

Дубна

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

in the second

P3 - 3564

Эка. чит. зала

АБОРАТОРИЯ НЕЙТРОННОИ ФИЕМКІ

1967.

Э.Н. Каржавина, Нгуен Нгуен Фонг, А.Б. Попов, А.И. Таскаев

НЕЙТРОННЫЕ РЕЗОНАНСЫ ИЗОТОПОВ НЕОДИМА

P3 - 3564

Э.Н. Каржавина, Нгуен Нгуен Фонг, А.Б. Попов, А.И. Таскаев

НЕЙТРОННЫЕ РЕЗОНАНСЫ ИЗОТОПОВ НЕОДИМА

Направлено в ЯФ

Введение

Данная работа является продолжением проводимых в Лаборатории нейтронной физики ОИЯИ исследований нейтронных резонансов атомных ядер в области редкоземельных элементов $^{/1-4/}$. В качестве очередного объекта исследований были выбраны изотопы неодима, так как даже в таких публикациях как $^{/5,6/}$ имеется мало данных о параметрах резонансов Nd, данные же о резонансах чётночётных изотопов вообще отсутствуют. Исследование Nd представляло также интерес в связи с изучением n, α -реакции на изотопах Nd, проводившемся в нашей лаборатории $^{/7/}$.

Эксперимент и обработка данных

Были измерены кривые пропускания и кривые выхода у -лучей радиационного захвата нейтронов для образцов из естественного неодима и образцов, обогашенных изотопами Nd¹⁴², Nd¹⁴³, Nd¹⁴⁴, Nd¹⁴⁵, Nd¹⁴⁸, Nd¹⁴⁸, Nd¹⁵⁰. Образцы были приготовлены из окиси (Nd₂O₃) или азотнокислого неодима (Nd(NO₃)₃). Характеристики образцов и типы проведенных измерений указаны в таблице 1.

В измерениях пропускания использовался жидкостный сцинтилляционный . детектор с метилборатором площадью 800 см², подобный описанному в^{/8/}. Радиационный захват изучался с помощью 500-литрового спинтилляционного **п**, у -детектора^{/8/}

Методы измерений и обработка данных пропускания подробно описаны в предыдущих работах^{/1-4/}. Измерения проводились на 4096-канальном временном анализаторе (с шириной канала 1+2 мксек). Е настоящей работе определялось только резонансное пропускание делением спектра с образиом на спектр открытого пучка. При этом проводилась нормировка спектров с образиом и открытого пучка по участкам, далеким от резонансов. *:.

На рис. 1 приведен пример кривой пропускания. При вычислении пропускания учитывались поправки на фон. Уровень фона определялся по показаниям анализатора в области резонансов 132 эв Co, 330 эв Mn или 2900 эв Na. "Черный" в'резонансе фильтр из Co, Mn или Na постоянно находился в пучке в течение каждого цикла измерений. Временной ход фона изучался с помощью набора резонансных фильтров. В условиях измерений Nd фон либо не зависел от времени пролета (для образцов малой площади), либо имел зависимость типа

 $N_{\Phi} = a - b t$.

Использованный метод определения пропускания не позволяет определить эффективное сечение потенциального рассеяния, однако он автоматически исключает влияние дрейфа аппаратуры и не требует мониторирования пучка.

Изотопическая идентификация резонансов производилась по наличию резонансов на кривых пропускания и радиационного захвата для одних изотопов и по отсутствию на кривых для других изотопов. В отдельных случаях, когда при одних и тех же энергиях резонансные пики обнаруживались на кривых для нескольких изотопов, изотопическая принадлежность определялась сравнением площадей резонансов на соответствующих кривых.

На основе проведенной изотопической идентификации параметры резонансов определялись методом площадей. Так как для чётно-чётных изотопов нейтронные ширины Γ_n много больше радиационной ширины Γ_y и имеется интерференция между резонансным и потенциальным рассеянием, то нейтронные ширины в этих случаях определялись методом, предложенным Сетом⁹. Для оценки влияния интерференции принималось, что для всех чётных изотопов Nd $a \approx 6.10^{-13}$ см. Поскольку в области выше 1 кэв исследуемые образцы были не очень толстыми ($n \sigma_0 \leq 10$), то практически поправки на интерференцию были пренебрежимо малы. В случаях, когда интерференцией между потенциальным и резонансным рассеянием можно было заведомо пренебречь, параметры резонансов определялись на ЭВМ по программе с использованием графиков Юза

Измерения кривых радиационного захвата нейтронов позволяют получить площадь резонанса

$$\Sigma N_{k} = \Pi \epsilon_{\gamma} A \frac{\Gamma_{\gamma}}{\Gamma} \quad \text{или} \quad C = A \frac{\Gamma_{\gamma}}{\Gamma} = \frac{\Sigma N_{k}}{\Pi \epsilon_{\gamma}}$$

