- H-335 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

William .

C 342r2

Phys Lett., 1967, v. 21/1/1-67 NID, C. 517-519

Дубна

P3 - 3216

И. Натканец, К. Парлиньски, А. Байорек, М. Судник-Хрынкевич

ЛОКАЛЬНЫЕ КОЛЕБАНИЯ В СПЛАВАХ Li - Mg И Be - Cu

1967.

P3 · 3216

И. Натканец, К. Парлиньски, А. Байорек, М. Судник-Хрынкевич

4896/, np.

ЛОКАЛЬНЫЕ КОЛЕБАНИЯ В СПЛАВАХ Li - Mg И Be - Cu

Направлено в Physics Letters

В кристалле, содержащем примесные атомы с массой m', меньшей массы атомов матрицы m, могут возникать дополнительные колебания с частотой выше максимальной частоты колебаний чистого кристалла. Частота этих локальных колебаний определяется разницей масс, величиной силовых постоянных вблизи примесного атома и некоторыми свойствами матрицы. Вопрос об изменении силовых постоянных кристаллической решетки вблизи примесных атомов не решен окончательно^{/1/}.

Частоты локальных колебаний являются решением уравнения

$$|\vec{G}(\omega^2)\delta\vec{L} \neq \vec{1}| = 0, \qquad (1)$$

где G(ω²) - функция Грина для кристалла матрицы,

 δ L – матрица, определяющая возмущение, вызванное присутствием примесного атома.

Исходя из предположений, что силовые постоянные вблизи примесного атома не изменяются и примесные атомы находятся в узлах решетки, частоты локальных колебаний можно рассчитать из следующего соотношения:

$$\epsilon \omega^{2} \int_{0}^{\omega_{m}} \frac{g_{\alpha}(\omega_{0}) d\omega_{0}}{\omega^{2} - \omega_{0}^{2}} = 1, \qquad (2)$$

где ε = 1 — m[']; g_a (ω₀) — спектр колебаний чистого кристалла (матрицы) в направлении главной оси α; α = a,b,c; ω_m — максимальная частота колебаний матрицы.

Сравнение частоты, найденной экспериментально, с частотой, вычисленной с помощью соотношения (2), поэволяет сделать заключение о поведении силовых постоянных при замещении атома матрицы атомом примеси.

Метод неупругого рассеяния нейтронов дает возможность непосредственно наблюдать локальные колебания в металлических сплавах. В таких системах возможно создать все условия, необходимые для возникновения локальных колебаний. Однако для наблюдения этих колебаний компоненты сплава должны иметь подходящие нейтронные сечения /2,3/.

Сплавы Li_{0.05} — Mg_{0.95} и Li_{0.10} — Mg_{0.90} в исследуемом диапазоне температур представляют собой однородный сплав с гексагональной структурой магния^{/4/}. Сплав медь-бериллий однороден только при малой концентрации бериллия^{/5/}. Поэтому образцы $Be_{0.02} - Cu_{0.98}$ и $Be_{0.05} - Cu_{0.96}$ отжигались при температуре 900⁰ K, а затем закаливались. Таким образом были получены пересыщенные сплавы с однородной гранецентрированной структурой меди. Нейтронные дифракционные исследования образца сплава $Be_{0.05} - Cu_{0.95}$ не выявили присутствия другой фазы.

Измерения спектров неупругого рассеяния нейтронов были проведены под углом 90° при температуре образцов 113°К на спектрометре по времени пролета с бериллиевым фильтром перед детектором $^{6/}$. На рис. 1 и 2 сравнены энергетические спектры неупруго рассеянных нейтронов. Данные для магниевых сплавов исправлены на поглощение в литии. Пики при $E = (35\pm2)$ мэв (рис. 1) и $E = (42\pm2)$ мэв (рис. 2) представляют собой пики локальных колебаний атомов лития в матрице магния и атомов бериллия в матрице меди соответственно. Частота локальных колебаний, найденная из соотношения (2), существенно больше измеренной экспериментально (см. таблицу). Эта разница энергий приписывается изменению силовых постоянных вблизи примесного атома. В пределах точности эксперимента не неблюдается влияния концентрации примесей на положение частот локальных колебаний.

