СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов,

ИССЛЕДОВАНИЕ РЕАКЦИИ 123 Te $(n, \alpha)^{120}$ Sn НА РЕЗОНАНСНЫХ НЕЙТРОНАХ

P3 - 11644

annen 11 11 Innene

М.Стэмпиньски

4469/2-78

P3 - 11644

Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов, М.Стэмпиньски

ИССЛЕДОВАНИЕ РЕАКЦИИ 123 Te $(n, a)^{120}$ Sn НА РЕЗОНАНСНЫХ НЕЙТРОНАХ

Во Ким Тлань и др.

P3 - 11644

Исследование реакции ¹²³ Те(n, a) ¹²⁰ Sn на резонансных вейтоонах

Исследованы а-спектры реакции ¹²³ Te(n, a) ¹²⁰ Sn на резонансных нейтронах, что позволило повысить точность измерения а-ширин в определить спины резонансов. Измерения проводились методом времени пролета на импульсном реакторе ИБР-30. В качестве а-спектрометра использовалась цилиндрическая ионизационная камера с сеткой. Для резонансов с E₀ = 24,1; 96,8; 235,3; 274,8; 436,6 и 562,2 эВ определен спин 0⁺ и измерены а-ширины перехода в основное состояние дочериего ядра. Распределение полученных а-ширии хорошо описывается распределением с $\nu = 1$ и $<\Gamma_{\alpha} > = 7 \cdot 10^{-7}$ эВ.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщеные Объедыненного виститута ядерных исследования. Дубна 1978

Vo Kim Tkhan' et al.

P3 - 11644

Investigation of the 123 Te(n, α) 120 Sn Reaction

Alpha-spectra of the ¹²³ Te(n, α)¹²⁰ Sn reaction in neutron resonances are investigated. This allows to make the alpha-widths measurements more precise and to determine spins of resonances. The measurements were performed on the IBR-30 pulsed reactor by the time-offlight technique. A cylindrical ionization chamber with a grating was used as an alpha-spectrometer. For the resonances $E_0 = 24.1$; 96.8; 235.3; 274.8; 436.6 and 562.2eV the spin was determined to be 0⁺, and alphawidths of the transition to the ground state of the daugther nucleus were measured. The distributions of the alpha-widths obtained are well described by the χ^2 distribution with $\nu = 1$ and $<\Gamma_{\alpha} > = 7 \times 10^{-7}$ eV.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубиа

ВВЕДЕНИЕ

Реакция ¹²³ Те(n, a) ¹²⁰ Sn на резонансных нейтронах впервые исследовалась в работе /1/. Была измерена а-ширина для трех резонансов и еще для трех были получены верхние оценки этого параметра. Однако отсутствие анализа по энергии а -частиц и использование сравнительно толстого образца приводило к большой неопределенности в калибровке а -ширин. Кроме того, не представлялось возможным с достаточной точностью определить а-ширины резонансов со спином 1⁺, для которых запрещен а -переход в основное состояние дочернего ядра.

Позднее нами была предпринята попытка измерить *а*-ширину резонанса 2,33 *эВ* при помощи двухсекционной ионизационной камеры с сеткой /2/. Удалось существенно снизить величину верхней оценки *а*-ширины для этого резонанса, но, как показали эти измерения, исследование *а*-спектров резонансов 123 Те требует существенного совершенствования применяемой аппаратуры.

В данной работе впервые измерены *а*-спектры резонансов ¹²³ Те.

МЕТОДИКА

Измерения проводились на импульсном реакторе ИБР-3О, работавшем в бустерном режиме с ускорителем ЛУЭ-4О при средней мощности 6 кВт. Энергия нейтронов определялась по времени пролета, энергия а -частиц по амплитуде импульса в ионизационной камере. Для исследования *a*-спектров нейтронных резонансов с малыми *a*-ширинами нами в сотрудничестве с группой Лодзинского университета /ПНР/ была проведена модернизация ионизационного *a*-спектрометра. Мишени была придана форма усеченного конуса с малым углом при вершине, а сетке и собирающему электроду - цилиндрическая форма. В средней части поверхности мишени устанавливалась узкая кольцевая мишень ¹⁴⁷ Sm, служившая для нормировки *a*-ширин резонансов исследуемого образца.

Такая геометрия привела к увеличению площади мишени в 5 раз и в то же время позволила сохранить малую емкость камеры, а следовательно, приемлемое разрешение по энергии *а*-частиц.

Сечение нейтронного пучка имело форму кольца, засвечивавшего поверхность мишени и сравнительно малую долю рабочего объема камеры /см. *рис. 1*/, что позволило уменьшить перегрузку усилительного электронного тракта в момент вспышки мощности реактора и снизить уровень фона.