Определение потока П проводилось по калибровочным измерениям с образцом Вг. Относительный ход потока с энергией П(Е) был получен из измерений с борными счётчиками. Значение эффективности ϵ_{γ} получалось из сравнения плошадей резонансов на кривых выхода γ -лучей в режиме суммирования и в режиме совпадений с учётом энергии связи нейтронов в ядрах мишени (см. /11/). Такая процедура абсолютной калибровки кривых радиационного захвата обеспечивает точность получения А $\frac{\Gamma_{\gamma}}{\Gamma}$ около 15% /11/. Если у резонанса $\Gamma_{\gamma} <<\Gamma_{n}$, то зная экспериментальную величину А $\frac{\Gamma_{\gamma}}{\Gamma}$, легко получить значение Γ_{γ} : Для этого достаточно воспользоваться графиком $\frac{A}{\Gamma}$ от в σ . Для резонансов, у которых $i_{n} = i_{\gamma}$, также можно определить i_{γ} , только в этом случае при определении из графика необходимо провести несколько итераций в вычислении $\sigma_{0} = 4 \pi \lambda^{2} g \frac{\Gamma_{n}}{\Gamma_{n}}$ и в оценке ошибки Γ_{γ} учесть ошибку в значения.

В некоторых случаях при определении А $\frac{1\gamma}{\Gamma}$ необходимо вводить поправку на регистрацию п, γ -детектором резонансно рассеянных нейтронов

$\left(A - \frac{\Gamma_{\gamma}}{\Gamma} = c - \frac{\epsilon_n}{\epsilon_{\gamma}} A - \frac{\Gamma_n}{\Gamma}\right),$

где ϵ_n полагалось равным 0,15%^{/11/}. Опенка поправки на захват после резонансного рассеяния, согласно^{/12/}, показывает, что эта поправка существенна только для низкорасположенных по энергиям резонансов 42,6 и 55,4 эв, для остальных резонансов ею можно пренебречь.

Результаты

Параметры нейтронных резонансов изотопов неодима представлены в таблицах 2+8. Изучение распределений приведенных нейтронных ширин резонансов, расположенных на линейных участках зависимости числа резонансов от энергии, для каждого изотопа в отдельности, а также совместно для всех чётно-чётных изотопов обнаруживает вполне удовлетворительное согласие с распределением Портера-Томаса (вероятность согласия по критерию Колмогорова 70 + 80%). Распределение расстояний между резонансами чётно-чётных изотопов Nd согласуется с распределением Вигнера и противоречит экспоненциальному распределению (рис.2).

Полученные данные о параметрах резонансов дают воэможность определить такие средние параметры как D и S для каждого изотопа. Среднее расстояние между резонансами D находилось по наклону линейного участка графика зависимости числа резонансов от энергии нейтронов. Погрешности в значениях D для чётных изотопов вычислены в предположении вигнеровского распределения расстояний между уровнями

$$(\Delta D = D \sqrt{\frac{4-\pi}{\pi}} \frac{1}{\sqrt{n}} \approx \frac{0,5D}{\sqrt{n}}),$$

а для нечётных изотопов — В предположении экспоненциального распределения $(\Delta D \approx \frac{D}{\sqrt{n}})$. Полученные значения D и S₀ представлены в таблице 9. Там же указаны наиболее <u>вероятные знач</u>ения среднего расстояния

$$D^* = \sqrt{\frac{\pi}{4}} \sum_{i=1}^{m} D_i^2$$

(см.^{/13/}). Силовые функции чётных изотопов определялись методом наибольшего правдоподобия^{/13/}. В вычислениях принимались во внимание резонансы, расположенные на линейных участках зависимости числа резонансов от энергии, где пропуск уровней незначителен.

Поскольку обычно принято ^{/6/} приводить значения силовых функций, вычисленные как $S_0 = \frac{\sum \Gamma_0^0}{\Delta E}$ (для нечётных ядер $S_0 = \frac{\sum g \Gamma_0^0}{\Delta E}$), то в таблице 9 приведены также значения, полученные этим способом, при этом ошибка в S_0 вычислена как $\Delta S_0 = \sqrt{\frac{2,3}{n}} S_0^{/6/}$.

В таблице 9 приведены и средние значения радиационной ширины Г (для Nd¹⁴⁴ Г_у получено только для одного резонанса). Для приведенных значений Г_у указаны 15% ошибки, обусловленные такой неопределенностью калибровки потока нейтронов и эффективности детектора.

