

P3 - 3882

1 811 - 072

Э.Н.Каржавина, Нгуен Нгуен Фонг, А.Б.Попов

НЕЙТРОННЫЕ РЕЗОНАНСЫ ИЗОТОПОВ ГАДОЛИНИЯ

P3 - 3382

НЕЙТРОННЫЕ РЕЗОНАНСЫ ИЗОТОГОВ ГАДОЛИНИЯ

Направлено в ЯФ

96ъсянасыный анститут Слерпых ыссталованей Бинена ассталованей

+350/2 yp.

Введение

В предыдущей работе авторов^{/1/} в поведении илотности уровней изотопов Nd было обнаружено, что параметр плотности уровней а существенно возрастает с числом нейтронов, причём значения а для тяжелых изотопов неодима оказались значительно выше, чем для соседних ядер с A = 160 + 170. При этом обращало на себя внимание то обстоятельство, что данные по неодиму совместно с известными цанными для изотопов Sm и Gd образуют заметный максимум в зависимости а от атомного веса при A = 150. Для уточнения этой особенности зависимости а от A нами были проведены исследования изотопов Gd, которые находятся в соседней с Nd области атомных ядер. Для Gd имелись некоторые данные о нейтронных резонансах практически отсутствовали.

Эксперимент и результаты

Были проведены измерения пропускания и кривых выхода γ -лучей радиационного захвата нейтронов для всех изотопс в гадолиния: ¹⁵² Gd, ¹⁵⁴ Gd, ¹⁵⁵ Gd, ¹⁵⁶ Gd, ¹⁵⁷ Gd, ¹⁵⁸ Gd. Образцы приготовлялись

из окиси гадолиния и имели вес от 3 (¹⁵² Gd) до 75 г и обогащение от 36% (¹⁵² Gd) до 98%. Разрешение в измерениях пропускания было 10 нсек/м, в измерениях радиаціонного захвата 6 нсек/м для ¹⁵⁵ Gd, ¹⁵⁷ Gd и 20 нсек/м для чётньх изотопов. Использовались те же методы измерения и обработки данных, что и в предыдущих работах^{/1,3/}.

Измерения проводились с той же детекторной аппаратурой, что и в ^{/1,3/} за исключением измєрений радиационного захвата ¹⁵⁵Gd и ¹⁵⁷Gd, которые были проведены на детекторе из 4 кристаллов NaI (размером 100 x x 100 мм каждый).

Параметры неітронных резонансов определялись методом плошадей (в случае необходимости учитывалась интерференция между потенциальным и резонансным рассеянием). Радиационные ширины для ¹⁵² Gd, ¹⁵⁴ Gd, ¹⁵⁵ Gd, ¹⁵⁷ Gd были голучены при совместной обработке данных по пропусканию и радиационному захвату из соотношения $\Gamma_{\gamma} = \Gamma - \Gamma_{n}$ (или $\Gamma_{\gamma} = \Gamma - 2 g \Gamma_{n}$ для нечётных изотопов). Для ¹⁵⁶ Gd, ¹⁵⁸ Gd, ¹⁶⁰ Gd радиационные ширины были найдены для резонансов, у которых $\Gamma_{n} >> \Gamma_{\gamma}$, непосредственно из крилых радиационного захвата нейтронов для этих изотопов^{/1/}.

На рисунках 1 2 приведены основные экспериментальные данные по измерению пропускания и радиационного захвата изотопов Gd.

Полученные параметры нейтронных резонансов изотопов представлены в табл. 1 – 3. В табл. 4 приведены средние параметры изотопов Gd : расстояние между уровнями D, силовая функция S₀ и средняя радиационная ширина Γ_{γ} . При вычислении D и S₀ принимались во внимание резоналсы, расположенные на линейных участках зависимости числа резонансов ог энергии нейтронов. S₀ получены методом наи-

большего правдоподобия^{4/}, а также как $S = \frac{\sum g \Gamma_n^0}{\Delta E}$, в последнем случае указаны ошибки $\Delta S_0 = \sqrt{\frac{2.3}{n}} S_0^{-1/5/3}$ (п – число резонансов).

Следует заметить, что значения нейтронных ширин слабых уровней, наблюдаемых в чётных изотопах, получены на основе кривых радиационного захвата. Предполагая значение Γ_{γ} равным среднем; значению радиационной ширины для данного изотопа, при $\Gamma_n \ll \Gamma_{\gamma}$, можно из значения $\mathbf{A} - \frac{\Gamma_{\gamma}}{\Gamma}$ найти Γ_n . В этом случае, как и в случае определения Γ_{γ} из данных по радиационному захвату, ошибки в Γ_n и Γ_{γ} обусловлены неопределенностью калибровки потока нейтронов и эффективности (\mathbf{n}, \mathbf{y}) - детектора, которая оценивается нами в 15%. Значения $\mathbf{g}\Gamma_n$ для резонансов ¹⁵⁵ Gd с $\mathbf{E}_n > 70$ эв и ¹⁵⁷ Gd с $\mathbf{E}_n > 230$ также найдены на основе кривых радиационного захвата, только в этом случае калибровна кривой проводилась по собственным резонансам, параметры которых были определены из данных по пропусканию. Прилэтом неточность определения величин $\mathbf{A} - \frac{\Gamma_{\gamma}}{\Gamma}$ из-за неопределенности эффективности детектора и потока не превышала 10%.

Для проверки правильности определения изотонической принадлежности резонансов, наблюдаемых из экспериментальны:: кривых для образцов ¹⁵² Gd и ¹⁵⁴ Gd, были проведены измерения рэдиационного захвата образцов ¹⁵² Sm и ¹⁵⁴ Sm, так как в образцах ¹⁵² (id и ¹⁵⁴ Gd возможны были примеси самария. Образцы ¹⁵² Sm и ¹⁵⁴ Sm имели хорошее обогащение (98%), поэтому с использованием известных далных о резонансах нечетных изотопов Sm ^{/2/} можно было достаточно надежно выделить резонансы, принадлежащие ¹⁵² Sm, ¹⁵⁴ Sm. Перечень энергий наблюдаемых резонансов ¹⁵² Sm и ¹⁵⁴ Sm дан в табл. 5. В табл. 4 приведены найденные значения среднего расстояния между резонансами для ¹⁵² Sm

и ¹⁵⁴ Sm. Принадлежность резонанса 8,00 эв к ¹⁵² Gd вызывает сомнение. При этой энергии имеется сильный резонанс у 52 Sm. и нам известно 152 Gd составляла ≈1%. Такая было, что примесь Sm в образце примесь Sm. могла бы дать значение площади резонанаса 8,00 эв в образце ¹⁵² Gd ($(\frac{A}{\Lambda})$) эксп. = 7,5; $(\frac{A}{\Lambda})$ расч. = 5,0, если вся примесь -¹⁵² Sm). Эднако по нашим данным из измерений пропускания и радиационного захвата получилось, что отношение(<u>Гу</u>) =0,49<u>+</u>0,07, 152 Sm по данным /2/ $\frac{\Gamma_y}{\Sigma} = 0.35\pm0.05$. Это застав+. в то время как для ляет нас думать, что у ¹⁵² Gd возможно существование резонанса с энергией 8.00 эв. Что касается резонанса 185 эв. энергия которого совпадает с энергией резонанса, имеющегося у ¹⁵² Sm , то он, несомненно, принадлежит ¹⁵² Gd, так как в измерениях с ¹⁵² Gd не наблюдаются более сильные резонансы ¹⁵² Sm при 87,7 и 153,7 эв.

