

Ю.П.Попов, А.М.Суховой, В.А.Хитров, Ю.С.Язвицкий

ИЗУЧЕНИЕ ФЛУКТУАЦИЙ ИНТЕНСИВНОСТЕЙ ГАММА-ПЕРЕХОДОВ ПРИ ЗАХВАТЕ НЕЙТРОНОВ В РЕЗОНАНСАХ ⁹⁵ Мо и ¹⁵⁷ Gd

Попов Ю.П. и др.

Изучение флуктуаций интенсивностей гаммапереходов при захвате нейтронов в резонансах ⁹⁵ Мо и ¹⁵⁷Gd

Приводятся результаты анализа статистических свойств интенсивностей вторичных гамма-переходов, обусловленных резонансным захватом нейтронов в ⁹⁵ Мо и¹⁵⁷Gd. Обнаружено, что интенсивности вторичных гамма-переходов составного ядра ¹⁵⁸Gd флуктуируют сильнее, чем это предсказывает статистическая модель каскадного гамма-распада. В случае ⁹⁶ Мо имеется значительная вероятность корреляции приведенных нейтронных ширин s-резонансов с интенсивностями гаммапереходов с коллективного уровня J[#] = 3⁻ с энергией 2,2345 МэВ. Измерения проводились методом времени пролета на импульсном реакторе ИБР-30. В качестве гамма-спектрометра использовался германий-литиевый полупроводниковый детектор.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1979

Popov Yu.P. et al.

P3 - 12750

. .

Study of Fluctuations of Gamma-Transition Intensities at the Neutron Capture in ⁹⁵ Mo and ¹⁵⁷ Gd Resonances

Results of analysing the statistical properties of secondary gamma-transition intensities due to resonance neutron capture in 95 Mo and 157 Gd are given. It has been discovered that the secondary gamma-transition intensities of 158 Gd compound nucleus fluctuate stronger than that predicted by a statistical model of cascade gamma-transition. In the case of 96 Mo a probability exists for the correlation of reduced neutron widths of s-resonances with intensities of gamma-transitions from the collective level J=3⁻ with 2.2345 MeV energy.The measurements were performed by the time-of-flight method on a pulsed IBR-30 reactor.As a gamma-spectrometer a Ge(Li) semiconductor detector was implemented.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

1. ВВЕДЕНИЕ

Исследуя мгновенное гамма-излучение при захвате нейтронов в изолированных резонансах $^{149}\,\rm Sm$, $^{111}\,\rm Cd$, $^{113}\,\rm Cd$,',' мы заметили, что процессы каскадного гамма-распада у составных ядер $^{150}\,\rm Sm$ развиваются в некотором смысле иначе, чем у ядер $^{112}\,\rm Cd$ и $^{114}\,\rm Cd$: если дисперсии отношений интенсивностей гамма-переходов между низколежащими состояниями ядер $^{112}\,\rm Cd$ и $^{114}\,\rm Cd$ не превышают значений, предсказанных по статистической теории, то экспериментальные значения дисперсий у $^{150}\,\rm Sm}$ заметно больше расчетных. Завышенные в сравнении с расчетными дисперсии относительных интенсивностей гаммапереходов между низколежащими состояниями были обнаружены также на ядрах-мишенях $^{147}\,\rm Sm$ 22 , $^{175}\,\rm Lu$ и $^{176}\,\rm Lu$ 32 .

Такое расхождение теории и эксперимента можно объяснить исходя из предположения о том, что гамма-переходы с резонансных состояний на часть уровней при достаточно высоких энергиях возбуждения идут с гораздо большей интенсивностью, чем на соседние уровни того же спина и четности. Физическая природа такого усиления интенсивности гамма-переходов может быть связана с большим вкладом в волновые функции части уровней тех же простых конфигураций, которые проявляются при взаимодействии нейтронов с ядрами.

Некоторые детали такой трактовки были рассмотрены в работе^{/4/}. В случае ядер лютеция и самария, находящихся в области 4S -максимума нейтронной силовой функции, естественно ожидать проявления одночастичных компонент состояний. Усиление интенсивности первичных гамма-переходов лишь на часть промежуточных состояний эквивалентно сокращению эффективного числа каскадов и уменьшению "видимой" при гамма-распаде плотности промежуточных состояний в сравнении с общей плотностью уровней. Оценки, проведенные для ¹⁵⁰ Sm, показали, например, что согласие между экспериментальными и расчетными значениями дисперсий отношений интенсивностей гамма-переходов может быть достигнуто при уменьшении "эффективной" плотности уровней на порядок.