Обсуждение результатов

Изотопы неодима расположены вблизи замкнутой нейтронной оболочки (так Nd¹⁴² имеет 82 нейтрона), и это, естественно, сказывается на их свойствах.

На рис. З показана зависимость плотности уровней изотопов Nd от энергии возбуждения составного ядра. В качестве энергии возбуждения принималась величина где Е-энергия связи нейтрона, δ -энергия спаривания нейтронов или прото-/14/ нов .

 $\mathbf{U}=\mathbf{E}-\boldsymbol{\delta}_{\mathrm{m}}-\boldsymbol{\delta}_{\mathrm{m}},$

В модели независимых частиц плотность уровней ядра с данной энергией возбуждения U и моментом количества движения J имеет вид

$$\rho(U,J) = \frac{2J+1}{\frac{24\sqrt{2}a^{1/4}U^{5/4}\sigma^3}} \exp\left\{2\left(aU\right)^{1/2} - \frac{\left(J+\frac{2}{2}\right)^2}{2\sigma^2}\right\}.$$
 (1)

Если параметр а был бы одинаков для всех чётных изотопов, то для них плотность уровней имела бы вид

$$\rho (U) = \text{Const} \quad \frac{\exp(2\sqrt{aU})}{\frac{1}{10} \sqrt{5/4}}.$$
 (2)

На рис. З сплошными кривыми показана зависимость плотности уровней от U, вычисленная по уравнению (2) для a = 14 и 20 Мэв⁻¹ (нормировка сделана по Nd¹⁴⁸ и Nd¹⁵⁰).

Из рисунка видно, что наблюдаемые плотности значительно отличаются от зависимости, даваемой ур.(2), а именно, по мере уменьшения числа нейтронов и приближения к замкнутой оболочке плотность уровней палает. Полягая. что $\sigma^2 = 0.0888$ at $A^{2/3}$, где $t = \sqrt{\frac{U}{a}}$ -термодинамическая температура ядра (см. ^{/15/}), можно вычислить параметр а из уравнения (1), удовлетворяющий экспериментальному значению плотности уровней. Полученные значения параметра а представлены в таблице 10, уменьшение а с приближением к замкнутой оболочке хорошо согласуется с известными данными и является еще одним полтверждением влияния оболочечных эффектов на свойства ядер (см.рис. 4).

Изотопы неодима интересны также тем, что они расположены в районе максимума силовой функции, предсказываемого оптической моделью ^{/16/}. Найденные нами значения S₀ хорошо согласуются с известными экспериментальными данными для других ядер в этой области атомных весов и с предсказаниями оптической модели. Однако в области А >155 оптическая модель не согласуется с экспериментальными значениями S₁^{/4,6/}. В заключение отметим, что радиационные ширины изотопов Nd близки к значениям радиационных ширин соседних ядер.

Авторы благодарны Ю.С.Язвицкому, принимавшему участие в начальной стадии измерений, а также выражают свою признательность Л.Б.Пикельнеру и Э.И.Шарапову за помощь и полезные обсуждения.

Литература

1. Ван Най-янь, И.Илиеску, Э.Н.Каржавина и др. ЖЭТФ, 47, 43 (1964).

- 2. Ван Нап-янь, Э.Н.Каржавина, А.Б.Попов и др. ЯФ, 3, 48 (1966).
- 3. Э.Н.Каржавина, А.Б.Попов, Ю.С.Язвицкий и др. ЯФ, 5, 471 (1967).
- Э.Н.Каржавина, А.Б.Попов, Ю.С.Язвинкий, Препринт ОИЯИ, РЗ-3097, Дубна (1967).
- 5. Neutron cross section, BNL-325, Sp2, vol IIC, (1966).
- 6. K.K.Seth, S-wave neutron Strength functions Nuclear Data, Section A, vol 2, N3 (1966).
- 7. J.Kvitek, Yu. P.Popov Препринт ОИЯИ ЕЗ-3029, Дубна, (1966).

8. И.Визи, Г.П.Жуков, Г.И.Забиякин и др. Nuclear Electronics 1,27, IAEA, Vienna (1962).

 K.K.Seth, R.H.Tabony, Area analysis of neutron resonances including effect of Doppler broadening, Northwestern University, Evanston, Jilionois, NU-6601.