Анализ распределений приведенных нейтронных ширин для каждого изотопа гадолиния псказал, что во всех случаях, кроме ¹⁸⁵ Gd, имеется удовлетворительное согласие с распределением Портера-Томаса, если допустить пропуск 2-4 слабых уровней. У ¹⁸⁵ Gd, если анализировать нейтронные ширины резонансов, расположенных в области ниже 150 эв, наблюдается в распределении значительная недостача слабых резонансов (~ 15 уровней). В го же время (рис. 3) нарастание числа резонансов на этом участке приблизительно линейно с энергией нейтронов. Имеется только заметное паление наблюдаемого числа резонансов на интервале 55-80 эв. По-видимому, в случае ¹⁸⁵ Gd, кроме пропуска слабых уровней, наблюдаемый спектр нейтронных резонансов искажен тем, что некоторые дуплеты приняты за один резонанс из-за недостаточности разрешения и малого среднего расстояния между уровнями (D = 1,8 эв).

Обсуждение результатов

Изотопы Gd так же, как и изотопы Nd, расположены в области A ~ 150. Обращает на себя внимание прежде всего то обстоятельство, что в этой области начинается заполнение новой нейтронной оболочки (после N = 82). Хорошо известно, что при числах нейтронов 88-90 происходит скачкообразный переход от сферической формы ядра к эллипсоидальной, т.е. участок в районе A ~ 150 соответствует началу области деформированных ядер. Статистическая модель ядра дает следующее выражение для плотности ядерных уровней:

$$\rho(\mathbf{U},\mathbf{J}) = \frac{2\,\mathbf{J}+\mathbf{1}}{24\sqrt{2}\,\mathbf{a}^{1/4}\,\mathbf{U}^{5/4}\,\sigma^3} \exp\left[2(\mathbf{a}\,\mathbf{U})^{1/2} - \frac{(\mathbf{J}+\mathbf{1}/2)^2}{2\,\sigma^2}\right]. \tag{1}$$

Здесь

$$\sigma^{2} = \frac{6}{\pi^{2}} < m^{2} > (aU)^{1/2} ; \qquad (2)$$

<m²>- средний квадрат проекции моментов нуклоноз вблизи поверхности Ферми;

U - энергия возбуждения ядра;

$$\mathbf{U}=\mathbf{B}_{n}-\Delta_{n}-\Delta_{n},$$

(3)

где В - энергия связи нейтрона,

Δ - энергии спаривания протонов или нейтронов.

В табл. 4 привелены значения параметра плотности уровней а, вычисленные по формулам (1) – (3) из наблюдаемых средних расстояний между уровнями. При этом в качестве <m² > была принята оценка <m² >= 0,24, которая, как показанс в работе $^{/6/}$, более обоснованна, чем ранее принимавшаяся (<m² >= 0,1.6 A^{2/3}).

На рис. 4 показана экспериментальная зависимость параметра а от атомного веса. Крестиками отмечены значения а, полученные авторами (для всех ядер а пересчитаны с $< m^2 > = 0,24$ A). кружки данные работы /6/. Из рис. 4 видно, что в районе А ≈ 150 имеется максимум. Если в действительности учёт парного взаимодействия нуклонов при вычислении **U** (Δ были взяты из работы /7/), применяемый в описываемом подходе анализа плогности уровней, является корректным, то представляет интерес наблюднемый факт увеличения a (параметр а пропорционален одночастичной плотности вблизи поверхности Ферми). Поскольку в данном случае идет речь об области перехода от сферических ядер к деформированным, то глолне естественно предположить, что резкое изменение формы ядер приводит к такому перераспределению одночастичных уровней вблизи поверхности Ферми, которое вызывает увеличение одночастичной плотности, а слєдовательно, и увеличение параметра в. (Более подробно этот вопрос будет обсужден в другой работе).

Найденные значения силовой функции S₀ хорошо согласуются с известными данными для других ядер в этой области атомных весов. На рис. 5 представлены данные о силовой функции в редкоземельной области. Кружки – результаты полученные авторами, треугольники-значения S₀, взятые из работы^{/5/}. На этом же рисунке сплошной кривой показано теоретическое

значение силовой функции, вычисленное для комплексного потенциала с диффузным краем с учётом вибрационного и вращатєльного движений (кривая взята из работы Линна⁽⁸⁾). По-видимому, это наиболее согласующаяся с экспериментальными данными теоретическая сценка силовой функции. Из рисунка видно, что экспериментальные данные надежно указывают на существование максимума S_0 при A = 145, что клсается второго максимума при A = 180, обычно получаемого из расчётов по оптической модели, то экспериментальные данные показывают, что если этот максимум и существует, то он намного слабее, чем максимум при A = 145. Вопрос о возможном существовании дополнительного максимума в S_0 при A = 165остается открытым: ошибки значений силовой функции настолько велики, что невозможно сделать на этот счёт определенны выводы.

В заключение авторы выражают свою признательность А.Таскаеву, М.Данилову и И.Шелонцеву, оказавшим значительную помощь в проведе нии работы.

Литература

- 1. Э.Н.Каржавина, Нгуен Нгуен Фонг, А.П.Попов, А.И.Таскаев. Препринт ОИЯИ, Р3-3564, Дубна, 1967.
- 2. Neutron Cross Sections, BNL-325, Second Edition, Sp.2, vol. II c, 1966.
- Э.Н.Каржавина, А.Б.Попов, Ю.С.Язвицкий. Препринт ОИЯИ, РЗ-3097, Дубна, 1967.
- 4, H,Muraduan, Yu,Adamchuk, International Conference of Study Nuclear Structure with Neutrons, Report 180, Aniwerp, 1965.
- 5. K.Seth. s-Wave Neutron Strenght Functions. Nuclear Data, sec.A, vol. 2 (1966).

