

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

98/2-80

14/1-80 P3 - 12756

Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов, М.Стэмпиньски

УСРЕДНЕННЫЕ ПО РЕЗОНАНСАМ СЕЧЕНИЯ РЕАКЦИИ (n, c)

II. Исследование средних сечений реакций 147 Sm(n, a) 144 Nd и 123 Te(n, a) 120 Sn методом времени пролета

1979

P3 - 12756

Во Ким Тхань, Втюрин В.А., Корейво А., Попов Ю.П., Стэмпиньски М.

Усредненные по резонансам сечения реакции (п. а). II.Исследование средних сечений реакций 147 Sm (n.a) 144 Nd и 128 Те(п.а) 120 Sn методом времени пролета

Для получения средних характеристик а -распада компаунд-состояний методом времени пролета на импульсном реакторе ИБР-30 измерены средние парциальные сечения реакций 147Sm (n,a) 144Nd и 123Te (n,a) 120 Sn в области энергии нейтронов до 10 кэВ.

Полученные сечения вполне удовлетворительно описываются расчетной зависимостью сечения от энергии, основанной на предположении статистической теории о независимости приведенной а -ширины от энергии возбуждения компаунд-ядра. Для 147Sm в интервале 0,5 - 8,5 кэВ получено √ /D> = 16,3.10-8. Для ¹²³Те в интервале 0 - 2,5 кэВ

 $\langle \Gamma_{a_0} \rangle = /11 \pm 3/ \cdot 10^{-6}$ зВ. Для ¹⁴⁷Sm обнаружено усиление приведенной а -ширины перехода в первое возбужденное состояние по сравнению с переходом в основное. Однако величина усиления невелика и составляет $\frac{\chi_{a_1}}{\chi_{a_1}} > = 1,5 \pm 0,2.$

Y2

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

Vo Kim Thanh et al.

P3 - 12756

(n,a) Reaction Cross Sections Averaged over Resonances. II. Investigation of Average Cross Sections of the and ¹²³Te(n,a)¹²⁰Sn Reactions Using 147Sm(n.a)144Nd the Time-of-Flight Technique

Average partial cross sections of the 147 Sm(n,a) 144 Nd and 123 Te(n,a) 120 Sn reactions were measured by the time-of-flight technique at the IBR-30 pulsed reactor in the energy range up to 10 keV in order to obtain the average characteristics of compound states alpha-decay. The cross sections obtained are satisfactorily described by the eneray under assumption of independence of reduced a-width of the compound nucleus excitation energy. For 147 Sm the value <[/D>] =16.3 $\cdot 10^{\circ}$ for the energy range 0.5-8.5 keV, for ¹²³Te $<\Gamma_{a_0}>=/11+3/\cdot10^{-6}$ eV in the energy range 0-2.5 keV are obtained. For

duced a-width of the transition to the first excited state is observed than that to the ground state. The differrence thought not large

was equal to $<\gamma_{a_{1}}^{2}/\gamma_{a_{2}}^{2} > =1.5\pm0.2$.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Jaint Institute for Nuclear Research. Dubna 1979

С 1979 Объединенный институт ядерных исследований Дубна

ВВЕДЕНИЕ

Обсуждение различных методик измерения средних сечений реакции (n, a), описанных в первой части настоящей работы /1/, показывает, что метод времени пролета / как и метод времени замедления/ позволяет получать более полную информацию об энергетической зависимости средней а-ширины. Основное преимущество этого метода в том, что он дает возможность одновременно измерять средние сечения в отдельных участках сравнительно широкого интервала энергий нейтронов. При этом сечение для всех участков интервала нормируется по одному из низколежащих резонансов, параметры которого известны. Это уменьшает ошибку измерения относительного хода сечения и исключает возможность случайно пропустить локальные вариации сечения.

УСЛОВИЯ ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ

Измерения проводились по описанной ранее /1.2/ методике на импульсном реакторе ИБР-30 в режиме бустера с линейным ускорителем ЛУЭ-40. Временное разрешение составляло 48 нс/м. Параметры мишеней и данные, относящиеся к условиям измерений, приведены в табл. 1.

