

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1792 2-80

21/4-80 P3 - 12999

А.Антонов, А.А.Богдзель, Ю.М.Гледенов, С.Маринова, Ю.П.Попов, В.Г.Тишин

ПОИСКИ АНОМАЛЬНЫХ \boldsymbol{a} -ШИРИН В РЕАКЦИИ ¹⁴⁷ Sm (n, \boldsymbol{a}) ¹⁴⁴ Nd

ВВЕДЕНИЕ

К настоящему времени проведено широкое изучение реакции 147 Sm(n, a) 144 Nd на резонансных нейтронах, что позволило получить сведения о полных и парциальных а -ширинах и их распределениях /1-3/, а также усредненные сечения при 2 и 30 кэВ /4,5/.Свойства таких сложных состояний, как нейтронные резонансы, обычно описываются на базе статистической теории, в рамках которой изучаются их нейтронные, радиационные и а-ширины. На общем фоне статистических закономерностей получены указания на нестатистические отклонения /8/. В частности, для ¹⁴⁷Sm отмечается аномальность характеристик резонанса с Е0 = 185 эВ и существенное различие в значениях $\Sigma\Gamma_{\alpha}$ в интервалах $E_n < 100$ эВ и $100 < E_n < 200$ эВ^{7g}. С целью выяснения, действительно ли это исключение или просто статистическая флуктуация, проведены измерения на установке "Факел". Вопрос этот не праздный, т.к. связан с закономерностями фрагментации /диссипации/ силы а-кластерных уровней по компаунд-состояниям.

Специально разработанная методика дает возможность вести измерения с разрешением 2÷4 нс/м против 16 нс/м в работе ^{/2/} при близких потоках нейтронов.

Хотя ограниченная статистика /ограниченный поток нейтронов и малые количества вещества в измерении/ не позволяла надеяться на существенное увеличение числа исследованных резонансов, поиски резонансов с большими «-ширинами /и нейтронными/ по аналогии с резонансом 185 эВ представлялись перспективными.

МЕТОДИКА ЭКСПЕРИМЕНТА

Измерения проводились на пучке нейтронов установки "Факел" ИАЗ им.И.В.Курчатова 77 . Схема эксперимента приведена на <u>рис. 1</u>. Спектрометрия нейтронов осуществлялась по времени пролета /пролетная база L=25 м, ширина импульса нейтронов на полувысоте ~100 нс, частота следования импульсов -350 Гц/. Система коллиматоров обеспечивала формирование нейтронного пучка размерами 240х240 мм².Для защиты от прямых γ -лучей, испускаемых нейтронной мишенью, на расстоянии 1,1 м от последней ставилась теневая защита в виде цилиндров из свинца диаметрами от 50 до 60 мм и общей длиной 600 мм. Для удаления рецикличных нейтронов пучок фильтровался борным фильтром из карбида бора толщиной по бору 540 мг/см².

Ł

Рис. 1. Схема эксперимента: 1 - борный фильтр; 2 - нейтроновод, 3 - коллиматор, 4 - сдвоенные пропорциональные камеры, 5 - мишени, 6 - контрольные а-источники.

Для регистрации a-частиц использовался специально разработанный нами детектор, вариант которого описан в работе ^{/8/}. Детектор состоит из системы плоских сдвоенных пропорциональных камер, разделенных прозрачной для a-частиц сеткой, что позволило фиксировать их по совпадениям в полусекциях, если импульсы с камеры удовлетворяют условиям амплитудного отбора. Временное разрешение, обеспечиваемое детектором, составляло $30\div35$ нс /ширина на полувысоте/. Импульсы со схем совпадений камер, в которых помещены мишени из исследуемого ¹⁴⁷ Sm, объединялись схемой "ИЛИ" и подавались на вход 4096-канального временного анализатора с шириной канала 50 нс.

Для сохранения высокого энергетического разрешения Δt/L мишени устанавливались строго перпендикулярно пучку нейтронов, были оставлены только две камеры. Перевод эксперимента на линию с ЭВМ даст возможность увеличить число камер /соответственно и мишеней/ с двух до шести-семи.