С 1979 Объединенный институт ядерных исследований Дубна

В данной работе продолжается изучение отношений интенсивностей гамма-переходов в резонансах ядер в районе максимума и минимума силовых функций для ^в-нейтронов. Выбраны сферическое ядро ⁹⁵Мо и деформированное ядро ¹⁵⁷Gd.

2. ЭКСПЕРИМЕНТ И ОБРАБОТКА ДАННЫХ

Измерения гамма-спектров в изолированных резонансах ⁹⁵ Мо ¹⁵⁷ Gd были выполнены на пучке нейтронов импульсного реактора ИБР-30, работавшего в режиме бустера-размножителя. Нейтронные резонансы фиксировались по методу времени пролета при разрешении 70 нс/м. Спектры гамма-лучей измерялись с помощью Ge(Li)-детектора с энергетическим разрешением около 5 кэВ для $E_{\gamma} \sim 800$ кэВ. Использовались образцы из разделенных изотопов ⁹⁶⁵ Мо и ¹⁵⁷ Gd в форме их окисей. Толщина образцов составляла 2,6·10⁻⁸ ат/б и 1,2·10⁻³ ат/б для ⁹⁵ Мо и ¹⁵⁷Gd соответственно. Угол между нормалью к поверхности образца и направлением на детектор составлял в среднем 30° при измерениях с молибденом и 12° при измерениях с гадолинием.

Двумерный спектр /время пролета - амплитуда импульса/ записывался на магнитную ленту. По окончании цикла измерений производилась группировка данных, и для каждого изолированного резонанса получался свой амплитудный спектр. По плошадям пиков этих спектров были найдены интенсивности наиболее сильных вторичных мягких гамма-переходов /5 переходов для составного ядра ⁹⁶ Мо и 9 переходов для ¹⁵⁸Gd /. /Подробно процедура обработки экспериментальных данных была изложена нами в работе /1/ /. Для 96 Мо была определена также интенсивность прямого гамма-перехода с Еу = 6919 кэВ, заселяющего состояние 3 с октупольным типом возбуждения. На рис. 1 и 2 представлены схемы энергетических уровней ⁹⁶ Мо и ¹⁵⁸Gd с исследованными гамма-переходами. В значения интенсивностей были внесены поправки на влияние соседних резонансов с учетом функции разрешения и энергетической зависимости эффективного сечения захвата. Выбранная геометрия /пучок-образец-детектор/ позволяла не учитывать влияния поглощения гамма-лучей на флуктуации отношений их интенсивностей в различных резонансах.

При дальнейшей обработке вычислялись следующие величины:

а/ R - отношения интенсивностей гамма-переходов к интенсивностям наиболее сильных переходов: с $E_{\gamma}=182$ и $E_{\gamma}=944$ кэв для ¹⁵⁸ Gd и с $E_{\gamma}=720$ и $E_{\gamma}=778$ кэв для ⁹⁶ Mo; б/ $\sigma_{\rm PT}^{\rm P}$ - дисперсии отношений R, обусловленные флуктуацией интенсивностей первичных гамма-переходов из резонансов

с данными значениями спина J, иначе говоря, из полной экспериментальной дисперсии исключалась часть, связанная со статистикой отсчетов и другими экспериментальными погрешностями /метод описан в работе /1/;

в/ усредненные по резонансам данного спина J значения $<\!\!\frac{\sigma_{P\,T}}{<\!\!R\!>}\!\!_{J}$.

Найденные значения $\langle \frac{\sigma_{PT}}{\langle R \rangle} \rangle_J$ сравнивались с результатами расчетов по статистической модели. Методика теоретических расчетов величин $\langle \frac{\sigma_{PT}}{\langle R \rangle} \rangle_J$ описана в работах ^{/8,3/}, поэтому здесь отметим лишь использованные нами исходные предпосылки.

а/ Учитывались только гамма-переходы мультипольностей E1,E2 и M1.