Таблица 1

Ядро – -ми- шень	Вид сое- динения	Толщина, мг/см ²	Обога- щение, %	Площадь мишени, см ²	Средняя мощность реактора кВт	Время измере- ,ний, ч
147Sm	Sm 203	0,2	95,3	3800	5	190
123Te	TeO2 +Te	0,53	67	3150	6	200

Энергетическая калибровка а -спектров осуществлялась по положениям максимумов а -пиков уранового источника, установленного на поверхности мишени, и по положению пи-

ков *а*-переходов исследуемого ядра в известных резонансах. Учет фона производился по амплитудным спектрам путем экстраполяции его хода со стороны низких энергий^{/2/}. Экспериментальные *а*-спектры реакции ¹⁴⁷Sm(n, *a*) ¹⁴⁴Nd в килоэлектронвольтной области энергий приведены на рис. 1. На <u>рис. 2</u> представлены *а*-спектры реакции ¹²³ Te(n, *a*) ¹²⁰ Sn. Там же для сравнения приведен спектр в резонансе с $E_0 =$ = 96 эВ ¹²³ Te. Средние сечения реакции (n, *a*) находились при помощи выражения /8/ работы /1/:

5

В качестве опорных мы использовали резонансы $E_0 = 24,1$ зВ 123 Te и $E_0 = 3,42$ зВ ¹⁴⁷ Sm, параметры которых известны /2.3/

Зависимость $\Phi(\mathbf{E}_n) = \Phi_0 \mathbf{E}_n^{-0.9}$ была взята из работы $^{/4/}$. Погрешность величины сечений в основном определяется статистической ошибкой и неточностью определения параметров опорного резонанса. Погрешность парциальных сечений, кроме того, включает в себя ошибку разделения а -переходов.

Величины <Га, / D> J были получены из соответствующих полных и парциальных сечений при помощи выражения /2/ работы /1/:

$$\left\langle \frac{\Gamma_{\alpha_{f}}}{D} \right\rangle_{J} = \frac{\left\langle \sigma_{n,\alpha_{f}} \right\rangle 2 \int_{\Delta E_{n}} \Phi(E_{n}) dE_{n}}{\int_{\Delta E_{n}} \Phi(E_{n}) \lambda^{2} \frac{\langle \Gamma_{n} \rangle \langle E_{n} \rangle}{\langle \Gamma \rangle \langle E_{n} \rangle} F(E) dE_{n}}$$

В погрешность величины <Га1/DD, помимо упомянутых выше экспериментальных ошибок сечения, включалась погрешность, обусловленная конечным числом резонансов на интервале усреднения, относительная величина которой равна

 $\Delta_{\mu_{\rm f}} = \sqrt{2/\mu_{\rm f}} ,$ /1/

щади (Na,) а-перехода на конечное состояние f.

Эффективное число степеней свободы для средней полной а - ширины, как нетрудно убедиться /см. приложение 2 рабо-TE

$$\mu_{t} = \frac{1}{g_{3}^{-}} \frac{\left\{\sum_{f} \sum_{J^{\pi}} g_{J^{\pi} \ell}^{2} P_{\ell, f}\right\}^{2}}{\sum_{f} \sum_{J^{\pi}} g_{J^{\pi} \ell}^{3} P_{\ell, f}^{2}} \cdot \mu_{0} , \qquad /2/$$

где µ0 - значение µ1 для перехода в основное состояние дочернего ядра.

Полученные нами данные для ¹⁴⁷Sm приведены в табл. 2, для ¹²³ Те - в табл. 3. Особенность последней реакции в том, что, поскольку расстояние между основным и первым возбужденным состояниями велико /1,2 МэВ/, то а-переходы на возбужденные состояния подавлены примерно в сто раз, и полная а -ширина этой реакции есть, фактически, парциальная ширина а -перехода в основное состояние.

Значение $<\Gamma_{a_+}/D>_J$ при $E_n = 30$ кэВ, приведенное в табл. 2 в скобках, было нами скорректировано, во-первых, с учетом изменения проницаемости кулоновского барьера за