Оценка изменения силовых постоянных проведена в приближении очень легкой примеси (частота локальных колебаний велика по сравнению со средней частотой колебаний матрицы). Предполагается также, что присутствие примесного атома изменяет силовые постоянные взаимодействия между примесью и всеми атомами матрицы, но не изменяет силовых постоянных взаимодействия между атомами матрицы. При этих предположениях недиагональные элементы матрицы \vec{G} (ω) $\delta \vec{L}$ стремятся к нулю, и из уравнения (1) получается интегральное уравнение, определяющее частоты локальных колебаний.

$$\phi_{a} = 1 - \frac{\phi_{aa}(00)}{\phi_{aa'}^{(0)}(00)} , \quad \phi_{aa}(00) = M_{0} \int_{0}^{\omega_{m}} \frac{g_{a}(\omega_{0}) d\omega_{0}}{\omega^{2} - \omega_{0}^{2}} = 1 , \quad (3)$$

где

Из условия инвариантности силовых постоянных относительно сдвигов всего кристалла вытекает, что изменение силовых постоянных нулевой координационной сферы равно взятой с обратным знаком сумме изменений всех остальных силовых постоянных примесного атома.

$$\phi_{aa}^{(0)}(00) - \phi_{aa}^{(0)}(00) = -\sum_{\ell=1}^{\infty} \left[\phi_{aa}^{(0)}(0\ell) - \phi_{aa}^{(0\ell)}\right], \qquad (4)$$

где $\phi_{aa}^{(0)}(ol)$, $\phi_{aa}(ol)$ – силовые постоянные атомов матрицы и примесного атома соответственно. Примесный атом находится в узле l = 0.

Параметр p_a определяет величину изменения силовых постоянных примесного атома в направлении главной оси а . Для магниевых сплавов ($a = b \neq c$) спектры частот $g_a(\omega_0)$ и $g_o(\omega_0)$ различны. Им соответствуют найденные из уравнения (2) энергии локальных колебаний 43,1 мэв и 41,6 мэв для направления а и с соответственно. Разрешающая способность спектрометра не прозволяет разделить эти частоты, поэтому значение параметра p_a определено на основе полного спектра частот магния 77. В случае сплавов меди $p_a = p_b = p_c$.

Значение параметра _{ра}, найденное из уравнения (3) при использовании спектров частот, приведенных в литературе ^{/7-10/}, и измеренные нами частоты локальных колебаний приводятся в таблице. Наиболее вероятные значения параметра _{ра} равны 45% для примесей лития в магнии и 56% для бериллия н меди. В обоих случаях использованные в расчетах спектры частот получены по измеренным дисперсионным кривым соответствующих кристаллов.

Авторы благодарят Ф.Л. Шапиро, Е.А. Яника, и Б. Бураса за ценные замечания, П.К. Иенгара за предоставление нам графиков спектров частот магния, А. Галантого и С. Беднарского за изготовление сплавов и В. Олеярчика за помощь в измерениях.

Сплав	Энергии локальных колебаний		$P_{a} = 1 - \frac{\phi_{aa}(00)}{1 - 1}$	
	эксперим. значение	рассчитанное из уравнен.(2)	- ^{га} φ ⁽⁰⁾ (00) Изменение силовых постоянных	g (ω ₀)
Li - Mg e = 0,715	(35 <u>+</u> 2) мэв	43,1 мэ в	0,45	P.K. Iyengar /7/
Be - Cu e = 0,858	(42 <u>+</u> 2) мэв	54,0 мэв 56,1 мэв 57,9 мэв 61,5 мэв	0,43 0,52 0,56 0,60	E.H. Jacobsen /8/ R.B. Leighton /9/ S.K. Sinha /10/ Дебаевский

Таблица

Литература

- 1. A.A.Maradudin. Solid State Physics, Academic Press, New York and London, 1966.
- 2. Ю. Каган, Я. Иосилевский. ЖЭТФ, <u>44</u> (4), 1375 (1963).
- 3. K.Parlinski. Postepy Fizyki, <u>16</u>(6), 667(1965) in Polish.
- 4. F.H.Herbstein and B.L.Avarbach. Acta Met., 4, 407 (1956).
- 5. M.Hansen, K.Anderko. Constitution of Binary Alloys, Vol. II. McGraw-Hill Book Company, New York-Toronto-London, 1958.
- A.Bajorek, T.A.Machekhina, K.Parlinski, F.L.Shapiro. Inelastic Scattering of Neutrons, vol. II, p. 519, International Atomic Energy Agency, Vienna, 1965.
- 7. P.K.Iyengar, G.Venkataraman, P.R.Vijayaraghavan and A.P.Roy. Inelastic Scattering of Neutrons, Vol. I., p. 153, International Atomic Energy Agency, Vienna, 1965.
- 8. E.H.Jacobsen. Phys.Rev., 97, 654 (1955).
- 9. R.B.Leighton, Rev.Mod. Phys., 20, 165 (1948).

10. S.K.Sinha. Phys.Rev., <u>143</u>, 422 (1966).

Рукопись поступила в издательский отдел 13 марта 1967 г.

Рис. 1. Энергетические спектры неупруго рассеянных нейтронов на сплавах Li_{0.06} - Mg_{0.98} и Li_{0.10} - Mg_{0.90}, исправленные на поглошение литием и разделенные на спектр неупруго рассеянных нейтронов чистым магнием.

Рис. 2. Энергетические спектры неупруго рассеянных нейтронов на сплавах Ве_{0.02}-Си_{0.98} и Ве_{0.05}-Си_{0.95}, разделенные на спектр нейтронов, рассеянных на чистой меди.