- Э.Н.Каржавина, А.Б.Попов, И.И.Ш'елонцев, Ю.С.Язвицкий, Препринт ОИЯИ, Р-2198, Дубна, 1965.
- 11. Л.Б.Пикельнер, Э.И.Шарапов, Препринт ОИЯИ, Р-1547 (1964).
- 12. J.E.Draper, Nucl.Sci. and Eng. 6, 552 (1956).
- 13. H.V.Muraduan, Yu. V.Adamchuk. International Conference on the study nuclear structure with neutrons, Report 180, Antwerp. (1965).
- 14. П.Э.Немировский, Ю.В.Адамчук, Nuclear Physics 39, 555 (1962).
- 15. A. Gilbert, A.Cameron , J.Canad. Phys., 43, 1446 (1965).
- 16. D.Chase, Phys. Rev., 110, 1080 (1958).
- 17. А.В.Малышев. ЖЭТФ 45, 316 (1963).

Рукопись поступила в издательский отдел

24 октября 1967 года.

	•	Хараі	ктеристик	а образцо: ́	в и прове	донные из	нерения	•		-	
	Плоцадь образия	Вес по влементу		Сод	ержание в	8				Paspeme-	ТИП
Образец	cw2	rp.	Nd ¹⁴²	Nd 143	Nd 144	Nd ¹⁴⁵	84 I A6	Nd 148	Nd ¹⁶⁰	ние нсек/и	рөния
142 Nd	19.6 78,5	30 . 0	93,4	4,2	I,6	** 0*	. + 0	I	а. Нас	500 500	пропуск. (a.y)
Nd ¹⁴³	500 199,5 199,5 199,5	0088 544 544 544 544 544 54	6, 0	.72,3	6I	6*0	0,7	1 ° 0	I6 0	190 FIS	nponyck. (a, y) (a, y) nponyck.
Nd	19.61 78.55 78.55	38 72 38 72 38,22	I,4	3,9	86,4	6,7	Ι,4	0,1	1'0	2020 2020	пропуск. пропуск. (а.))
• Nd 145	7890 7890 7890	8000 4444 4444	0 ° 8	0,7	3,6	84,6	9,8	0,4	I ° 0	2002 71010	пропуск. (а.) пропуск. (а.)
98 T PN	19,6 78,5	31,12 31,12	0,6	50	I,0	I,3	95 ,I	I,3	0,2	50 10	nponyck. (n.y)
• Nd ¹⁴⁸	19,6 78,5	I8,28 I8,28	I,I	0,8	I,6	0,8	2,5	91,6	I,6	200 70	nponyck. (a, y)
• Nd ¹⁵⁰	19,6 78,5	23 , 86 23 , 86	I,2	I,0	2,2	I,I	2,5	3,5	38'2	200	пропуск. (в. у)
. Nd ecrecr	8. 254 254 254	41,9 182,6 354,5	27 , II	12,17	·23 , 85	8,30	17,22	5,73	5,62	888	пропуск. пропуск. пропуск.

HU N400 000 HHHH HH

111 NOR

Габлица

Г "МЭВ

10

<u>Мою</u> пп

I.

2.

3.

4.

5.

6.

7.