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							15-11	16		· L、			v2.
	-FOT	DE n KaB	,×.	Nois	Naco	Nai	10 Saper	100'001	10. 6apr	10.8	(D)	(D/3	< daus)
67 0,25-0,5 13 127±12 56±8 49±7 590±90 260±50 14±4 6±3 5,5±2 1,8±1,2 0,7-1,5 41 280±25 140±20 100±20 390±60 160±35 16±3 5,5±2 1,6±0,6 7 1,7-2,3 49 280±25 100±20 390±60 160±35 16±4 9±3 7±2 1,6±0,6 7 1,7-2,3 49 7 155±30 70±20 590±50 55±15 1,5±0,45 67 1,5-3,3 92 170±20 87±12 64±12 230±35 100±20 51±4 1,5±0,45 67 1,5-3,3 92 170±20 87±12 100±30 7±1,8 1,5±0,45 67 1,5=3,13 64±12 54±16 10±20 7±1,8 1,6±0,45 67 1,5=3,43 10±20 87±16 10±3 7±1,8 1,6±0,45 67 1,5=3,43 10±20 7±1 160±3 7±2 2,5±5,4 1,6±0,45<	-	0-0,2	2							946	6;544	2,5±1,5	I,5 [±] 2
0.7-1.5 4I 280±25 140±20 100±80 180±40 150±35 180±40 150±36 150±60 150±60 150±60 150±60 1.5±0.45 1.5±0.45 1.5±0.45 // 1.7-2.3 49 1.7-2.3 49 1.5±30 70±20 55±15 13±3 6±2.2 4.5±1.4 1.5±0.45 65 1.5-3.3 92 170±20 87±12 50±30 70±20 55±15 10±3 7±1.4 1.5±0.45 65 3.3-9.5 247 150±30 70±20 70±20 55±15 28±9 7±2.4 1.46±0.45 65 1.5-3.3 247 150±30 70±20 75±15 12.5±4 10±2.45 1.46±0.45 65 10-20 750 75±15 75±16 75±5.4 10±2.45 1.46±0.45 65 10-20 750 75±16 75±5.4 10±2.45 1.46±0.45 65 10-20 750 75±15 12.5±5±4 10±2.45 1.45±0.45 <td< td=""><td></td><td>0,25-0,5</td><td>I3</td><td>127±12</td><td>5648</td><td>4827</td><td>590±90</td><td>260450</td><td>220±50</td><td>144</td><td>643</td><td>5,542</td><td>I,8±I,2</td></td<>		0,25-0,5	I3	127±12	5648	4827	590±90	260450	220±50	144	643	5,542	I,8±I,2
// I,7-2,3 49 I55430 70420 55±15 1,5 ² ,2 4,5 [±] 1,4 I,5 [±] 0,45 66 I,5-3,3 92 170420 87±12 64±12 230±35 110±25 90±20 21±4 10±3 7±1,8 1,5 [±] 0,45 66 3,3-6,5 247 150±30 70±11 55±11 10±25 28±9 12,5 [±] 4 1,6 [±] 0,45 66 10-20 750 70±11 55±11 160±50 70±20 55±15 28±9 12,5 [±] 4 1,6 [±] 0,45 66 10-20 750 <20	Q.	0,7-I,5	17	280±25	140220	110220	390±60	180+40	160±35	1844	effe	123	I,6±0,6
07 1,5-3,3 92 170#20 87#12 54#12 230#35 110#25 90#20 21#4 10#3 7#1,8 1,48#0,45 06 3,3-8,5 247 150#30 70#11 55#11 160#50 70#20 55#15 28#9 12,5#4 10#2,8 1,6#0,45 06 3,3-8,5 750 700 750 750 10#2,8 1,6#0,45 07 10-20 750 720 70#2 750 1,6#0,45 07 10-20 750 720 55#15 23,5#4 10#2,8 1,6#0,45 07 10-20 750 720 55#15 23,5#5,9 23,5#5,9 07 10 ³ 32#8 23,5#5,9 23,5#5,9 23,5#5,9 1,3#5,9	1	I.7-2,3	49				I55±30	70420	55±15	I3 1 3	642,2	4,51,4	I,5±0,45
07 3,3-8,5 247 150±30 70±11 55±11 160±50 70±20 55±15 28±9 12,5±4 10±2,8 1,6±0,45 06 10-20 750 <20		I,5-3,3	32	170420	87112	64±12	230435	110 ^{±25}	90±20	2144	1043	7±1,8	I,48±0,45
10-20 750 < 20 < 100 < 50 3/ 8-70 10 ³ 32 [±] 8 23,5 [±] 5,9 1 10 ³ 32 [±] 8 23,5 [±] 5,9	10.	3,3-8,5	247	I50 ^{±30}	11707	55 [±] 11	160 [±] 50	70±20	55 [±] 15	28±9	12,544	1042,8	I,6±0,45
y/ 8-70 IO ³ 32年8 23,555,9 .(I3±5)≝)	10T.	I0-20	750	< 20			< I00			<50			
	18	8-70	103				3248			23,5±5, (I3±5) [#])	0		