6. U.Facchini, E.Sae ta-Menichella, Energia Nucleare, 15, 54 (1968).

7. A.Gilbert, A.Cameron, Canad, J.Phys., <u>43</u>, 1446 (1965).

8, J.Lynn, The Theoretical Interpretation of Neutron Spectroscopic Data, Atomic Energy Research Establishment, Harwell, "Berks.

Рукопись поступила в издательский отдел 21 мая 1968 года.

Рис.1a,б. Резолансное пропускание изотопов 152 GJ(a) и 154 GJ(a) и (i).

Рис.1в,г. F езонансное пропускание изотопов 156 Gd ($_{\odot}$) и 158 GJ (г).

Рис.1д. Резонансное пропускание изотопа ¹¹⁰Сd.

Рис.2а,б. 3. висимость счета (а, у) - детектора от времени пролета для ^{1/2} Gd (а) и ¹⁸⁴Gd (б).

г Рис.2в,г. Зависимость счета (a, y) -детектора от времнии пролета для Pac.2B,r. 3aencemon concera (a, y) , <math>abc d (r).

Рис.2ж. Зависимость счета (п, у) -детектора от времени пролета для

Рис. 9. Зависимисть числа резонансов от энергии нейтрона для ¹⁵⁵Gd.

Рис. 4. Зависимость параметра в от атомного веса. Крэстики – данные авторов, кружки – данные из работы

Рис. 5. Зависимоють силовой функции s -нейтронов от атомного веса в редкозємельной области₇₅ Кружки - данные авторов, треугольники - данные из работы .

Е ₀ ,эв	Г, МӘВ	Г _в , мэв	Г, 1ЭВ	Γ°n
1	2	3	4	5
		¹⁵² Gd		
8,00 <u>+</u> 0,02		< 5,0		< I,8
12,35 <u>+</u> 0,04		2,2 <u>+</u> 0,2		0,62 <u>+</u> 0,06
36,86 <u>+</u> 0,05	I40 <u>+</u> I0	84 <u>+</u> 6	56 <u>+</u> 12	13,8 <u>+</u> 1,0
39,3 <u>+</u> 0,I	97 <u>+</u> 17	39 <u>+</u> 3	58 <u>+</u> 17	6,2 <u>+</u> 0,5
42,7 <u>+</u> 0,I		3,1 <u>+</u> 0,6		0,47 <u>+</u> 0,09
74,3 <u>+</u> 0,2	I02 <u>+</u> I5	55 <u>+</u> I3	47 <u>+</u> 20	6,4 <u>+</u> 1,5
85,I <u>+</u> 0,2		3,6 <u>+</u> 0,6		0,39 <u>+</u> 0,06
92,4 <u>+</u> 0,2	2 12<u>+</u>38	160 <u>+</u> 37		I6,6 ; 3,8
100,0 <u>+</u> 0,4	•	(9,0)		(0,9)
124,0+0,4		(8,0)		(0,7)
I40,4 <u>+</u> 0,4	170 <u>+</u> 17	I24 <u>+</u> I6	46 <u>+</u> 24	I0,5 <u>+</u> I,3
185,2 <u>+</u> 0,6	I67 ±27	105 <u>+</u> 30	62 1 40	7,7+2,2
202 <u>+</u> 1	.	2 00 <u>+</u> 40		I4 <u>+</u> 3
223 <u>+</u> I		300 <u>+</u> 100		20 <u>+</u> 6
231 <u>+</u> 1		100±40		6,6 <u>+</u> 2,6
238 <u>+</u> I		-		_
252+1,5				
29341,5				
		¹⁵⁴ Gd		
II.49+0.04		0.34+0.08		0.10+0.03
22.4+0.T		13+2		2.7+0.4
47.0 1 0.T	•	4,5+0.9		0.66+0.13
49.5÷0.T		2.4+0.4		0.34+0.06
65.0 <u>4</u> 0.T	93 . T4	36.5+4.2	57 . 15	4,5-0,5
TOO 5-0 2	77247 144450	1317)	100+50	4 310 7
100, <u>510, 2</u>	T44 T 20	7 7 1 P	TOOTOO	
103,0 <u>1</u> 0,2		1,1 <u>1</u> 1,0		T2.2
123,8 <u>+</u> 0,3		130 <u>+</u> 23		1 2<u>+</u>2

Таблица 1

-

Параметры резонансов четных изотопов гадолиния

	11				_
1	2	3	4	5	
$139,3\pm0,3$ $148,0\pm0,4$ $164,9\pm0,5$ $211\pm0,7$ 224 ± 0.8	18 }<u>+</u>13	125 <u>+</u> 32 50 ±12 120 <u>+</u> 8 43 <u>+</u> 6 27+7	69 <u>+</u> 15	11 <u>+</u> 3 4,2 <u>+</u> 1,0 • 9,5 <u>+</u> 0,6 3,0 <u>+</u> 0,5 1.8+0.5	
- ·		-			

150 Gd

33,I2 <u>+</u> 0,04	86.13	I4 <u>+</u> 2	72 <u>+</u> 14	2, 4 <u>+</u> 0,3
80,2+0,2		79 <u>+</u> 8	-	8,8 <u>+</u> 0,9
150,1 <u>+</u> 0,4		42 <u>+</u> 5		3,4+0,4
198,1 <u>+</u> 0,5		275+33		19,5+2,3
201,6+0,5		17 <u>+</u> 5		I,2 <u>+</u> 0,4
244,0 <u>+</u> 0,7		3,1 <u>+</u> 0,5		0,20+0,03
340 <u>+</u> 1		(20)		(I,I)
377 <u>+</u> I		226 <u>+</u> 23		II,6 <u>+</u> I,2
452 <u>+</u> I		II6 <u>+</u> 35		5,5 <u>+</u> 1,6
477 <u>+</u> 1,2		120 1 40		5,5 <u>+</u> 1,7
515 <u>+</u> 1,5		I45 <u>+</u> 43		6,4 <u>+</u> 1,9
707 <u>+</u> 2		(420)		(15,8)
714 <u>+</u> 2		(4 2 0)		(15,7)
732+2,2		300 <u>+</u> 100	70 <u>+</u> 14	I2 <u>+</u> 4
796+2,5		94 <u>+</u> 32		3, <u>3+</u> 1,I
8 2 3 <u>+</u> 3		1000 <u>+</u> 300	94 <u>+</u> 15	35 <u>+</u> 10
845 <u>+</u> 3		350 <u>+</u> 120	97 <u>+</u> 20	12 <u>+</u> 4
856 <u>+</u> 3		21 <u>+</u> 3		0,72 <u>+</u> 0,10
900 <u>+</u> 3		390 <u>+</u> 140	79 <u>+</u> 16	I3 <u>+</u> 5`
982 <u>+</u> 3,5		185 <u>+</u> 58		5,9 <u>+</u> I,8
I035 <u>+</u> 4		30 <u>+</u> 6		0,94 <u>+</u> 0,19
1054 <u>+</u> 4		50 <u>+</u> 10		I,5 <u>+</u> 0,3
I094 <u>+</u> 4		I5 <u>+</u> 3		0,45 <u>+</u> 0,09
II43 <u>+</u> 4,5		900 <u>+</u> 200		≥ 7 <u>+</u> 6
II54 <u>+</u> 4,5				
II85 <u>+</u> 5		2 30 <u>+</u> 70		6,7 <u>+</u> 2,0
1 239<u>+</u>5				
I254 <u>+</u> 5				