Третья камера с литиевой мишенью /рис. 1/ применялась для измерения потока нейтронов по выходу a-частиц и тритонов из реакции ⁶Li(n, a)T, сечение которой для энергий нейтронов от тепловых до 5 кэВ известно с точностью до 1% ⁹.Самариевые мишени представляют собой слои окиси самария, обогащенного по основному изотопу, нанесенные на алюминиевые подложки 270х280 мм² и толщиной 1 мм методом осаждения, литиевая – фтористый литий, напыленный на алюминиевую фольгу диаметром 481 мм и толщиной 50 мкм. Более подробные сведения о мишенях и условиях эксперимента приведены в табл. 1.

Таблица 1

Ядро- мишень	Обога- щение, %	Толщина слоя, мг/см ²	Площадь, см ²	Кол-во слоев	Временное разреше- ние, нс/м	Время из- мерений, ч
147Sm	95,3	5,00	625	2	4	180
⁶ Li	90,5	0,023	620	1		

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

1. Полные а -ширины нейтронных резонансов

Получен экспериментальный временной спектр выхода a-частиц в реакции $^{147}Sm(n, a)^{144}Nd$ с разрешением по энергии нейтронов 4 нс/м от 80 эВ и выше, а ниже 80 эВ - с разрешением 10 нс/м. Анализировался только участок спектра до энергии 3200 эВ, так как при более высокой энергии нейтронов наблюдается некоторое падение эффективности детектора, вызываемое влиянием его перегрузки в момент импульса ускорителя. Область 1-200 эВ изучалась ранее $^{(1, 2)}$, поэтому на рис. 2 представлен спектр только в диапазоне 160-3200 эВ.

Рис. 2. Временной спектр α -частиц из реакции ¹⁴⁷Sm(n, α)¹⁴⁴Nd. Энергия нейтронов E_n в кэВ.

2

3

Стрелками отмечены положения всех известных нейтронных резонансов до 700 эВ, где разрешение достаточно для разделения соседних резонансов, согласно атласу BNL-325 ^{/10/} Далее анализировались только хорошо проявившиеся пики на спектре.

Значения полных α -ширин Γ_{α} получены из суммарных отсчетов α -частиц в резонансах N_{α} по формуле:

$$\Gamma_{\alpha} = \frac{\Phi_{k}}{\Phi} \frac{A_{k}}{A} \frac{\Gamma}{\Gamma_{k}} \frac{N_{\alpha}}{(N_{\alpha})_{k}} (\Gamma_{\alpha})_{k}, \qquad /1/$$

где А - площадь резонанса под кривой пропускания; Ф - поток нейтронов; индекс "k " означает принадлежность к калибровочному резонансу.

Фон определялся по межрезонансной области. Параметры нейтронных резонансов взяты из атласа ^{/10/}, относительные значения потока нейтронов получены в результате измерений зависимости потока нейтронов от их энергии в диапазоне 15-3200 эВ, выполненных на камере с литиевой мишенью.

Калибровка проводилась относительно резонанса с $E_0 = 83,4$ эВ, полная *а* -ширина которого $(\Gamma_{\alpha})_{k} = 2,5\pm0,3$ мк эВ^{/11/} Величины Γ_{α} для резонансов с энергией, превышающей 1161 эВ, нейтронные параметры которых неизвестны, получены в предположении тонкого образца и нейтронной ширины Γ_{n} - Γ . Приведенные погрешности для Γ_{α} включают статистические ошибки счета *а*-частиц и неопределенности в соответствующих резонансных параметрах. Верхние оценки для Γ_{α} даны со статистической достоверностью 95%. Экспериментальные значения Γ_{α} и их верхние оценки для всех известных резонансов до 700 эВ приведены в табл. 2.

При более высоких энергиях на временном спектре выделяются пики 1486, 2486 и 3170 эВ, которые, по-видимому, соответствуют резонансам с большой Γ_a /ширина пика составляет 100-150 нс, что в области E n=2-3 кэВ соответствует 6-10 эВ энергетической шкалы, при $D_{\rm H}=7,4$ эВ существование двух сильных по Γ_{α} и $\Gamma_{\rm n}$ резонансов представляется маловероятным/. Значения Га для них, вычисленные при указанных выше предположениях, приведены в табл. 4. Энергия нейтронов, соответствующая этим пикам, как и вся энергетическая шкала при E n > 160 эВ, определялась путем нормировки на положения известных резонансов 191,3 и 437,8 эВ, энергии которых известны с точностью ~0,2% /10/. Величины Γ_a , полученные нами в области $E_n < 300$ эВ, хорошо согласуются с имеющимися данными /11/, а средние значения полных а -ширин и их распределения - с результатами работы /2/.