2

19 2,04 барьера

7

Таблица 3

АЕ в кэв	μ	Nao	< _{σп,до} > 10 ⁻⁶ барн	<Γ _{α0} /D> _J 10 ⁻⁸	<Г _{ао} > 10 ⁻⁶ эВ
0-0,62*	6	1		1,8+0,9	7,5+4,5
0,5-1,25	22	150+50	80+30	3,1+1,5	13+6
1,25-2,5	40	65+20	40+15	3,5+1,5	14+6
2,5-5	80	<70	<45	< 7	< 30
5-10	165	< 45	< 30	< 8	<35
10-20	330	<60	< 30	<14	<60

*По данным работы /2/.

счет кинетической энергии захватываемого нейтрона, составившего 10%, и, во-вторых, с учетом вклада Р-нейтронов, что уменьшает величину (Γ_a/D) на /33+11/%. Заметим, что неопределенность этого вклада связана с сильным различием величин Р-волновой нейтронной силовой функции, полученных разными авторами /см., напр., ^{/9, 10/}/.

В последней колонке табл. 2 даны отношения приведенных а -ширин /см. /6/ и /8/ в работе /1//:

$$\frac{\langle \gamma_{a_{1}}^{2} \rangle}{\langle \gamma_{a_{0}}^{2} \rangle} = \frac{N_{a_{1}}}{N_{a_{0}}} = \frac{g_{3}^{2} P_{3,0}}{g_{3}^{2} (P_{1,1} + P_{3,1} + P_{5,1}) + g_{4}^{2} (P_{3,1} + P_{5,1})} .$$
 /3/

Остановимся несколько подробнее на погрешности величины отношения. Так же как и погрешность средних а-ширим, она, помимо ошибок экспериментального определения $N_{\alpha f}$, включает в себя погрешность, связанную с конечным числом резонансов, но поскольку эта величина есть отношение двух случайных величин, флуктуирующих по закону χ^2 , то флуктуации величин отношения описываются распределением Фишера или v^2 /см. $^{5/}$ /, дисперсия которого определяется выражением

$$D_{\mu_1,\mu_0} = \frac{2\mu_0^2(\mu_1 + \mu_0 - 2)}{\mu_1(\mu_0 - 2)^2(\mu_0 - 4)} \cdot (4/4)$$

Поскольку точное определение погрешности сложного распределения, включающего в себя как v², так и нормальное распределение экспериментально измеряемой площади *а* -пика, весьма затруднительно, в первом приближении считаем, что погрешность величины отношения определяется выражением

$$\Delta_{\rm OTH} = \sqrt{\Delta_{\rm SKC}^2 + D_{\mu_{\rm I}}\mu_0} .$$
 /5/

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

По данным о полных *а*-ширинах ¹⁴⁷Sm, являющимся наиболее точными, нами была проверена справедливость гипотезы о постоянстве средней *а*-ширины во всем исследованном диапазоне энергий. Подгонка по критерию χ^2 дала $\chi^2_{\min} = 7,46$ по шести точкам при $\langle \frac{\Gamma_{a_t}}{D} \rangle_J = 16 \cdot 10^{-8}$, что для гипотезы о постоянстве $\langle \frac{\Gamma_{a_t}}{D} \rangle_J$ достоверно на 60%. Качество подгонки демонстрирует <u>рис. 3</u> /треугольники и сплошная линия/. Как можно видеть из <u>табл.2,3</u> и <u>рис. 3</u>, данные о парциальных *а* -ширинах ¹⁴⁷Sm и ¹²³Te не противоречат сделанному выше выводу о постоянстве величин $\langle \Gamma_a/D \rangle$.

В целом результаты, полученные для обоих ядер, в совокупности с данными по полным a-ширинам других ядер в отдельных резонансах ^{/11/}, подтверждают заключение об отсутствии a-кластерных уровней с малыми ширинами. Это означает, что если a-кластерные уровни поверхностной или объемной природы и существуют в компаунд-ядре, то они сильно "размазаны" по его уровням ^{/12/}.