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				4	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I	22			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1710.6		(59)		(1,6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172016		(60)		(1,6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1333		170<u>+</u>40		4,6 <u>+</u> ⊥,⊥
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)72-10		205 <u>+</u> 55		5,4+1,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	142170		_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149117				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10117				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1550-1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			¹⁵⁸ Gd		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				92+13	1,29 <u>+</u> 0,13
$101, 0 \pm 0, 4$ $0, 8 \pm 0, 2$ $4, 4 \pm 0, 4$ $243, 0 \pm 0, 5$ 68 ± 6 $1, 4 \pm 0, 2$ $278, 0 \pm 0, 5$ 24 ± 4 $10, 4 \pm 2, 6$ $345 \pm 0, 7$ 194 ± 50 $10, 4 \pm 2, 6$ $345 \pm 0, 7$ 343 ± 57 88 ± 17 17 ± 3 409 ± 1 343 ± 57 88 ± 17 17 ± 3 $505 \pm 1, 2$ 334 ± 43 80 ± 16 15 ± 2 $505 \pm 1, 2$ 84 ± 26 $3, 5 \pm 1, 1$ $589 \pm 1, 6$ 740 ± 100 90 ± 14 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 1074 ± 4 300 ± 150 33 ± 5 1225 ± 5 1160 ± 190 33 ± 5 1229 ± 5 660 ± 180 18 ± 5 1356 ± 6 $c \pi a6 \tan 3$ 16 ± 4 1436 ± 6 920 ± 120 10 ± 3 1554 ± 7 $c \pi a6 \tan 3$ 16 ± 4 174 ± 9 (200) $(4, 8)$ 1794 ± 9 (200) $(4, 8)$ 1794 ± 9 (200) $(4, 8)$ 1952 ± 10 850 ± 250 19 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $c \pi a6 \tan 4$	22,3 <u>+</u> 0,I	98 <u>+</u> 13	6,1 <u>+</u> 0,6	<u>, , , , , , , , , , , , , , , , , , , </u>	0,08+0,02
$243,0\pm0,5$ 68 ± 6 $1,4\pm0,2$ $278,0\pm0,5$ 24 ± 4 $10,4\pm2,6$ $345\pm0,7$ 194 ± 50 $10,4\pm2,6$ $345\pm0,7$ 343 ± 57 88 ± 17 17 ± 3 409 ± 1 343 ± 57 88 ± 17 17 ± 3 $505\pm1,2$ 334 ± 43 80 ± 16 15 ± 2 $505\pm1,2$ 84 ± 26 $3,5\pm1,1$ $589\pm1,6$ 740 ± 100 90 ± 14 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 1074 ± 4 300 ± 150 9 ± 4 1074 ± 4 300 ± 150 9 ± 4 1225 ± 5 1160 ± 190 33 ± 5 1225 ± 5 660 ± 180 16 ± 5 1436 ± 6 620 ± 150 16 ± 4 1436 ± 6 620 ± 150 16 ± 4 14460 ± 7 390 ± 120 10 ± 3 155 ± 7 $cna6bult$ 16 ± 5 1742 ± 9 (200) $(4,8)$ 1742 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1794 ± 9 (200) 21 ± 6 2012 ± 10 940 ± 250 21 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $cna6bult$ 21 ± 6	101,0 <u>+</u> 0,4		0,8 <u>+</u> 0,2		4,4+0,4
$278,0\pm0,5$ 24 ± 4 $10,4\pm2,6$ $345\pm0,7$ 194 ± 50 $10,4\pm2,6$ 409 ± 1 343 ± 57 88 ± 17 17 ± 3 409 ± 1 343 ± 57 88 ± 17 17 ± 3 $505\pm1,2$ 334 ± 43 80 ± 16 15 ± 2 $589\pm1,6$ 84 ± 26 $3,5\pm1,1$ 694 ± 2 740 ± 100 90 ± 14 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 1074 ± 4 300 ± 150 9 ± 4 1225 ± 5 660 ± 180 18 ± 5 1225 ± 5 660 ± 180 18 ± 5 125 ± 4 390 ± 120 10 ± 3 1356 ± 6 620 ± 150 16 ± 4 14460 ± 7 390 ± 120 10 ± 3 155 ± 7 $c_{16}0\pm3$ 16 ± 4 179 ± 9 (200) $(4,8)$ 179 ± 9 (200) $(4,8)$ 179 ± 9 (200) $(4,8)$ 179 ± 2 16 ± 50 $3,8\pm1,2$ 1880 ± 10 160 ± 50 $3,8\pm1,2$ 1952 ± 10 940 ± 250 21 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $c_{na0b}M$	243,0 <u>+</u> 0,5		68 <u>+</u> 6		I.4+0,2
345 ± 0.7 194 ± 50 88 ± 17 17 ± 3 409 ± 1 343 ± 57 88 ± 17 17 ± 3 505 ± 1.2 334 ± 43 80 ± 16 15 ± 2 505 ± 1.2 334 ± 43 80 ± 16 15 ± 2 589 ± 1.6 84 ± 26 3.5 ± 1.1 694 ± 2 740 ± 100 90 ± 14 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 1074 ± 4 1160 ± 190 33 ± 5 1225 ± 5 660 ± 180 18 ± 5 1225 ± 5 660 ± 180 18 ± 5 125 ± 4 980 ± 210 26 ± 6 1436 ± 6 620 ± 150 16 ± 4 1436 ± 6 620 ± 150 10 ± 3 155 ± 7 390 ± 120 10 ± 3 1655 ± 8 $c_{18}0$ 10 ± 3 179 ± 9 (200) (4.8) 179 ± 9 (200) (4.8) 179 ± 9 (200) (4.8) 179 ± 10 160 ± 50 3.8 ± 1.2 1880 ± 10 160 ± 50 3.8 ± 1.2 1952 ± 10 850 ± 250 19 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $c_{12}0\pm10$ 21 ± 6	278,0 <u>+</u> 0,5		24 <u>+</u> 4		10,4+2,6
$409\pm I$ 543 ± 57 00 ± 17 15 ± 2 $505\pm I, 2$ 334 ± 43 $80\pm I6$ 15 ± 2 $589\pm I, 6$ 84 ± 26 $3,5\pm I, I$ 694 ± 2 740 ± 100 $90\pm I4$ 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 $92I\pm 3$ 300 ± 150 9 ± 4 1074 ± 4 $1I60\pm 190$ 33 ± 5 1225 ± 5 660 ± 180 18 ± 5 1225 ± 5 660 ± 180 16 ± 4 1436 ± 6 620 ± 150 26 ± 6 1460 ± 7 980 ± 210 26 ± 6 1460 ± 7 390 ± 120 10 ± 3 155 ± 8 $c_{18}6$ $(4,8)$ 174 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1952 ± 10 850 ± 250 19 ± 6 2012 ± 10 940 ± 250 21 ± 6 $2128\pm II$ $c_{12}6$	345 <u>+</u> 0,7		194 <u>+</u> 50	88+17	17+3
505 ± 1.2 534 ± 45 50 ± 1.0 3.5 ± 1.1 589 ± 1.6 84 ± 26 3.5 ± 1.1 694 ± 2 740 ± 100 90 ± 14 28 ± 4 694 ± 2 1810 ± 150 109 ± 15 62 ± 5 848 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 1074 ± 4 1160 ± 190 33 ± 5 1225 ± 5 660 ± 180 18 ± 5 1225 ± 5 660 ± 180 18 ± 5 1356 ± 6 $cna6uä$ 16 ± 4 1436 ± 6 620 ± 150 26 ± 6 1460 ± 7 390 ± 120 10 ± 3 155 ± 4 $cna6uä$ $(4,8)$ 174 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1794 ± 9 160 ± 50 3.8 ± 1.2 1952 ± 10 850 ± 250 19 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $cna6uä$ 21 ± 28	409 <u>+</u> I		343 <u>+</u> 57	80 <u>+</u> 16	15+2
884 ± 26 90 ± 14 28 ± 4 694 ± 2 740 ± 100 90 ± 15 62 ± 5 848 ± 3 1810 ± 150 109 ± 15 62 ± 5 921 ± 3 508 ± 150 75 ± 15 17 ± 5 921 ± 3 300 ± 150 9 ± 4 1074 ± 4 1160 ± 190 33 ± 5 1225 ± 5 660 ± 180 18 ± 5 1225 ± 5 660 ± 180 16 ± 4 1356 ± 6 $c\pia6buta$ 16 ± 4 1436 ± 6 620 ± 150 16 ± 4 1436 ± 6 980 ± 210 26 ± 6 1460 ± 7 390 ± 120 10 ± 3 1554 ± 7 $c\pia6buta$ $(4,8)$ 1742 ± 9 (200) $(4,8)$ 1794 ± 9 (200) $(4,8)$ 1794 ± 9 (200) 19 ± 6 1952 ± 10 850 ± 250 19 ± 6 2012 ± 10 940 ± 250 21 ± 6 2128 ± 11 $c\pia6buta$	505 <u>+</u> I,2		334 <u>+</u> 42	00110	3,5 <u>+</u> 1,I
694±2740±10074±1848±3I810±I50I09±I562±5921±3508±15075±I5I7±5921±3300±I509±41074±4I160±19033±51225±5660±180I8±51356±6слабыйI6±41436±6620±150I6±41436±6980±21026±61460±7390±120I0±31554±7слабыйI1655±8(200)(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10I60±503,8±1,21952±10940±25021±62012±10940±25021±62128±11слабый	589 <u>+</u> 1,6		84 <u>+</u> 26	90±T4	28+4
848±31810±150105±1517±5921±3508±15075±1517±51074±41160±19033±51225±5660±18018±51356±6слабый16±41436±6620±15016±41460±7390±21026±61554±7слабый10±31655±8(200)(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±5019±62012±10940±25021±62128±11слабый146	694 <u>+</u> 2		740 <u>+</u> 100	10 9+ 15	62 1 5
921±3508±15015±241074±4300±1509±41225±51160±19033±51299±5660±18018±51356±6слабый16±41436±6620±15026±61460±7390±12010±31554±7слабый(4,8)1742±9(200)(4,8)1794±9(200)(4,8)1794±9160±503,8±1,21880±10160±5019±62012±10940±25021±62128±11слабый1	848 <u>+</u> 3		1810+150	75±15	17+5
1074±4500±15033±51225±51160±19033±51299±5660±18018±51356±6слабый16±41436±6620±15016±41460±7980±21026±61460±7390±12010±3155±8слабый(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±503,8±1,21952±10850±25019±62012±10940±25021±62128±11слабый	921 <u>+</u> 3		508 <u>+</u> 150	10110	9 + 4
1225±51160±19018±51299±5660±18018±51356±6слабый16±41436±6620±15026±61460±7390±12010±31554±7слабый(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±503,8±1,21952±10850±25019±62012±10940±25021±62128±11слабый1	1074 <u>+</u> 4		300 <u>+</u> 150		3 3 +5
1299±5660±1801356±6слабый16±41436±6620±15026±61460±7980±21010±31554±7390±12010±31655±8слабый(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±503,8±1,21952±10850±25019±62012±10940±25021±62128±11слабый	1225 <u>+</u> 5		1160+190		18+5
1356±6слабый16±41436±6620±15026±61460±7980±21010±31554±7390±12010±31655±8(200)(4,8)1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±503,8±1,21952±10850±25019±62012±10940±25021±62128±11слабый1	1299 <u>+</u> 5		660 <u>+</u> 180		- -
I436±6620±15026±6I460±7980±21010±3I554±7390±12010±3I655±8(200)(4,8)I742±9(200)(4,8)I794±9(200)3,8±1,2I880±10160±503,8±1,2I952±10850±25019±62012±10940±25021±62128±11слабый	1356 <u>+</u> 6		СЛАОНИ		I6 +/ 4
1460±7980±21010±31554±7390±12010±31655±8слабый(4,8)1742±9(200)(4,8)1794±9(200)(4,8)1794±9160±503,8±1,21880±10160±5019±61952±10850±25019±62012±10940±25021±62128±11слабый	1436 <u>+</u> 6		620 <u>+</u> 150		26 + 6
1554±7390±1201655±8слабый1742±9(200)1794±9(200)1880±10160±501952±10850±2502012±10940±2502128±11слабый	1460 <u>+</u> 7		980 <u>+</u> 210		10+3
I655±8слабый(4,8)I742±9(200)(4,8)I794±9(200)(4,8)I880±10I60±503,8±1,2I880±10850±250I9±61952±10940±25021±62012±10слабый	1554 <u>+</u> 7		590 <u>+</u> 120		-
1742±9(200)(4,8)1794±9(200)3,8±1,21880±10160±503,8±1,21952±10850±25019±62012±10940±25021±62128±11слабый	1655 <u>+</u> 8	•	CUBORN		(4,8)
1794±9(20073,8±1,21880±10160±5019±61952±10850±25019±62012±10940±25021±62128±11слабый	174 2<u>+</u>9		(200)		(4,8)
1880±10 160±50 19±6 1952±10 850±250 21±6 2012±10 940±250 21±6 2128±11 слабый	1794 <u>+</u> 9		(200)		3,8 <u>+</u> 1,2
1952±10 850±250 21±6 2012±10 940±250 21±6 2128±11 слабый	1880 <u>+</u> 10		100 1 20		19+6
2012 <u>+</u> 10 940 <u>+</u> 250 2128 <u>×</u> 11 слабый	1952 <u>+</u> 10		850 <u>+</u> 250		21+6
21 28 <u>3</u> 11 Слаови	2012 <u>+</u> 10		940 ±2 50		-
	21 28<u>∻</u>II		слаори		