Таблица 2

Е ₀ , эВ	Ν _α	$\Gamma_{\alpha} \times 10^7$, 3B
18,3	390 ± 30	2,8 ± 0,2
27,7	< 45	4 3,2
29,9	87 ± 14	3,8 ± 0,7
32,1	II4 ± 17	2,7 ± 0,4
39,7	105 ± 15	2,2 ± 0,3
40.6	4 36	46,3
49.3	2I ± 9	I,6 ± 0,7
57.9	58 ± 12	3,0 ± 0,8
65.2	< 20	45,8
65.4	< 18	67,7
76.4	4 26	44,2
80.0	4 23	4 I9
83.4	296 ± 20	25
94.9	423	64,7
99.5	4 32	<2,I
103.1	131 [±] 14	11,9 ± 1,4
107.2	54 ± 10	7,6 ± 1,5
123.9	87 ± 12	II,3 ± 1,7
140.5	26 ± 6	4,6 ± 1,8
143.6	< 20	4 56
151.7	17 ± 6	3,3 ± 2,0
161.0	154 ± 14	43,I ± 8,2
162.4	14 ± 6	(II)
163.8	26 ± 7	5,6 ± 3,4
172.0	4 II	48,5
180.0	< 2I	46,6
185.0	828 ± 31	196 ± 18
191.3	29 ± 7	35 ± 14
193.5	< I5	< 62
198.3	<18	× 27
206.0	<15	< 3,9
221.8	92 ± 12	38 ± 8
226.0	33 ± 8	12 ± 4
229.0	4 I3	< 85
240.9	48	< 16
241.8	69	. < 14
248.3	42	1 0,8
257 5	4 20	< 10
264 3	6.22	< I5
001,0	S 12	< 5.2

4

5

Таблица 2 /продолжение/

Е ₀ , эВ	N _a	$\Gamma_{\alpha} \times 10^7$, эв
583	4 IO	421
591	< 6	4 16
600	4 I7	< 37
609	∠ 14	<32
617	I3 ± 6	33 ± 22
621	67	∡ I5
626	∠ 14	4 32
636	4 I8	≤ 70
648	4 9	▲ 27
653	4 IO	∠ 25
656	4 IO	▲ 35
663	48 ± 8	173 ± 86
673	4 20	۲5
682	∠ I4	< 40
687	∠ II	< 30
692	<ii< td=""><td>< 52</td></ii<>	< 52

2. Усредненные по резонансам сечения реакции (п, a)

Метод времени пролета позволяет получать информацию о средних сечениях в отдельных энергетических интервалах.

Абсолютное значение усредненного по энергетическому интервалу ΔE_n сечения определялось с помощью нормировки, как и в случае определения Γ_a , на резонанс 83,4 эВ по формуле:

$$\langle \sigma(\mathbf{n}, \alpha) \rangle = \frac{N_{\alpha}}{(N_{\alpha})_{k}} \frac{\Phi(\mathbf{E}_{0}^{k}) \cdot \lambda_{k}^{2} (g\Gamma_{n})_{k} (\Gamma_{\alpha})_{k}}{2\Gamma_{k} \int_{\Delta \mathbf{E}_{n}} \Phi(\mathbf{E}_{n}) d\mathbf{E}_{n}}, \qquad /2/$$

где N_{α} - число зарегистрированных α -частиц в энергетическом интервале ΔE_n , λ_k - длина волны нейтрона при энергии калибровочного резонанса, остальные обозначения - как в формуле /1/. Зависимость фона от времени пролета определена из отсчетов между резонансами и в резонансах марганца / E_0 =0,377; 1,098 и 2,375 кэВ/.

Величины N_{α} и $\langle \sigma(n, \alpha) \rangle$ в различных интервалах усреднения представлены в табл. 3. Приведенные погрешности включают в себя статистическую ошибку и погрешность в определении фона в интервале усреднения.

