0,32 Мэв при $E_{\rm H}$ =0,77 Мэв из работы ^{/1/}.

В заключение авторы выражают благодарность Ф.Л. Шапиро, И.В.Сизову и Л.Б. Пикельнеру за полезные обсуждения и интерес к работе и С. Бочварову, принимавшему участие в подготовке эксперимента. Авторы благодарны группе эксплуатации ЭГ-5 во главе с И.А. Чепурченко за содействие в работе и Б. Фрышину за предоставление литиевых мишеней.

Приложение

Угловые распределения f (θ) осколков при делении нечетных изотопов U, Pu и др. быстрыми нейтронами с достаточной степенью точности описываются следующим выражением ^{/7/}:

$$f(\theta) = 1 + a \cos^2 \theta + b \cos^4 \theta .$$
 (2)

_(3)

Обычно $a \approx 0,1$ и, поскольку a > b, то членом с $\cos^4 \theta$ можно пренебречь.

Найдем число осколков N $_{\rm f}$, которые регистрируются детектором с $2\,\pi$ -геометрией:

$$N_{f} = c \int_{0}^{2\pi} d\phi \int_{0}^{\pi/2} (1 + a \cos^{2} \theta) \sin \theta d\theta =$$

$$= 2 \pi c (1 + 0.33 a) = N_{tusorp.} + N_{tanusorp.}$$

Здесь С-константа, зависящая от числа ядер в мишени, потока нейтронов и сечения деления; N 1 изотр. , N 1 анизотр. – число изотропно и анизотропно испускаемых осколков соответственно. Из формулы (3) видно, что использование 2 п-геометрии приводит к почти трехкратному уменьшению величины $\epsilon = N_{1 изотр}$. / N 1 анизотр. по сравнению со значением ϵ для малого телесного угла регистрации осколков в направлении пучка нейтронов.

При исследовании относительного выхода осколков из двух мишеней /4/ с толщиною $\bar{\rho}_{1,2}$ и порогами регистрации $E_{11,2}$ величины $\epsilon_1(\bar{\rho_1}, E_{11})$ и ϵ_2 , $(\bar{\rho}_2, E_{12})$ для обеих мишеней могут отличаться. Для их оценки можно воспользоваться упрошающим предположением о равенстве пробегов осколков среднему значению $\bar{R} = \beta \bar{E}^{2/3}$, которое соответствует средней энергии осколков \bar{E} /8/. Наличие некоторого порога дискриминации E_1 при регистрации осколков можно приближенно рассматривать как сокращение \bar{R} :

$$\overline{R}_{i}(E_{i}) \approx \overline{R} - \Delta_{i} = \overline{R} \left[1 - \left(E_{i} / \overline{E} \right)^{2/3} \right].$$
(4)

Угол раствора конуса (рис. 2), в котором происходит регистрация осколков

$$\theta_{i} \approx \arccos \frac{\rho_{i}}{2 \bar{R}_{i} (E_{i})}$$
(5)

Нетрудно показать, что поворотом плоскости мишеней на угол ψ по отношению к пучку нейтронов (рис. 2), где

$$\psi = \arctan \frac{\sin \theta_1' + \sin \theta_2'}{1 + \cos \theta_1' + \cos \theta_2'}, \qquad (6)$$

можно добиться равенства ϵ_1 и ϵ_2 , т.е. практически полной компенсации разницы в выходах осколков, обусловленной угловой анизотропией.

Литература

1. J.A. Blyumkina et al. Nucl. Phys., <u>52</u>, 648 (1964).

2. Б.Д. Кузьминов и др. ЯФ, <u>8</u>, 286 (1968).

3. E.Melkonian and G.K.Mehta, "Physics and Chemistry of Fission"

(IAEA, Vienna, 1965), vol.II, p.355.

4. С. Бочваров, Е. Дерменджиев, Н. Кашукеев. Препринт ОИЯИ Р3-4110, Дубна 1968.

5. Ю.К. Акимов и др. Сообщения ОИЯИ 13-4403, Дубна 1969.

6. V.Z. Mihailova and E.G. Dermendjiev. Nucl.Instr.Methods, <u>66</u>, 25 (1968).

7.J.E.Brolley et al., Phys.Rev., 99, 159 (1955).

8. J.M. Alexander and M.F. Gazdik. Phys. Rev., 120, 874 (1960).

Рукопись поступила в издательский отдел 23 декабря 1969 года.

11

a

Рис.2. Расположение мишеней.