<u> </u>	2 3	4	5
22 50+12	(150)		(3)
2338 <u>+</u> 12	440 <u>+</u> 300		9 <u>+</u> 6
	¹⁶⁰ Gd		
222,0<u>+</u>0, 5	60 ± 10		4,0 <u>+</u> 0,7
447 ± I	4,6 <u>+</u> 0,7		0,22 <u>+</u> 0,04
480 <u>+</u> I,2	370<u>+</u> 40		17 <u>+</u> 1,7
570 <u>+</u> I,5	6 <u>+</u> I		0,25+0,04
750 <u>+</u> 2	5 <u>+</u> I		0,18 <u>+</u> 0,04
903 <u>+</u> 3	4440 <u>+</u> 340	I05 <u>+</u> I5	I48 <u>+</u> 12
984 <u>+</u> 4	4,6 <u>+</u> 0,7		0,14 <u>+</u> 0,0
I243 <u>+</u> 5	3000 <u>+</u> 500	9I <u>+</u> I4	85 <u>+</u> I4
I425 <u>+</u> 5	II20 <u>+</u> 360	98 <u>∔</u> 15	30 <u>+</u> 9
I694 <u>+</u> 8	(15)		(0,36)
1812 <u>+</u> 9	8000 <u>+</u> 700		188+16
1964 <u>+</u> 10	330 +2 40		(7,5)
2283 <u>+</u> 12	I3I0<u>+</u>28 0		27+6
2405 <u>+</u> I3	3600 <u>+</u> 400		73 <u>+</u> 8
2525 <u>+</u> 15	3600 <u>+</u> 480		71 <u>+</u> 10
2656+15	287 0 1 480		56 - 19