Таблица 2 /продолжение/

Е ₀ , эВ .	Na	$\Gamma_{\alpha} \times 10^7$, 3B
271.8	19 ± 7	13 ± 6
275.I	\$ 19	< 38
284.I	4 12	4 18
291.0	< I4	414.5
308.0	6 9	4 54
312.0	< 10	4 28
321.0	6 8	4 38
331,5	< 20	4 18.4
336,6	< 10	4 IQ
341.4	<10	4 9
351.0	< 20	6 27
360,4	67	4 5
363,0	4 I4	4 35
380,4	424	4 22
383,8.	50 ± 14	60 ± 18
392,4	4 II	4 13.5
398,5	< I3	≤ 15.8
400,5	67	< 9.I
406,5	4 II	4 27
413,8	4 4	47
420,0	$II \pm 6$	(12)
423,7	4 I2	4 23
437,8	43 ± 8	54 ± 13
441,7	4 12	4 30
460,7	4 4	4 ô
464,8	< 8	< Iô
478,I	47	< II
481,8	I5 ± 6	22 ± 10
488,9	8 ± 4	(14)
498,5	< I4	4 25
501,7	4II	4 17
516	12 ± 5	17 ± 10
532	< I7	4 39
535	< I7	4 40
541	< 8	✓ I2
549	4 Iô	∠ 28
556	20 ± 6	30 ± 20
562	15 1 5	28 + 20
567	4 20	1 20
570	6 20	4 95
577	1 15	4 22
011	4 10	- 33

6

7

Погрешность нормировки, включающая разброс параметров калибровочного резонанса, не изменяющего относительной величины сечений в интервалах усреднения, и неточности определения нейтронного потока $\int \Phi(\mathbf{E}_n) d\mathbf{E}_n$, составляющие менее 5%, не учитывались.

Чтобы сравнить результаты с расчетами по статистической теории, в пятом столбце <u>табл.</u> 3 приведены ошибки, включающие как экспериментальную погрешность, приведенную в четвертом столбце, так и ошибку за счет ограниченного числа резонансов, по которым проведено усреднение в интервале ΔE_{n} .

ΔE _n , эв	Na	< o (n , a) >, мкб	Δ ₁ , мкб	Δ ₂ , мкб
3-100	2640 ± 200	1050	80	280
100-200	I330 ± 100	2240	200	600
200-300	217 ± 50	590	140	210
300-400	IOI ± 40	370	150	180
400-500	75 ± 30	350	140	170
500-600	85 ± 25	475	140	185
500-700 ·	84 ± 23	550	150	220
700-800	70 ± 16	520	120	190
800 -90 0	23 ± 12	190	100	II5
900-1000	60 ± 15	550	140	210
1000-1500	202 ± 30	470	70	90
1500-2000	105 ± 22	330	70	80
2000-2500	99 ± 20	390	80	85
2500-3000	29 ± 16	140	80	80

Таблица 3

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Сложная структура нейтронных резонансов приводит к большим трудностям при попытках их микроскопического описания /см., например, ^{/18/}/. Анализ экспериментальных данных проводится поэтому в рамках статистической теории, которая дает информацию только о величинах средних парциальных ширин и их распределениях. В то же время резонансы с одинаковыми квантовыми характеристиками обладают сильно различающимися параметрами. В связи с этим представляет интерес расширение изучаемых характеристик распада нейтронных резонансов, в частности, более детальное и широкое измерение *а*-ширин нейтронных резонансов. В ¹⁴⁷Sm обращает на себя внимание наблюдавшееся сущест-

венное различие $<I'_{\alpha} >$ в интервалах $E_n < 100$ и 100 $< E_n < 200$ эВ, а также резонанс с $E_0 = 185$ эВ, имеющий большие значения нейтронной и α -ширины $^{/2/}$,