б/ Энергетическая зависимость парциальных радиационных ширин принята по модели Вайскопфа $\Gamma_{y}(E_{y}) \sim E_{y}^{2L+1}$ для \dot{E}_{2}^{2-} и M1 -переходов и по модели гигантского электрического ди-

4

-5

польного резонанса /ГЭДР/ Γ_{γ} (Е $_{\gamma}$)- $\frac{E_{\gamma}^{*}}{(E_{G}^{2}-E_{\gamma}^{2})^{2}+\Gamma_{G}^{2}E_{\gamma}^{2}}$ для E1-

переходов. Е и Γ_{G} - энергия и ширина ГЭДР соответствен-но. Расчеты для ⁹⁶ Мо выполнены при Е_G = 16,2 МэВ и Γ_{G} = = 6,3 МэВ^{/6/}. Для ¹⁵⁸Gd учтено расщепление ГЭДР и приняты следующие значения параметров 7': $E'_{y} = 11,7$ МэВ, $\Gamma'_{a} = 2,6$ МэВ, $E''_{C} = 14,9$ MaB, $\Gamma''_{C} = 3,8$ MaB.

в/ Отношения средних приведенных ширин гамма-переходов различных мультипольностей определены по экспериментальным данным о первичных гамма-переходах на низколежащие состояния. Получено Γ_{γ} (E1): Γ_{γ} (M1): Γ_{γ} (E2)=1:0,15:0,005 для ¹⁵⁸ Gd и Γ_{γ} (E1): Γ_{γ} (M1): Γ_{γ} (E2) = 1:0,1:0,0015 для ⁹⁶ Mo.

г/ В области энергий от энергии связи до значения Ef для плотности уровней использована формула

$$\rho(\mathbf{E}, \mathbf{J}) = \frac{2\mathbf{J}+1}{2\sigma^2} \frac{1}{\mathbf{T}_0} \exp\left[-\left(\frac{(2\mathbf{J}+1)^2}{8\sigma^2} + \frac{\mathbf{E}_0 - \mathbf{E}}{\mathbf{T}_0}\right)\right]$$

Значения параметра То приняты равными 0,73 и 0,6 МэВ для ⁹⁶Мо и ¹⁵⁸Gd соответственно. Е₀ определялось путем нормировки формулы по расстоянию между резонансами /8/. Параметр обрезания спина $\sigma = 5$. При энергиях возбуждения ниже значений Е, / Е = 1,9 МэВ для ¹⁵⁸ Gd и Е = 2,8 МэВ для ⁹⁶ Мо / использовалась экспериментальная схема уровней и экспериментальные значения вероятностей гамма-переходов / 7,9/.

д/ Принято, что распределение парциальных ширин первичных гамма-переходов описывается законом Портера-Томаса

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На <u>рис. 3</u> изображены отношения $R = \frac{I(182 \ \kappa B)}{I(944 \ \kappa B)}$ для резонансов ¹⁵⁷Gd и экспериментальные погрешности этих отношений. Горизонтальные коридоры на рисунке соответствуют значениям $<\mathbf{R}>_{\mathbf{J}}$ \pm $\sigma_{\mathbf{PT}}$, где $<\mathbf{R}>_{\mathbf{J}}$ - среднее экспериментальное значение для резонансов данного спина, а $\sigma_{\rm PT}$ - значение среднего квадратического отклонения <R>, вычисленное по статистической модели.

Значения спинов резонансов, определенные по отношению R, совпадают с данными работы /11/. Исключение составляет лишь резонанс Ео = 96,6 эВ, которому по нашим данным следует приписать спин Ј=2.

<u>Рис. 4</u> показывает отношения $R = \frac{I(737 \text{ кзB})}{I(778 \text{ кзB})}$ для резонансов Мо. Для этого ядра не удалось провести идентификацию спинов резонансов, поэтому использовались значения спинов, приведенные в компиляции /8/.

Рис. 3. Отношения интенсивностей гамма-переходов в 15704 R = 1(182) / I(944)в зависимости от энергии резонансов / E . - эВ/. × - дублеты, не разрешенные нами.

В табл. 1 сопоставлены теоретические и экспериментальные значения величины $<\frac{\sigma_{PT}}{<R>}$, У ядра ⁹⁶ Мо, находящегося в минимумє силовой функции для s-нейтронов, экспериментальное

значение $\langle \frac{\sigma_{PT}}{\langle R \rangle} \rangle_{J}$ не превышает теоретического. У ядра же Gd экспериментальные значения этой величины больше теоретических.Таким образом, подтвердилось наблюдавшееся ранее различие в величине флуктуаций интенсивностей вторичных гамма-переходов для ядер из области максимума и минимума силовых функций для s -нейтронов. Как отмечалось во введении, это обстоятельство можно рассматривать как косвенное подтверждение влияния одночастичных конфигураций на процессы каскадного гамма-распада резонансных состояний.