Е _О эв	г, мэв	gГ _л , МЭВ	Гу умэв	2 g Γ n
I	2	3	4	5
6 .28+ 0.02	122+13	I.I4+0.09	120+13	0,91+0.07
7,71+0,02	85 +1 6	0,68+0,II	85 +1 6	0,49+0,08
9.96+0.03	-	0.097+0.008	÷	0,060+0,006
II,49+0,04		0,19+0,02		0,11+0,01
1 1,99+0,0 4		0,51+0,03		0,29+0,02
14,48+0.05		I.3+0.I		0,68 <u>+</u> 0,05
17,70+0,06		0,24+0,02		0,11 <u>+</u> 0,01
19,87 <u>+</u> 0,06	116 +1 6	3,0+0,3	II0+1 6	I,34+0,I3
20,96 <u>+</u> 0,06	97 <u>+</u> 18	I0,9 <u>+</u> 1,3	75 <u>+</u> 19	4,8+0,6
23,60+0,04	-	I,5 <u>+</u> 0,2	_	0,6 2+ 0,08
27,48+0,04		0,4I <u>+</u> 0,03		0,16 <u>+</u> 0,01
29,50 <u>+</u> 0,05	131 <u>+</u> 61	3,5 <u>+</u> 0,4	124 <u>+</u> 61	I,28 <u>+</u> 0,16
30,03 <u>+</u> 0,05	I04 <u>+</u> 38	8,9 <u>+</u> 1,6	87 <u>+</u> 39	3,25 <u>+</u> 0,58
31,64 <u>+</u> 0,05	-	0,78+0,15		0,28+0,04
33,I4 <u>+</u> 0,06		(0,6)		(0,11)
34,68 <u>+</u> 0,06		2,3 <u>+</u> 0,2		0,78 <u>+</u> 0,07
35,36 <u>+</u> 0,06		I, 2+ 0,2		0,40 <u>+</u> 0,07
36,83 <u>+</u> 0,07	94 <u>+</u> I4	4,0 <u>+</u> 0,4	86 <u>+</u> 15	1,32 <u>+</u> 0,13
38,89 <u>+</u> 0,08		0,72 <u>+</u> 0,08		0,23 <u>+</u> 0,03
43,8 2<u>+</u>0,09		8,4 <u>+</u> I,0		2,53 <u>+</u> 0,30
45,94 <u>+</u> 0,09		I,6 <u>+</u> 0,2		0,47 <u>+</u> 0,06
46,74 <u>+</u> 0,09	107 <u>+</u> 39	3,7 <u>+</u> 0,4	100 <u>+</u> 39	1,08 <u>+</u> 0,12
47,56 <u>+</u> 0,I		0,24 <u>+</u> 0,03	•	0,70 <u>+</u> 0,09
5 I, 23 <u>+</u> 0,I		IO <u>+</u> I		2,79 <u>+</u> 0, 2 8
51,9 <u>+</u> 0,1	• I20 <u>+</u> 56	9,5 <u>+</u> I,3	I00 <u>+</u> 56	2, 64 <u>+</u> 0,36
52,8 <u>+</u> 0,I		(0,9)	•	(0,25)
53,6 <u>+</u> 0,I		6,0 <u>+</u> 0,5		I,64 <u>+</u> 0,I4
56,0 <u>+</u> 0,I		I,3 <u>+</u> 0,2		0,35 <u>+</u> 0,05
59,2 <u>+</u> 0,I	I68 <u>+</u> 55	4,3 <u>+</u> 0,5		I,II <u>+</u> 0,I3