Для усиления сигнала с камеры использовался зарядочувствительный предусилитель "Polon-1001" и

Рис. 1. Схема эксперимента. 1 - коллиматор, 2 - корпус ионизационной камеры, 3 - сетка, 4 - собирающий электрод, 5 - калибровочный урановый источник, 6 мишень ¹²³Те.

усилитель с активными фильтрами "Polon-1101", где производилось формирование импульсов. После усилительного тракта сигнал по длинному кабелю поступал на многомерный анализатор с записью на магнитную ленту^{/3/}, регистрировавший амплитуду импульса, вызванного *a*-частицей, и время пролета нейтронов. Калибровка по энергии *a*-частиц осуществлялась при помощи уранового источника, установленного на поверхности мишени.

Параметры мишеней и данные, относящиеся к условиям измерений, приведены в табл. 1.

Таблица 1

Мишень	О Га НИ	бо- ще- ie, %	Площадь, см ²	Толщина мкг/см ⁵	, Времен- 2 ное раз- решение, нс/м	Время измере- ний, ч
TeO ₂ +Te	67%	¹²³ Te	e 3150	530	10	200
Sm ₂ O ₃	95%	¹⁴⁷ Sn	n 85	250	40	200

После накопления информации на магнитной ленте производилась сортировка событий, представленных в виде двухмерного спектра, для получения соответствующих одномерных временных и амплитудных спектров.

В результате реакции ¹²³ Te(n, a) ¹²⁰ Sn в резонансах со спином и четностью $J^{\pi}=0^+$ могут происходить a -переходы в основное состояние ¹²⁰ Sn / a_0 -переходы/, первое возбужденное состояние (a_1) и т.д. /см. *рис.* 2/, а в резонансах с $J^{\pi}=1^+$ - те же переходы, кроме a_0 , которые запрещены законом сохранения момента и четности. Поэтому на временном спектре в интервале 6,9-7,7 *МэВ*, соответствующем a_0 переходу / $E_{a_0} = 7,3$ *МэВ*/, проявляются только резонансы с $J^{\pi}=0^+/$ см. *рис.* 3/.

Амплитудные спектры четырех нижних резонансов, полученные после вычитания фона, измеренного в проме-

жутках между резонансами, в "фоновых окнах", приведены на рис. 4.

Для ряда высоколежащих резонансов учесть фон описанным выше образом оказалось сложным ввиду сильной зависимости фоновых спектров от энергии нейтронов и возможности попадания в фоновые окна слабых резонансов. В этих случаях вычитание фона проводилось путем плавной экстраполяции хода фоновой кривой амплитудного спектра в область больших энергий, соответствующую *а*-переходам в основное и первое возбужденное состояния дочернего ядра /см. *рис.* 5/.

Рис. 2. Схема a-распада s-резонансов ¹²³ Te.

Рис. 3. Временной спектр в амплитудном окне a_0 -перехода $E_{a_0} = 6,9-7,7$ МэВ.

Получение абсолютных значений a -ширин ¹²³ Те /калибровка/ осуществлялось в два этапа. Первоначально на короткой пролетной базе были проведены измерения с мишенями ¹²³ Те и ¹⁴⁷ Sm для определения aширины резонанса 24,1 эВ ¹²³ Те, при этом в качестве калибровочного использовался резонанс 3,42 эВ ¹⁴⁷ Sm, a-ширина которого была взята из работы^{/4/} Затем для выделения высоколежащих резонансов были проведены измерения на длинной пролетной базе с мишенью ¹²³ Те, в этом случае для калибровки служил резонанс 24,1 эВ ¹²³ Те.

Определение *а*-ширин ¹²³ Те производилось при помощи стандартного выражения

$$\Gamma_{a} = \frac{N_{a}}{N_{a}^{k}} \frac{\Pi(E_{0}^{k}) A^{k} \Gamma S^{k}}{\Pi(E_{0}) A \Gamma_{k} S} \cdot \Gamma_{a}^{k}, \qquad /1/$$

где N_{α} - число зарегистрированных $_{\alpha}$ -частиц от распада резонанса, $\Pi(E_0)$ - поток нейтронов при энергии

7

резонанса Е₀, Г - полная ширина резонанса, А площадь Юза, S - площадь мишени.