Е, ЭВ

I685<u>+</u>I0

2539<u>+</u>I4

3992<u>+</u>28

4547<u>+</u>34

5533<u>+</u>45

63I5<u>+</u>56

9987<u>+</u>II0

Параметры резонансов им 142

										Параметры	резонансов	Nd ¹⁴⁸
` _{пр} МЭВ	Γ°, M3B	•		•				IeNe пп	e _o , 9B	г, мэв	gГ _в ,МЭВ	2 g Г 1
TOT . 07				•				I.	55,4 <u>+</u> 0,2		20 <u>+</u> 2	5,4 <u>+</u> 0,5
181475	4,4 <u>+</u> 1,8							2.	. I27,4<u>+</u>0, 4	450 <u>+</u> 150	18 0<u>+</u>30	32 <u>+</u> 5
I2000+2000	238+40							3.	135,4 <u>+</u> 0,4		31 <u>+</u> 5	5,3 <u>+</u> 0,9
-		· 1						4 ∙	159,0 <u>+</u> 0,5	1300 <u>+</u> 500	600 <u>+</u> 60	95 <u>+</u> 9
780 <u>+</u> 400	12 <u>+</u> 6				1			· ⁵ ·	179,7 <u>+</u> 0,5	-	320 <u>+</u> 50	48 <u>∓</u> 7
8300+830	I23+I2							6.	187,0 <u>+</u> 0,6	1600 <u>+</u> 500	850 <u>+</u> 50	124 <u>+</u> 8
-	-						•	· · ·	306 <u>+</u> 1		355 <u>+</u> 70	41 <u>+</u> 8
4550+600	ет т а							8.	>24 <u>+</u> 1 770 ⋅ T		215 <u>+</u> 60	24+0
I000+I000	13+13							9. TO	3501T 5		300170	20 <u>+</u> 5 3218
								10. TT	40TIT 5		520+100	52 <u>+</u> 0
12000 <u>+</u> 3500	120 <u>+</u> 35							12.	408+T.5		230+40	23 + 4
			. 1					13.	446+2		900+ 80	85+8
			1					I4.	507+2		10+2	0,9+0,2
<u> </u>					1			15.	524÷2,5		84 <u>+</u> 16	7,3 <u>+</u> 1,4
		•		1. A.	i			16.	555 <u>+</u> 3		35 <u>+</u> 7	3,0 <u>+</u> 0,6
	•							17.	576 <u>+</u> 3		7 <u>1</u> 14	6,I <u>+</u> I,2
								18.	658 <u>+</u> 4	•	290 <u>+</u> 50	22+4
	1							19.	705 <u>+</u> 4		187 <u>+</u> 40	14 <u>+</u> 3
								20.	775 <u>+</u> 5		580 <u>+</u> 80	42 <u>+</u> 6
1997 - 19								21.	806 <u>+</u> 5		4 <u>+</u> 1	0,28 <u>+</u> 0,07
		•						22.	822 <u>+</u> 5		3,4 <u>+</u> 0,7	0,25 <u>+</u> 0,05
								23.	840 <u>+</u> 6	1.15	480 <u>+</u> 70	· 33 <u>+</u> 5
		· · ·			•			24.	853 <u>+</u> 6			
					1 1 1 1 1 1			25.	976 <u>+</u> 6		*	
	, "							26.	988 <u>+</u> 7			
				•				27.	1010 <u>+</u> 7			
•								<u>_</u> 8₊	1028±7			
	• •				2 ° 4			.29• 20	1085 <u>+</u> 8			
	4							30.	TT67-8			
								32-	7.274+9			
•						•		33	1265+9			
					· · ·			34	1310+10			10

:

11

Таблица З

Г, МЭВ

80±20 94±14 70±23 83±13 61±9 89±13

67<u>+</u>10

73<u>+</u>II

75<u>+</u>15

70<u>+</u>10

76<u>+</u>II

Параметры резонансов Nd¹⁴⁴ .

Г, ЭВ

15<u>+</u>I

27,5<u>+</u>I,5

4,3<u>+</u>0,3

I4**±1,**6

4<u>+</u>1

17+2

26<u>+</u>4

2<u>+</u>I

8<u>+</u>2

43<u>+</u>5

22<u>+</u>4

24<u>+</u>4

34<u>+</u>5

45**+**8

(8,0)

12

3,1<u>+</u>I,5

9,0<u>+</u>2,4

Г^⁰, мэв

790+52

770+42

I06<u>7</u>8

315<u>+</u>36

76<u>+</u>19

285<u>+</u>34

370<u>+</u>57

<I0

<I0

26<u>+</u>I3

I0I<u>+</u>25

5I7<u>∔</u>60

36**±1**8

99<u>+</u>26 225<u>+</u>40

240<u>+</u>40

325<u>+</u>48

(74)

390<u>+</u>70

0,58+0,05 2I,4+I,8

Г_у, мэв

78<u>+</u>I2

[•]I50<u>+</u>80

ICN0

пп.

I. 2.

3.

4.

5.

6.

7.

8.

9.

IO. II.

12.

13.

14.

I5.

I6.

17.

I8.

19.

20.

Е, ЭВ

374<u>+</u>2

736<u>+</u>4

I280<u>+</u>6

1635<u>+</u>8

I980<u>∔</u>I0

2784<u>+</u>20

3567<u>+</u>24

3760<u>+</u>27

4985+40

5200<u>+</u>45

5697<u>+</u>50

6207<u>+</u>60

6910<u>+</u>70 .

7594<u>+</u>75

8300<u>+</u>85

96II<u>+</u>I00

9930<u>+</u>II5

109**30<u>+</u>130**

II730**+I**50

13540<u>+</u>200

Таблица 5

Параметры резонансов. Nd 145.