Таблица 2 Параметры резонансов ¹⁵⁵ Gd

	······		<u> </u>
62,7 <u>+</u> 0,2	17.: <u>+</u> 50	5,4 <u>+</u> 0,6	. I,36 <u>+</u> 0,I5
65,0 <u>+</u> 0,2	·	0,60 <u>+</u> 0,I0	0,15 <u>+</u> 0,03
69,4 <u>+</u> 0,I		3,9 <u>+</u> 0,4	0,94 <u>i</u> 0,10
76,8 <u>+</u> 0,I		I,0<u>+</u>0, 5	0,23 <u>+</u> 0,11
78,7 <u>+</u> 0,I		3,I <u>+</u> 0,9	0,70 <u>+</u> 0,20
80,0 <u>+</u> 0,I		2,2 <u>+</u> 0,2	0,49 <u>1</u> 0,05
80,6 <u>+</u> 0,I		I,4 <u>+</u> 0,2	0,31 <u>+</u> 0,05
83,9 <u>+</u> 0,I		4,I <u>+</u> I,O	0 , 89 <u>+</u> 0 ,2 2
84,8 <u>+</u> 0,I		I,2 <u>+</u> 0,2	0 ,26<u>+</u>0, 04
90,4 <u>+</u> 0,I		0,67 <u>+</u> 0,07	0,14 <u>+</u> 0,02
92,3 <u>+</u> 0,I		I,7 <u>+</u> 0,2	0,36 <u>+</u> 0,04
92,7 <u>+</u> 0,I		2,7 <u>+</u> 0,4	0,55 <u>+</u> 0,07
95,6 <u>+</u> 0,I		2,6 <u>+</u> 0,3	0,53 <u>+</u> 0,05
96,3 <u>+</u> 0,I		2,6 <u>+</u> 0,3	0,53 <u>+</u> 0,06
98,2 <u>+</u> 0,2		7,2 <u>+</u> 0,I	I,45 <u>+</u> 0,20
100,1 <u>+</u> 0,2		0,83 <u>+</u> 0,08	0,17 <u>+</u> 0,02
101, 3`		2,8 <u>+</u> 0,7	0,56 <u>+</u> 0,I4
10 2, 0		(0,85)	(0,17)
IO4,3		3,6 <u>+</u> 0,4	0,71 <u>+</u> 0,08
105,8		2,4 <u>+</u> 0,2	0,46 <u>+</u> 0,05
107,0		4,Ï <u>+</u> 0,4	0,79 <u>+</u> 0,08
109,5		I,8 <u>+</u> 0,2	0,35 <u>+</u> 0,04
II2 , 3		6,I <u>+</u> 0,7	I,I5 <u>+</u> 0,I4
113,7		8,9 <u>+</u> I,2	I,67 <u>+</u> 0,23
II6 , 4		6,0 <u>+</u> 0,8	I,II <u>+</u> 0,I6
II8 , 5		0,83 <u>+</u> 0,09	I, <u>52+</u> 0,I7
123,3		23 <u>+</u> 4	4,15 <u>+</u> 0,72
I 2 4,3		4,5 <u>+</u> 0,5	0,81 <u>+</u> 0,09
125,9		7,8 <u>+</u> I,0	I,4 <u>+</u> 0,2
129,8		(1,7)	(0,30)
130,7		19 <u>+</u> 3	3,3 <u>+</u> 0,5
132,9		I,3 <u>+</u> 0,2	0,22 <u>+</u> 0,03
133,7		I,0 <u>+</u> 0,15	0,17 <u>+</u> 0,03
134,7		<0,07	< 0,01
I37,7 <u>+</u> 0,2		I,5 <u>+</u> 0,2	0,25 <u>+</u> 0,04

- 1

1	2 3	4	5
145,5 <u>+</u> 0,3	3,9 <u>+</u> 0,4		0,65 <u>+</u> 0,07
I46,8 <u>+</u> 0,3	I,7 <u>+</u> 0,3		J,28 <u>+</u> 0,04
148,2 <u>+</u> 0,3	I,7 <u>+</u> 0,3		0,29 <u>+</u> 0,04
I49,6	(13,4)		(2,2)
150,0	(14)		(2,3)
152,2	∠ ,9 <u>+</u> 0,4		∪,47 <u>+</u> 0,07
156,2	4,7 <u>+</u> 0,7		0,75 <u>+</u> 0,1I
160,0	7 ,7<u>+</u>0, 8		I,I2 <u>+</u> 0,12
16 I, 6	9,5 <u>+</u> I,2		I,5 <u>+</u> 0,2
168,I	12 <u>+</u> 1,5		1,8 <u>+</u> 0,2
170,3	5,4 <u>+</u> 0,8		0,83 <u>+</u> 0,12
171,3	5,4 <u>+</u> 0,8		0,83 <u>+</u> 0,12
173,4	2 I<u>+</u>3		3,3 <u>+</u> 0,5
177,9 <u>+</u> 0,3	3,3 <u>+</u> 0,5		0,50 <u>+</u> 0,08
180,2 <u>+</u> 0,4	5,1 <u>+</u> 0,8		0,76 <u>+</u> 0,12
183,2	3,5 <u>+</u> 0,5		0,52 <u>+</u> 0,07