 $\frac{\text{Таблица 1}}{3 \kappa спериментальные} < \frac{\sigma_{PT}}{< R_{>}}$ и теоретические $< \frac{\sigma_{M}}{R_{M}} >$ значения флуктуаций отношений интенсивностей вторичных гамма-переходов /в процентах/ для резонансов со спином J

Ядро	J	$< \frac{\sigma_{\rm PT}}{< \rm R>}$	$< \frac{\sigma_{\rm M}}{{ m R}_{\rm M}} >$	J	$< \frac{\sigma_{\rm PT}}{< {\rm R}^{>}} >_{\rm J}$	$< \frac{\sigma_{\rm M}}{\rm R_{\rm M}} >$
⁹⁶ Mo	2	2,0+3,9	14	3	6,1+1,9	9,9
¹⁵⁸ Gd	1	6,1+2,2	1,9	2	4,0+0,8	1,4

Таблица 2

Средние значения отношений интенсивностей вторичных гаммапереходов с энергиями $E_{\gamma} = 737$ и $E_{\gamma} = 778$ кэВ в резонансах молибдена-95

J	l	Расчет	Эксперимент
3	0	0,04	0,040+0,007
2	0	0,04	0,020+0,005
1-4	1	0,06*	-0,0006+0,0048

* Усреднено по всем возможным значениям спинов р-резонансов. Дальнейший анализ интенсивностей гамма-переходов в ядре 96 Мо выявил отступления от статистической модели реакции радиационного захвата нейтронов. В табл. 2 приведены отношения интенсивности перехода с $E_{\gamma} = 737$ кэВ, идущего с коллективного октупольного состояния $J^{\pi} = 3^{-}$ с энергией возбуждения $E_{f} = 2,2345$ МэВ, к интенсивности перехода $E_{\gamma} = 778$ кэВ между первым возбужденным и основным состоянием ядра ⁹⁶ Мо /см. <u>рис. 1</u>/. Расчетные значения этих отношений одинаковы для s -резонансов обоих спинов и несколько выше для P -резонансов. Экспериментальные значения для s -резонансов согласуются с расчетными, но для p -резонансов они на порядок меньше расчетных. Это означает, что в процессе гамма-распада p -резонансов почему-то не заселяется коллективный уровень 3, хотя по предсказаниям статистической теории он должен интенсивно заселяться.

С уровнем 3⁻, $E_f = 2,2345$ МэВ, связано еще одно отступление от статистической теории. Как известно, она отрицает возможность корреляции парциальных ширин различных каналов реакции. Анализ отношений R для интенсивностей перехода $E_y = 737$ кэВ, идущего с уровня 3⁻, указывает на существование корреляции между парциальными радиационными ширинами и приведенными нейтронными ширинами резонансов. Наглядное представление о наличии корреляции дает <u>рис. 5</u>, где изображены отношения $R = \frac{I(737 \text{ кзВ})}{I(778 \text{ кзВ})}$ в зависимости от приведенных

Рис. 5. Отношение интенсивностей вторичных гамма-переходов $\mathbf{R} = \mathbf{I}(737) / \mathbf{I}(778)$ в зависимости от значения Γ_n° s -резонансов / Γ_n° - мэВ/.

8

нейтронных ширин резонансов $\Gamma_n^{\rm o}$. Коэффициент корреляции, определенный по 12 резонансам обоих спинов, $\rho(R,\Gamma_n^{\rm o})=0,85$. Для восьми резонансов с ${\bf J}^{\pi}={\bf 3}^+$ он равен 0,75. Вероятность случайного появления значений, равных экспериментальным или превышающих их при истинной нулевой корреляции, равна 1,5 · 10⁻⁶ в первом случае и 2 · 10⁻³ – во втором. Корреляция с нейтронными ширинами возможна для прямых гамма-переходов на коллективный уровень 3. Недостаточная статистическая точность не позволила определить интенсивности прямого перехода / $E_{\gamma}=6919$ кэВ/ на этот уровень для индивидуальных резонансов с $\Gamma_n^{\rm o}<15$ мэВ, поэтому амплитудные спектры были просуммированы в интервалах $\Gamma_n^{\rm o}<6,4$ мэВ и 6,6 мэВ $<\Gamma_n^{\rm o}<14$ мэВ $^{78/}$.

На <u>рис. 6а</u> приведены отношения $R = \frac{I(6919 \, \text{кэB})}{I(778 \, \text{кэB})}$ в зависимости от Γ_n° . Как видно из рисунка, существует некоторая вероятность корреляции Γ_n° и интенсивности первичного перехода $E_{\gamma} = 6919$ кэВ на уровень 3. Для сравнения на <u>рис. 66</u> изображены отношения $R = \frac{I(6919 \, \text{кэB})}{I(737 \, \text{кэB})}$ в зависимости от Γ_n° . Это отношение в пределах экспериментальных погрешностей не зависит от величины Γ_n° , поэтому можно заключить, что интенсивности каскадов гамма-переходов на это состояние, видимо, также коррелируют со значением Γ_n° .