Результаты настоящей работы позволили на порядок расширить исследованный диапазон по E_n от 300 эВ $^{/2/}$ до 3200 эВ; здесь наблюдается, по крайней мере, пять резонансов с большой Γ_a . В табл. 4 приведены некоторые параметры этих резонансов. $R_n = \frac{2g\Gamma_n^\circ}{\langle 2g\Gamma_n^\circ \rangle}$ и $R_a = \frac{\Gamma_a}{\langle \Gamma_a \rangle_{J=3}^-}$ относительные величины вероятности данного вида распада или, по терминологии И.М.Франка $^{/12/}$, сродство с данным видом распада. $\langle 2g\Gamma_n^\circ \rangle$ посчитано по данным 10 'в интервале $0 < E_n < 700$ эВ, где еще не наблюдается пропуска уровней, $\langle \Gamma_a \rangle$ -по результатам настоящей работы в диапазоне $0 < E_n < 3000$ эВ /см. ниже/.Видно, что до энергии 700 эВ из двух резонансов с большими R_a только один /185 эВ/ проявляет специфические свойства и в нейтронном канале распада. Отсутствие данных по нейтронным ширинам выше 1160 эВ не позволяет пока сравнить R_a и R_n для остальных резонансов с большими Γ_a .

Таблица 4

Е ₀ , эв	2gГ°,, мэВ	Γ _α ×10 ⁷ , эв	R n	Rα
$185,0 \pm 0,4 \\663 \pm 1 \\1486 \pm 7 \\2486 \pm 11 \\3170 \pm 14$	24,I ± I,7 3,0 ± I,5 - -	196 ± 18 173 ± 80 320 ± 80 390 ± 140 470 ± 190	4,0 0,5 - -	4,5 4,0 7 9. II

В табл. 5 приведены экспериментально реализовавшиеся частоты появления резонансов с большими Γ_{α} , и оценены вероятности таких значений для $(\Gamma_{\alpha})_{J=3}$ по статистической теории, т.е. если полные α -ширины подчиняются χ^2 -распределению

Таблица 5			
ΔЕ _в , эв	<Г _а >×10 ⁷ , эВ	$P(\Gamma_{\alpha} > \Gamma_{\alpha_{q}})$	Р _{эксп} .
3 - 500	27	0,009	0,03
500 - 1000	62	0,05	0,03
1000-1500	IOI	0,05	0,03
2000 - 2500	143	0,05	0,03
3 - 3000	44	0,018	0,025

с числом степеней свободы $\nu_{9\dot{\Phi}\dot{\Phi}}=2^{/2/}$. При проведении оценок мы брали значения средней *а*-ширины, полученные из настоящей работы в интервалах с $\Delta E_n = 500$ эВ, содержащих резонансы с большими Γ_a , а также $<\Gamma_a>$ по всему исследованному диапазону /0-3000 эВ/.

Видно, что экспериментальные вероятности существования резонансов с большими Γ_a согласуются с теоретическими, т.е. существование резонансов с большими Γ_a вполне вероятно в рамках статистической теории, и они по этому параметру не являются аномальными. Проявляется ли аномальность в корреляциях с другими каналами распада резонансов, пока проверить невозможно из-за отсутствия данных о других ширинах резонансов.

Что касается усредненных по интервалам сечений $\langle \sigma(n, \alpha) \rangle_{\Delta E_n}$ то из табл. 3 и рис. 3 видна довольно сильная флуктуация при усреднении по интервалам с $\Delta E_n = 100$ эВ /по 10-15 резонансам/. Здесь на сечение оказывают влияние отдельные резонансы /сечение в интервале 100-200 эВ в 2-4 раза выше, чем в соседних/.

Хотя при $\Delta E_n = 500$ эВ влияние отдельных резонансов менее существенно, обращают внимание сравнительно малые сечения при различных ΔE_n в первом интервале /3-100, 3-500 эВ/. Хорошего согласия экспериментального сечения и теоретического, рассчитанного по обычной формуле для средних сечений /14/, с использованием подгоночного параметра $\langle \Gamma_{\alpha} \rangle_{J=3}^{-3}$, получить

Рис. 3. Зависимость усредненных по интервалам ΔE_n сечений $\langle \sigma(n, a) \rangle$ в мкб от энергии нейтронов E_n в кэВ. Указанные ошибки соответствуют Δ_2 в табл. 3. \blacktriangle – по данным ^{/4/}; кривые – результат подгонки по статистической модели в диапазонах: нижняя – 3÷3000 эВ и верхняя – 100÷3000 эВ.