ЮЭ ПП	е ₀ , Эв	Г, мэв	gГ _в , <u>М</u> ЭВ	2gΓ _n ⁰	Г _у , МЭВ
I.	42,6 <u>+</u> 0,I	394 <u>+</u> 43	155 <u>+</u> 16	47 <u>+</u> 5	
2.	85,7 <u>+</u> 0,2		7,9 <u>+</u> 0,9	I,7 <u>+</u> 0,2	
3.	96,0 <u>+</u> 0,2		2,I <u>+</u> 0,3	0,43 <u>+</u> 0,06	2.4
4.	IO2,2<u>+</u>0, 2	ter al	56 <u>+</u> 4	11 <u>+</u> 0,8	
5.	103,5 <u>+</u> 0,2		I8,5 <u>+</u> 2,0	3,6 <u>+</u> 0,4	
б.	147,3 <u>+</u> 0,4		10 <u>+</u> 1	I,65 <u>+</u> 0,I6	
7.	151,7 <u>+</u> 0,4		7,8 <u>+</u> 0,9	I,26 <u>+</u> 0,I4	•
8.	I69,8 <u>+</u> 0,5		I,2 <u>+</u> 0,3	0,18 <u>+</u> 0,5	
9.	189,5+0,6	a A	2I <u>+</u> 2	3,0 <u>+</u> 0,3	
10.	233,4+0,8		3,3 <u>+</u> 0,5	0,43+0,6	· · ·
II.	242,5+0,9	228 A	34 <u>+</u> 3	4,4+0,4	60 <u>+</u> I0
12.	249,4 <u>+</u> 0,9		3,2 <u>+</u> 0,6	0,41 <u>+</u> 0,08	
13.	259,3+0,9		56 <u>+</u> 5	7,0 <u>+</u> 0,6	59 <u>+</u> I0
I4.	275 <u>+</u> 1		67 <u>+</u> 6	8,I <u>+</u> 0,7	61 <u>+</u> 10
15.	307 <u>+</u> I		29 <u>7</u> 6	3,3 <u>+</u> 0,7	
16.	312+1,2	· · · · ·	151 <u>+</u> 15	17 <u>+</u> 1,7	51 <u>+</u> 8
[7.	319 <u>+</u> 1,3	·	2,8 <u>+</u> 0,4	0,32 <u>+</u> 0,4	-
18.	343 <u>+</u> 1,4		5,5 <u>+</u> 0,8	0,60 <u>+</u> 0,08	
19.	375+1,6		26 <u>+</u> 4	2,7 <u>+</u> 0,4	
20.	39I+I,7		23 <u>+</u> 4	2,3 <u>+</u> 0,4	
21.	399 <u>+</u> 1,7		8 <u>+</u> I	0,8 <u>+</u> 0,I	
22.	405+2		336 <u>+</u> 58	33 <u>+</u> 6	,
23.	447+2		118 <u>+</u> 13	11,1 <u>+</u> 1,2	53 <u>+</u> 13
24.	466+2	847 <u>+</u> 255	309 <u>+</u> 51	29 <u>+</u> 5	46 <u>+</u> 7
25.	488 1 2		198+15	17,9 <u>+</u> 1,4	58 <u>+</u> 9
26.	499 1 2	- 13 ⁻⁶⁷	187 <u>+</u> 57	16,7 <u>+</u> 4,5	
27.	507 <u>+</u> 2	784+182	350 <u>+</u> 35	3I <u>+</u> 3	67 <u>+</u> I0
28.	518+2		7 <u>+</u> 1	0,62+0,08	
29.	543 <u>+</u> 2	628 <u>+</u> 248	265 <u>+</u> 30	23 <u>+</u> 3	55 <u>+</u> I2
30.	570 1 3		570+55	48 <u>+</u> 5	67 <u>+</u> 10
31.	5903		4,I+0,6	0,34+0,05	
70	60713		2.910.5	$0.24 \div 0.05$	

Таблица б Параметры резонансов ма¹⁴⁶

[№] IIII Е ₀ , ЭВ Г, МЭВ Г _л , МЭВ Г _л , МЭВ Г	эв Г _у імэв
I. 36I <u>+</u> I 43 <u>+</u> 7 2,3 <u>+</u> 0	4 55 + 8
2. 625+3	_
3. 8I3 <u>+</u> 3 I200 <u>+</u> 450 II60 <u>+</u> I00 4I <u>+</u> 3,	5 55 <u>+</u> 8
4. II75 <u>+</u> 4 I3500 <u>+</u> I000 394+2	9
5. I5II <u>+</u> 7 . 3400+300 87,5+	7,7
6. $1831\dot{+}9$ $1540\dot{+}60$ $36\dot{+}3\dot{,}60$	5
7. 2049 ± 11 4200 ± 400 93 ± 9	
8. 2615 <u>+</u> 20 25000 <u>+</u> 2000 49 <u>0+</u> 3	9
9. 2880 <u>+</u> 20 < 10	
IO. 2998 <u>+</u> 25 3680 <u>+</u> 360 67 <u>+</u> 6,	7
II. $3255 + 25$ $2000 + 400$ $35 + 7$	•
12. 3677 ± 25 $21000 \pm 2000 = 345 \pm 34$	+
I3. 4026 ± 30 I 4000 ± 1500 2 20 ± 24	ŧ
14. $5104\frac{1}{2}40$ < 30	
15. 5227 ± 45 <30	
I6. 5465±50 4900±1100 66±15	
I7. 6456 <u>+</u> 60 (7500) (93))
I8. 6723 <u>+</u> 65 (8000) (97))