•

Е ₀ , эв	г,ыэв	gΓ _n , мЭв	Г _у , мэв	• 2gΓ_0
1	2	3	4	5
I6,I7 <u>+</u> 0,06		(0,21)		(0,10)
16,77+0,06	97 <u>+</u> 10	8,0 <u>+</u> 0,7	81 <u>+</u> 10	3,9 <u>+</u> 0,3
20,49 <u>+</u> 0, 03	97 <u>+</u> 20	'7 <u>+</u> I	83 <u>+</u> 20	3,1 <u>+</u> 0,4
23,23 <u>+</u> 0,04		0,30 <u>+</u> 0,05		0,1 <u>2+</u> 0,02
25,33 <u>+</u> 0,04	77 <u>+</u> 13	I,03 <u>+</u> 0,09	75 <u>+</u> 13	0,41 <u>+</u> 0,04
40,06 <u>+</u> 0,08		0,45 <u>+</u> 0,03		0,14 <u>+</u> 0,01
44,07 <u>+</u> 0,09	100 ± 19	5,5 <u>+</u> 0,9	89 <u>+</u> 19	1,7 <u>+</u> 0,3
48,7 <u>+</u> 0,I	117 <u>+</u> 11	17,8 <u>+</u> 1,2	82 <u>+</u> 12	5,1 <u>+</u> 0,3
58,I3 <u>+</u> 0,I3	125 <u>+</u> 11	23,1 <u>+</u> 1,5	79 <u>+</u> 12	6,0 <u>+</u> 0,4
66,44 <u>+</u> 0,I6		4,7 <u>+</u> 0,5		I,1 <u>+</u> 0,I
3I,2 <u>+</u> 0,I		6,4 <u>+</u> 0,8		I,4 <u>+</u> 0,2
82,0		3,7 <u>+</u> 0,5		0,82 <u>+</u> 0,1I
87,0	191 <u>+</u> 55	4,4 <u>+</u> 0,6	173 <u>+</u> 65	0,94 <u>+</u> 0,I3
96,5 <u>+</u> 0,I	97 <u>+</u> 26	8,0 <u>+</u> I,0	81 <u>+</u> 26	I,6 <u>+</u> 0,2
100,0 <u>+</u> 0,2	127 <u>+</u> 18	19 <u>+</u> 3	89 <u>+</u> 19	3,8 <u>+</u> 0,5
104,8		18 <u>+</u> 3		3,5 <u>+</u> 0,6
107,3		5,8 <u>+</u> 0,4		I,12 <u>+</u> 0,08
108,9		(0,3)		(0,06)
110,0	I41 <u>+</u> 19	29 <u>+</u> 4	83 <u>+</u> 2I	5,5 <u>+</u> 0,8
II5 , 2	150 <u>+</u> 75	I0 <u>+</u> 2	130 <u>+</u> 75	I,9 <u>+</u> 0,4
120,7	2 68 <u>+</u> 21	92 <u>+</u> 7	84 <u>+</u> 24	I6,7 <u>+</u> 1,2
137,9		29 <u>+</u> 6		5,0 <u>+</u> I,0
I38,8 <u>+</u> 0,2		(3,8 <u>+</u> 0,4)		0,64 <u>+</u> 0,07
I43,7 <u>+</u> 0,3		40 <u>+</u> 4		6,7 <u>+</u> 0,7
I48,3		9 <u>+</u> 2		I,5 <u>+</u> 0,3
156,4		11 <u>+</u> 2		1,8 <u>+</u> 0,3
164,8		I2 <u>+</u> 3		2,0 <u>+</u> 0,5
I68,2		(0,86)		(0,13)
169,5		(1,0)		(0,15)
171,3 <u>+</u> 0,3		19 <u>+</u> 3		2,9+0,5
178,6 <u>+</u> 0,4		10 <u>+</u> 2		I,5 <u>+</u> 0,3
182,9		I0 <u>+</u> 2		I,5 <u>+</u> 0,3

Таблица З Тараметры резонансов ¹⁵⁷ Gd

I	2	3	4	5
6,001		9 <u>+</u> 2		1,3 <u>+</u> 0,3
I94 , 4		28 <u>+</u> 5		4,0 <u>+</u> 0,7
202,8		3,6 <u>+</u> 0,5		0,50 <u>+</u> 0,07
205,2		(0,6I <u>+</u> 0,09)		(0,08 <u>+</u> 0,0I)
≥07,7 <u>+</u> 0,4	219 <u>+</u> 18	75 <u>+</u> 10	69 <u>+</u> 23	IO,4 <u>+</u> I,4
217,2 <u>+</u> 0,5		3,0 <u>+</u> 0,3		0,4I <u>+</u> 0,04
221,1		I,5 <u>+</u> 0,3		0,20 <u>+</u> 0,04
228,3 <u>+</u> 0,5		4,I <u>+</u> 0,6		0,54 <u>+</u> 0,08
239,2 <u>+</u> 0,6	243 <u>+</u> 18	95 <u>+</u> I0	53 <u>+</u> 30	12,3 <u>+</u> 1,3
246,4		5,8 <u>+</u> 0,6		0,74 <u>+</u> 0,08
250,2		2, I <u>+</u> 0,3		Ø,27 <u>+</u> 0,04
255,0		I,4 <u>+</u> 0,2		0,17 <u>+</u> 0,03
260,I		8,2 <u>+</u> 1,0		I,0 <u>+</u> 0,I
265,8<u>+</u>0, 6		4 + 0,4		0,49+0,05
268,2 <u>+</u> 0,7		6,5 <u>+</u> 0,9		0,80 <u>+</u> 0,II
281,8		24+4		2,8+0,5
287,6		8,9 <u>+</u> 1,0		I,0+0,I
290,8 <u>+</u> 0,7		25 <u>+</u> 3		2,9+0,4
293,7 <u>+</u> 0,8		23+3		2,7+0,4
300,9		20+5		2,3+0,6
306,4+0,8		I,8+0,3		0,20+0,03

Таблица 4

Средние параметры изотопов Gd и Sm

T-Bei.	25,3	25,2	22,6	22,8	21,6	22,2	22 , I	26,6	27,6	
u, u aea	5,44	5,44	6,62	5,39	6,22	5,18	4,82	4,53	4,05	.
Δ-Δ _p +Δ _n , M3B	0,97	0,97	I,89	0,97	1,70	0,57	0,97	I,22	I,22	
ae Hab	14 ' 9	6,41	8,51	6,36	7,92	6 ,I 5	5,79	5,75	5,27	
Г _У , МЭВ	57 + I5 x)	(3+15 (3)	100+10 (17)	82 <u>+</u> I2	(10) 86+I0 (10)	89+I3	98+I5	(6)		
10 ^{4 S} онаиб. правд. × IO ⁴	4,0 <mark>+</mark> 2,6	2,1+1,5		I,6 <mark>+</mark> 0,8		1,4+0,7 4,0-4	2,7 <u>+</u> 1,7			
ο= ΣεΓ. • ΔΕ ×	4,6 <u>+</u> I,8	2,4 <u>+</u> I,0	2,10 <u>+</u> 0,35	I,8 <u>+</u> 0,6	2,16 <u>+</u> 0,45	1,5 <u>+</u> 0,5	2,6 <u>+</u> I,0			
р набл. s	15 ± 2	I5,5 <u>+</u> 2,3	I,8 <u>+</u> 0,3	+ 1 +	5,6±0,7	85±9	170 <u>+</u> 21	45 <u>+</u> 5	01+06	
число резо- нансов	14	13	80	24	54	22	16	15	20	
Макс. Энергия нейтронов, Эв	230	230	180	I200	300	2000	2500	700	1300	
Ндро- мишень	152Gd	154 Gd	155 Gd	1 56 Gd	157 Gd	158 Gd	160 Gd	152 Sm	154 Sm	

х) В столбце Г, в скобках дано число резонансов, по которому определянось среднее значение радиационной

ширины.

Таблица 5

.

Энергии кейтронных резонансов изотопов Sm

Ē		•
	792; 853; 929; 956; 991; I050; I086; III5; I229; I3I2	
134 Sm	93,0; 261; 341; 457; 578; 616; 703; 718; 828; 1077; 1158; 1181; 1244; 1280; 1470; 1552;	

31

154 Sm

I6I0; I650; I734; I768; I835.