не удалось. Величина $\langle \Gamma_{\alpha} \rangle_{a}$, найденная методом наименьших квадратов из экспериментальных сечений в предположении статистической модели $\langle \Gamma_{\alpha} \rangle_{4} = 0,11 < \Gamma_{\alpha} >_{3}$, используется нами в качестве экспериментальной средней α -ширины. Значение χ^{2} по критерию Пирсона для 14 точек составляет 61 при $\langle \Gamma_{\alpha} \rangle_{J=3} = 25$ мкзВ, а для 13 /исключен интервал 3-100 эВ/ - 32 при $\langle \Gamma_{\alpha} \rangle_{J=3} = 44$ мкзВ.

Отметим, что заметных флуктуаций в энергетической зависидля ¹⁴⁷Sm не обнаружено /10/. В то же время мости Σ2gГ° имеются данные, показывающие, что $\Sigma 2g\Gamma_n^\circ$ может сильно отличаться в различных интервалах усреднения. Так, для 149 Sm при оценке по интервалам 0÷40 и 40÷100 эВ получены /15/ силовые функции $S_0 = \frac{\sum 2g \Gamma_n^{\circ}}{2\Delta E} = 2,8+1,0$ и 11,7+3,6 соответственно. Аналогично, для ¹⁸⁹La на интервалах 0-2,9 и 2,9-4,4 кэВ получены S₀ = 0,33+0,10 и 2,6+1,3. Таким образом, как в нейтронном, так и а -каналах распада нейтронных резонансов при усреднении по интервалам с 10-30 резонансами наблюдается значительная флуктуация в величинах средних нейтронных и а -ширин, статистическая вероятность которых меньше 1%. Соответствуют ли они флуктуациям, допускаемым статистической теорией, или обусловлены определенными физическими причинами - вопрос остается пока открытым. Первым шагом в этом направлении могла быть проверка наличия корреляции с другими каналами.

В заключение авторы выражают глубокую благодарность проф. В.И.Мостовому, Г.В.Мурадяну за предоставление возможности работать на пучках установки "Факел" ИАЭ, и полезные консультации, а также Ю.В.Адамчуку, Ю.Г.Щепкину и А.Я.Лунину - за большую помощь в работе, Т.С.Зваровой - за изготовление мишеней.

ЛИТЕРАТУРА

- 1. Popov Yu.P. et al. Nucl.Phys., 1972, A188, p.212.
- 2. Balabanov N.P. et al. Nucl. Phys., 1976, A261, p.35.
- 3. Popov Yu.P. In: Nuclear Structure Study with Neutrons. Akademiai Kiado, Hungary, Budapest, 1974, p.65.
- 4. Втюрин В.А. и др. ОИЯИ, РЗ-10733, Дубна, 1977.
- 5. Вертебный В.П. и др. ОИЯИ, РЗ-11392, Дубна, 1978.
- 6. Попов Ю.П. В сб.: Избранные вопросы структуры ядра. ОИЯИ, Д-9682, Дубна, 1976, т.1, с.116.
- 7. Певзнер М.И. и др. Препринт ИАЭ-2122, М., 1971.
- 8. Антонов А. и др. ОИЯИ, Р13-12146, Дубна, 1979.
- Uttley C.A., Sowerby H.G., Partick B.M. 3rd Conference Neutron Cross Sect. and Techn., Knoxville, 1971, 2, p.551.
- 10. Neutron Cross Sections, BNL-325, 1973, v.1, 3rd ed. 11. Гледенов Ю.М., Пак Хон Чер, Попов Ю.П. Бюллетень центра
- 11. Гледенов Ю.М., Пак Хон Чер, Попов Ю.П. Бюллетень центра данных ЛИЯФ, Л., 1977, вып.4, с.3.
- Frank I.M. In: Nuclear Structure Study with Neutrons. Akademiai Kiado, Hungary, Budapest, 1974, p.17.
- Соловьев В.Г. В кн.: Нейтронная физика. Обнинск, 1974, ч.1, с.70.
- 14. Lane A.M., Lynn J.E. Proc. Phys. Soc., 1957, A70, p.557.
- 15. Каржавина Э.Н., Попов А.Б. ОИЯИ, РЗ-5655, Дубна, 1971; ЯФ. 1972, 15, с.401.

Рукопись поступила в издательский отдел 12 декабря 1979 года.