Индексы "к"относятся к калибровочному резонансу. Мы пользовались зависимостью потока нейтронов от энергии $\Pi(E_n) = c \cdot E_n^{-0,9}$ /см. ^{/5/}/. Параметры резонансов были взяты из работы ^{/6/}.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Число зарегистрированных событий *a*-распада резонансов и полученные *a*-ширины приведены в *табл. 2*. Эти данные практически относятся только к резонансам

Рис. 4. Амплитудные спектры резонансов ¹²³ Те после вычитания фона.

T	a	б,	1	u	u	а	2
_	-	•••	•				

Яцро мишень	Eo aB	J ~ /6/	јπ наши данные	, Nao	N	/х., х. 10 ⁻⁶ эв	Га, 10 ⁻⁶ эВ
123 _{Te}	2,334	I+	I+	〈 20	<45	<4 · 10 ⁻⁴	<8.I0 ⁻⁴
•	24,I	0+	0+	157 ± 14	<30	0,IO±0,02	<0,02
	35,9	I+	(I)	< 5	< I0	< 0,02	<0,04
	73,I	-	-	< 5	< 9	<0,15	< 0;25
	96,8	0+	0	432±22	<15	9 ,8 ± 2,6	< 0,35
	I08,8	•••	-	< 5	< IO	< 0,3	< 0,6
	II9, 9	· _	-	< 6	< I0	< 0,15	<0,25
	132,7	I+	-	< 6	< 9	< 0,08	< 0,II
	158,6	I+	-	< 5	< I0	<0,04	< 0,08
	182,1	-	-	< 8	८ I0	<0,05	< 0,07
	235,3	0+	0+	356±2I	< I3	17 ± 3	< 0,6
	274,8	I+	0+	20± 5	< II	0 ,6± 0,3	<0,3
	436,6	I+	0+	38±1 0	< I2	12 ± 6	< 4
	562,2	-	· 0+	43± I0	٤II	5,0±2,3	<i,3< td=""></i,3<>
	616,8	0)_	40+70		< 14	٢ ٢
	620,7	-	}*	46-10	< 14		
	1062,7	-	ו				
	1073, 5	-					
	1098,0	-	>×	43±11	∢ 30		
	1111,7	-					
	1192,6	-	J				

* По крайней мере один резонанс имеет спин 0⁺.

8

9

со спином O⁺, так как ввиду большого расстояния между основным и первым возбужденным состоянием дочернего ядра ¹²⁰ Sn вероятность a_1 -переходов существенно меньше $\frac{P_{\alpha_0}}{P_{\alpha_1}} = 6.8 \cdot 10^2$ и, кроме того, с уменьшением энергии *а*-частиц фон быстро растет. Поэтому для a_1 -переходов нам удалось получить только верхние оценки, исключение составляет резонанс с $E_0 = 2.33 \ 3B$, для которого получено значение $\Gamma_{\gamma a} = /2 \pm 1/10^{-9} \ 3B$

В табл. З приведены результаты калибровки резонансов 24,1 эВ ¹²³ Те по резонансу с энергией 3,42 эВ ¹⁴⁷ Sm.

Ta	бл	uua	3
----	----	-----	---

Ядро- мишень	Е ₀ , э В	J ^{<i>n</i>}	ΣN _{αi}	$\sum_{i} \Gamma_{a_{i}} \cdot 10^{7} \boldsymbol{\mathcal{B}}$
¹⁴⁷ Sm	3,42	3	238 <u>+</u> 18	1,8 <u>+</u> 0,2
¹²³ Te	24,1	o ⁺	260 <u>+</u> 22	1,03 <u>+</u> 0,19

Измерение a - спектров резонансов позволило получить значения их спинов, исходя из того, что для резонансов со спином 1^+ переход в основное состояние 120Sn запрещен /см. рис. 2/.

Для резонансов с $E_0 = 24,1; 96,8; 235 эВ$ полученные нами значения спинов совпадают с данными работы⁶/ Для резонансов с $E_0 = 274,8$ и 436,6 эВ в работе⁶/ приведен спин 1⁺, что противоречит нашим экспериментальным данным, т.к. наблюдается a_0 -переход/см. *рис.* 4 и 5 соответственно/. Отметим, что в работе¹¹/ также указывалось на спин О⁺в резонансе 274,8 эВ. Для резонанса $E_0 = 562,2$ спин ранее не определялся,

Рис. 5. Амплитудные спектры высоколежащих резонансов ¹²³ Те.

наличие перехода также позволяет приписать ему спин O⁺. Резонансы с $E_0 = 616,8 \pm 620,7 \ \mathcal{B}$ у нас не разрешены, и резонанс с $E_0 = 616,8$ согласно /6/ имеет спин O⁺, поэтому его *a* - ширину можно получить, предположив, что резонанс с $E_0 = 620,7 \ \mathcal{B}$ не дает вклада в счет *a* -частиц. В группе резонансов с $E_0 = 1062,7$ -1192 \mathcal{B} имеется по крайней мере один резонанс со спином O⁺.