1010 111	е ₀ , Эв		gГ _в , МЭВ	2 g Γ ,	г _у , мэв
33.	64I +3	-	206+4 I	I6 <u>+</u> 3	6 2<u>+</u>9
34.	650 i 3		24+4	I,9 <u>+</u> 0,3	
35.	66 I 1 3		4, I+0,6	0,32+0,05	
36.	69 1 1 3	· .	(17)	(I,3)	
37.	699 1 3		(19)	(I , 4)	
38.	7I0 <u>+</u> 4		(13)	(0,98)	
39.	7I9 <u>+</u> 4		(13)	(0,97)	
40.	758 <u>+</u> 4		600 <u>+</u> 60	43 <u>+</u> 5	
4I.	790 +4		I,8 <u>+</u> 0,3	0,13 <u>+</u> 0,02	
42.	831 1 4		181 <u>+</u> 31	I3 <u>+</u> 2	
43.	850 1 4		1450 +2 00	99 <u>+</u> 14	
44.	888 1 4			<10	
45.	906 + 5		(150)	(10)	
46.	919+5		(200)	(13)	
47.	948 ÷ 5	2 1911	233 <u>+</u> 28	15 <u>+</u> 2	
48.	978 <u>+</u> 5		403 <u>+</u> 51	27 <u>+</u> 4	
49.	1010 <u>+</u> 5		620 <u>+</u> 60	39 <u>+</u> 4	

Параметры резонансов Nd¹⁴⁸.

			•	
№2 ПП	E ,;9B	Г _л , МЭВ	Г,, мэв	г _у , мэв
I.	155 <u>+</u> 0,5	I6I0<u>+</u>2 40	129 <u>+</u> 19	100 <u>+</u> 15
2.	288 <u>+</u> I	2600 <u>+</u> 200	153 <u>+</u> 12	96 <u>+</u> 14
3.	399 <u>+</u> I,5	4I0 <u>+</u> 30	20,5 <u>+</u> I,5	65 <u>+</u> 10
4.	717 <u>+</u> 2	2000 <u>+</u> 100	75 <u>+</u> 4	74 <u>+</u> II
` ' 5•	876 <u>∔</u> 3	199 <u>+</u> 36	6,? <u>+</u> I,2	
6.	I060 <u>+</u> 5	2350 <u>+</u> 150	72 <u>+</u> 5	
7.	II83 <u>+</u> 6	2700 <u>+</u> 200	79 <u>+</u> 6	I48 <u>+</u> 24
8.	1355 <u>+</u> 6	1680 <u>+</u> 110	46 <u>+</u> 3	
9.	1544 <u>+</u> 7	3590 <u>+</u> 150	91 <u>+</u> 4	
IO.	1818 <u>+</u>		<10	
п.	2195+12	8400 <u>+</u> 700	179 <u>+</u> 15	· . •
I2.	2403 <u>+</u> I3	3900 <u>+</u> 300	80 <u>+</u> 6	•
13.	2546 <u>+</u> I4	2400 <u>+</u> 300	48 <u>+</u> 6	
14 .	2594 <u>+</u> 20	7900 <u>+</u> 800	155 <u>+</u> 16	
15.	2795 <u>+</u> 20	1400 <u>+</u> 500	26 <u>+</u> 9	-
16.	30I0 <u>+</u> 25	2000 <u>+</u> 500	36 <u>+</u> 9	
Ì7.	3525 <u>+</u> 25		<15	
I8.	3688 <u>+</u> 25		<10	
19.	3950 <u>+</u> 30		<10	•
20.	4121 <u>+</u> 30	13000 <u>+</u> 1000	203 <u>+</u> 16	
21.	4318 <u>+</u> 31	6500 <u>+</u> 650	99 <u>+</u> 10	
22.	4463 <u>÷</u> 33	2400 <u>+</u> 600	36 <u>+</u> 9	
23.	4704 <u>+</u> 36	6700 <u>+</u> 1000	98 <u>+</u> 15	•
24.	5377 <u>+</u> 44	(4400)	(60)	
25.	6342 <u>+</u> 56	•	<30	
26.	7172 <u>+</u> 70	13000 <u>+</u> 2000	153 <u>+</u> 24	•
27.	7485 <u>∔</u> 75	(7400)	(85)	•
28.	7819 1 80	17000+2000	192 <u>+</u> 23	
29.	8781+90	· 28000+3000	300+32	

18

Таблица 8 Параметры резонансов Nd¹⁵⁰.