Корреляция приведенных нейтронных ширин резонансов и интенсивностей гамма-переходов с коллективного уровня 3, возможно, не является исключительной особенностью ядра ⁹⁶ Мо. Обработка данных для пяти нижних резонансов $J^{\pi} = 1^{+}$ ядра ¹¹¹Cd, полученных в работе ^{/1/}, показала, что и в этом

случае вероятна корреляция Γ_n° и относительной интенсивности гамма-перехода, разряжающего уровень $J^{\pi} = 3^{-}$. Соответствующие данные изображены на <u>рис.</u> 7. Полученное значение коэффициента корреляции $\rho(\Gamma_n^{\circ}, \mathbb{R}) = 0,73$. Вероятность случайного появления $\rho \ge 0,73$ при истинной нулевой корреляции $p = 1,7 \cdot 10^{-2}$.

Представляет интерес исследовать, существуют ли аналогичные корреляции и для других ядер из области минимума силовой функции для s-нейтронов, тем более, что при захвате тепловых нейтронов ядрами 87 Sr , 91 Zr , 95,97 Mo , 131 Xe и 137 Ba обнаружены сильные прямые переходы на состояния J^T = 3^{-712/}

Наличие корреляций между Γ_n° и отношениями интенсивностей R означало бы, что и в области минимума силовой функции для s -нейтронов в процессах радиационного захвата заметна роль простых конфигураций в структуре ядерных состояний.

4. ЗАКЛЮЧЕНИЕ

Суммируем коротко результаты данной работы.

1. При исследовании гамма-излучения от резонансного захвата нейтронов ядрами ⁹⁵ Мо и ¹⁵⁷Gd был подтвержден вывод работы^{/1/} о том, что характер флуктуаций заселенности низколежащих состояний при каскадном гамма-распаде резонансных состояний различен для ядер из области максимума и ядер из области минимума силовой функции для s -нейтронов.

2. Обнаружено, что гамма-распад составного ядра ⁹⁶ Мо, проходящий через коллективное октупольное состояние с $J^{\pi} = 3$ и $E_f = 2,2345$ МэВ, не подчиняется закономерностям статистической теории. Отступление от статистической теории выражается в наличии корреляций между заселенностью уровня 3 и Γ_n° резонансов, а также в аномально малом заселении уровня 3 при захвате нейтронов в р-резонансах. Возможно, что корреляции Γ_n° и заселенности состояния 3 имеются также у ядра 112 Cd.

Отмеченные выше факты пока еще не нашли теоретического объяснения, поэтому нам представляется целесообразным продолжить исследования в указанных направлениях с целью получения новых фактов и достижения их большей достоверности.

Авторы выражают благодарность Б.П.Осипенко и Э.В.Васильевой за изготовление Ge(Li) - детекторов.

ЛИТЕРАТУРА

- 1. Попов Ю.П. и др. ОИЯИ, РЗ-11243, Дубна, 1978.
- 2. Алдеа Л. и др. ОИЯИ, РЗ-7885, Дубна, 1974.
- 3. Алдеа Л. и др. ОИЯИ, РЗ-10012, Дубна, 1976.
- Aldea L. et al. Czech.J.Phys., B, 1978, B28, p.17.
- 4. Попов Ю.П. ОИЯИ, Р4-10805, Дубна, 1977.
- 5. Axel P. Phys. Rev., 1962, 126, p.671.
- 6. Beil H. et al. Nucl. Phys., 1974, A227, p.427.
- 7. Nuclear Data Sheets, 1974, v.12, No.2, p.267.
- 8. Neutron Cross Sections, 3rd Ed., 1973, vol.1, BNL-325.
- 9. Nuclear Data Sheets, 1972, v.8, No.6, p.599.
- 10. Porter C.E., Thomas R.G. Phys.Rev., 1956, 104, p.483.
- 11. Каржавина Э.Н. и др. ОИЯИ, РЗ-6948, Дубна, 1973.
- Kane W.R. In: Neutron Capture Gamma-Ray Spectroscopy. RCN Petten, Netherlands, 1975, p.181.

Рукопись поступила в издательский отдел 3 сентября 1979 года.