Для тех резонансов, где надежно определены *а*-ширины, было построено их распределение /см. *рис.* 6/. В отличие от принятого обычно распределения в виде гистограмм^{/8}, где каждому резонансу приписывается фиксированное значение *а*-ширин, в настоящей работе мы учли экспериментальную ошибку измеренных *а*-ши-

11

Рис. 6. Интегральное распределение измеренных a ширин. Пунктирная кривая - теоретическое распределение Портера-Томаса с $\nu = 1$.

рин и взвесили каждое значение Γ_a по нормальному закону. Полученное таким образом экспериментальное распределение можно сравнить с теоретическим распределением Портера-Томаса (9).

Эффективное число степеней свободы теоретического распределения может быть рассчитано при помощи выражения

$$\nu_{gh} = \left(\sum_{f,\ell} P_{f\ell}\right)^2 / \Sigma \left(P_{f\ell}\right)^2, \qquad /2/$$

где Р_{fl} - проницаемость кулоновского барьера для *а* - перехода в состояние f с моментом l.

Для данного ядра в случае a_0 -переходов ситуация упрощается тем, что поскольку начальное и конечное состояния a_0 -перехода имеют спин O⁺,то все a-частицы имеют $\ell = 0$, тогда $\nu_{9\dot{\Phi}} = 1$. Можно видеть, что такое распределение хорошо описывает полученные нами данные /см. рис. 6/. Проверка по критерию χ^2 дает уровень достоверности описания, равный O,56. Средняя a-ширина реакции ¹²³ Te(n, a) ¹²⁰Sn также может быть рассчитана по кластерной модели /10/ при помощи выражения

$$<\Gamma_a>_{K_{\pi}} \frac{D_{J^{\pi}}}{D_{K_{\pi}}}\Gamma_{a K_{\pi}},$$
 /3/

где D_{KJ} - расстояние между ближайшими кластерными уровнями, $D_{J''}$ - среднее расстояние между уровнями со спином $J'', \Gamma_{a KJ}$ - кластерная *a* - ширина /близка к вигнеровскому пределу/.

Если использовать экспериментальное значение $D_{J^{\pi}} = 80 \ \beta B$, то $<\Gamma_{a}>_{KA}$ будет равно 2,1.10⁻⁶ βB .

Экспериментальное значение $<\Gamma_a >$ по восьми резонансам равно: $<\Gamma_a>_{9KCII} = /7,3\pm3,7/\cdot 10^{-6}$ эВ. Ошибка здесь обусловлена малым числом резонансов. Такое согласие предсказанного кластерной моделью значения $<\Gamma_a>$ с экспериментальной величиной можно считать удовлетворительным /см. для других ядер /11//.

Можно отметить, что проведенные измерения показали перспективность применения цилиндрической ионизационной камеры с сеткой на пучках ИБРа-ЗО. Существенное увеличение площади мишени и хорошие перегрузочные характеристики электронного тракта позволяют получать *а*-спектры в резонансах с малыми *а*-ширинами и кроме того дают возможность начать исследования реакции (n*a*) при более высоких энергиях нейтронов.

В заключение авторы считают своим приятным долгом поблагодарить Т.С.Зварову за разработку метода изготовления тонкой мишени из ¹²³Те и Ю.Анджиевского за помощь при обработке результатов.

ЛИТЕРАТУРА

- 1. Попов Ю.П., Флорек М. ЯФ, 1969, m.9, вып. 6, с.1163.
- 2. Niedzwiedziuk K. e.a. Acta Phys. Slov., 1975, Nr. 2-3, p.211.

3. Попов Ю.П. и др. ЯФ, 1971, 13, с.913. 4. Втюрин В.А. и др. ОИЯИ, РЗ-8800, Дубна, 1975. 5. Голиков В.В. и др. ОИЯИ, 3-5736, Дубна, 1971. 6. Neutron Cross Sections. BNL 325, Third edition, 1973. 7. Во Ким Тхань и др. ОИЯИ, РЗ-11381, Дубна, 1978. 8. Попов Ю.П. и др. Аста Phys.Pol., 1973, v.B4, р.275.

9. Porter C.E., Thomas R.G. Phys. Rev., 1956, 104, p.483.

- 10. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, т.6,
- вып. 2. с.469.
- 11. Антонов А. и др. ЯФ, 1978, 27, вып. 1, с.18.

Рукопись поступила в издательский отдел 7 июня 1978 года.

,