В последней колонке табл. 2 приводятся отношения приведенных a-ширин ¹⁴⁷ Sm для переходов в первое возбужденное и основное состояния дочернего ядра. Можно видеть, что хотя погрешности величин отношения в отдельных интервалах велики, вся совокупность данных указывает на возможное отличие этого отношения от единицы, что согласуется с качественным предсказанием полумикроскопической теории ядра^{/13/} об усилении *a*-переходов на однофононное состояние четно-четных ядер по сравнению с *a*-переходами на основное. Однако, как можно видеть, если такое усиление и существует, то оно невелико, и, по-видимому, не превышает двукратной величины.

Рис. 3. Усредненные сечения реакции 147 Sm(n, a) 144 Nd в зависимости от энергии нейтронов. Полученные в данной работе полные сечения показаны темными треугольниками. Темные квадратики и кружочки - соответственно парциальные сечения a_0 и a_1 -переходов. Аналогичные светлые обозначения - соответствующие данные работы 77 . Светлым ромбом показано полное сечение, полученное в работе 87 . Сплошной линией показана теоретическая зависимость полного сечения от энергии, соответствующая минимуму χ^2 . Пунктирная кривая расчет по данным работы 97 (S₁ \leq 0.1 \cdot 10 $^{-4}$), штрихпунктирная по данным работы $^{/10/}$ (S₁ = 0.58 \cdot 10 $^{-4}$).

ЗАКЛЮЧЕНИЕ

Данные измерений вместе с экспериментами, проведенными на скандиевом фильтре $^{7/}$ и нейтронах с энергией 30 кэВ из реакции 7 Li(p, n) 7 Be $^{/8/}$, являются началом нового этапа в исследованиях реакции (n, α). Они позволили на два порядка расширить диапазон энергии нейтронов – от сотен эВ до десятков кэВ. Таким образом, появилась возможность существенно увеличить точность определения средних α -ширин и исследовать их энергетическую зависимость.

Точность, достигнутая в данных измерениях для большинства исследованных интервалов, как для ¹⁴⁷ Sm, так и для ¹²⁸ Te, примерно в два раза хуже, чем предельно достижимая точность метода, обусловленная конечным числом резонансов. Дальнейшие исследования средних сечений требуют не только увеличения статистической точности и энергетического разрешения, особенно при больших энергиях, но и дальнейшего расширения исследуемого интервала энергий нейтронов. В то же время увеличение точности получаемых а-ширин свыше 20% требует более точных данных о Р-волновой нейтронной силовой функции. Ближайшей перспективой в этих исследованиях, кроме того, является расширение круга изучаемых ядер /тем более, что методические возможности для этого уже созданы/. Поэтому особенно интересным представляется продолжение исследований на более мощном реакторе.

В заключение авторы считают своим приятным долгом выразить благодарность Т.С.Зваровой, изготовившей мишени большой площади, Госфонду стабильных изотопов, предоставившему разделенные изотопы ¹⁴⁷ Sm и ¹²³ Te с высокой степенью обогащения, К.Долецкому и К.Недведюку за помощь в проведении измерений, а также В.И.Фурману за плодотворные дискуссии.

ЛИТЕРАТУРА

- 1. Во Ким Тхань и др. ОИЯИ, РЗ-12755, Дубна, 1979.
- 2. Во Ким Тхань и др. ОИЯИ, РЗ-11644, Дубна, 1978.
- 3. Втюрин В.А. и др. ОИЯИ, РЗ-8800, Дубна, 1975.
- 4. Голиков В.В. и др. ОИЯИ, РЗ-3736, Дубна, 1971.
- Корн Г., Корн Т. Справочник по математике. "Наука", М., 1973, с.623.
- Вильгельм И. и др. Изв. АН СССР, сер.физ., 1971, 35, с.1542.
- 7. Вертебный В.П. и др. ОИЯИ, РЗ-11392, Дубна, 1978.
- 8. Втюрин В.А. и др. ОИЯИ, РЗ-10733, Дубна, 1977.
- 9. Кононов В.Н. и др. ЯФ, 1977, 26, с.947.
- 10. A.R. de L.Musgrove AAEC/E 277 (1973).
- 11. Антонов А. и др. ОИЯИ, РЗ-10372, Дубна, 1977.
- Попов Ю.П., Фурман В.И. В сб.: II Международная школа по нейтронной физике. ОИЯИ, ДЗ-11787, Дубна, 1978, с.390.
- 13. Соловьев В.Г. ЯФ, 1971, 13, с.48.

Рукопись поступила в издательский отдел 31 августа 1979 года.