			•		
122 пп	е _{0!} Эв	Г, МЭВ	Г <mark>",</mark> МЭВ	Г <mark>°</mark> , мэв	Г _у , ^{МЭВ}
Ι.	78,9+0,1	127+20	I 5,I+I,6	I.7+0.2	115+20
2.	314+1	<u> </u>	420+20	23,7+I,4	66 + 10
3.	487+2		1130+100	5ī+5	74 ÷ II
4.	774+3		560 + 40	20+1,4	84+13
5.	I035+5		I600+I40	50+4,4	82+12
6.	I340+6		588+80	I6 1 2	
7.	I476 <u>+</u> 7	•	1830+130	47,6 <u>+</u> 3,4	· · ·
8.	1724+8		2000 <u>+</u> 200	48 <u>+</u> 5	
9.	1784 <u>+</u> 9		1360 <u>+</u> 160	32 <u>+</u> 4	· -
IO.	1871 <u>+</u> 9		I62 <u>+</u> 7I	3,7 <u>+</u> I,6	
II.	2550 +1 4		1770 <u>+</u> 190	35 <u>+</u> 4	
I2.	2750 <u>+</u> 16		10000 <u>+</u> 1000	190 <u>+</u> 19	
13.	2870 <u>+</u> 17		2900 <u>+</u> 300	54 <u>+</u> 6	
I 4.	3195+20		440 <u>+</u> 330	8 <u>+</u> 6	
15.	3521 <u>+</u> 25		5500 <u>+</u> 550	93 <u>+</u> 9	
16.	3843 <u>+</u> 30		6500 <u>+</u> 600	105 <u>+</u> 10	

Средние параметры изотопов им.

Изотоп	Е _{макс} , Эв	 числ резонанся для опредления 	С ОВ Д О Т D, ЭВ	D * 9B	s наиболе правдол добное х 10 ⁻⁴	$\frac{2e}{10-s} = \frac{\Sigma \Gamma^{0}}{\Delta E}$	Г _у , мэв	_
Nd 142	6300	6	I000 <u>+</u> 250	670	I,0+I,2	0,6 <u>+</u> 0,3		•
Nd 143	840	23	38 <u>+</u> 6		-	4,3 <u>+</u> I,4	76 <u>+</u> 11	
Nd 144	7000	I 4	520 <u>+</u> 70	• 540	4,5 <mark>+3,I</mark>	4,8 <u>+</u> 2,0	78 <u>+</u> 12	
Nd 145	1000	50	19 <u>+</u> 3	-	-	3,0 <u>+</u> 0,7	58+8	
Nd 145	4000	13	310 <u>+</u> 43	290	4,6 <mark>+3,2</mark>	4,5 <u>+</u> I,9		
Nd 148	4500	23	200 <u>+</u> 21	198	3,5 +I ,7 -I,I	3,6 <u>+</u> 1,1	96 <u>+</u> I4	
Nd ¹⁵⁰	4000	IG	230 <u>+</u> 28	255	I,8 ^{+I} ,I -0,6	2,0 <u>+</u> 0,8	84 <u>+</u> 12	

18

Таблица IO

1269 ПП	Ядро мишень	Спин 1	е, Мэв	δ _р , Мэв	δ _в , Мэв	и, Мэв	² р _{набл.} = <u>2</u> р (10 ⁻³ , Мэв ⁻],π) I ≏,Мэв ⁻¹	σ
I.	Nd ¹⁴²	0	6,10	1,30		4,77	2,98 <u>+</u> 0,62	I7,3 <u>+</u> 0,5	4,69
2.	Nd 143	7/2	7,81	I,38	0,99	5,44	57 <u>+</u> 8	17,7 <u>+</u> 0,4	4,89
3.	Nd ¹⁴⁴	0	5,97	I,27		4,67	3,84 <u>+</u> 0,52	18,2 <u>+</u> 0,4	4,75
4.	Nd 145	7/2	7,58	I,27	0,9I	5,40	105 <u>+</u> 17	19,1 <u>+</u> 0,4	5,0
.5.	Nd 146	0	5,14	-1,27		3,84	6,46 <u>+</u> 0,90	23,0 <u>+</u> 0,5	4,32
6.	Nd ¹⁴⁸	0	4,94	1,27		3,64	I0 <u>+</u> I	25,4 <u>+</u> 0,5	4,90
7.	Nd 150	0	4,81	1,27		3,51	8,7 <u>+</u> 0,7	25,9 <u>+</u> 0,5	4,90

19

Рис. 3. График зависимости плотности уровней изотопов неодима от энергии возбуждения составного ядра $\rho = 2 \rho_{HaGn.} = \sum_{J,\pi} \rho(J,\pi)$.

22

23

