СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2864/2-78

BB 32 14

....

<u>C34321</u> B-358

P3 - 11392

В.П.Вертебный, В.А.Втюрин, В.А.Долгов, А.Л.Кирилюк, Ю.П.Попов, А.Ф.Федорова

ИССЛЕДОВАНИЕ РЕАКЦИИ ¹⁴⁷Sm(n, a)¹⁴⁴Nd НА НЕЙТРОНАХ С ЭНЕРГИЕЙ 2 КЭВ

P3 - 11392

В.П.Вертебный, * В.А.Втюрин, В.А.Долгов, * А.Л.Кирилюк, * Ю.П.Попов, А.Ф.Федорова*

ИССЛЕДОВАНИЕ РЕАКЦИИ ¹⁴⁷Sm(n, *a*)¹⁴⁴Nd НА НЕЙТРОНАХ С ЭНЕРГИЕЙ 2 КЭВ

*ИЯИ АН УССР.

Вертебный В.П. и др.

P3 - 11392

Исследование реакции ¹⁴⁷ Sm(n.a)¹⁴⁴ Nd на нейтронах с энергией 2 кэВ

Приводятся результаты первых измерений спектра a-частиц из реакции (a, a), усредненного по большому числу начальных состояний нейтронных резонансов при $E_n = 2,0$ кэВ. Получены средние значения сечений для a-переходов в основное и первое возбужденное состояния в реакции 147 Sm (a, a) 144 Nd. Отношение соответствующих приведенных a-ширин оказалось равным $0.7 \, {}^{+0.16}_{-0.2}$ вместо ожидаемой по статистической теории единицы, что подтверждает качественный вывод полумикроскопической теории.

Работа выполнена в Лабораторие нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Vertebny V.P. et al.

P3 - 11392

The Study of the 147Sm(n, a) 144 Nd Reaction on 2 keV Neutrons

First results of the measurements of the spectrum of α -particles from the (n, α) reaction averaged over a large number of initial states – neutron resonances at $E_n = 2.0$ keV are given. Mean cross sections of alpha-transitions to the ground and first excited state in the 147 Sm $(n, \alpha)^{14}$ Nd reaction were obtained. The ratio of the corresponding reduced alpha-widths appeared to be equal to $0.7 \stackrel{+0.18}{-0.8}$ which is in contradiction with that equal to unity predicted by the statistical theory, but confirms the qualitative conclusion of the semimicroscopic theory.

The investigation has been performed at the Laboratory of Neutron Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

введение

Исследования реакции (n, a) в отдельных резонансах /1/ дали разностороннюю информацию о свойствах парциальных и полных а -ширин широкого круга атомных ядер. Однако ограниченное количество изученных для каждого ядра резонансов не позволило до сих пор получить убедительные ответы на ряд существенных вопросов: в частности, являются ли средние по резонансам значения приведенных парциальных а-ширин при а-распаде на основное и первое возбужденное состояние дочернего ядра равными, как утверждает статистическая теория, или первое будет меньше согласно предсказаниям полумикроскопической теории В.Г.Соловьева /2/ сохраняется ли постоянной средняя по резонансам а-ширина <Г_а > с изменением энергии нейтронов^{/1/} и другие. Ответы на эти вопросы можно получить, исследуя реакцию (n, a) на широких по энергии спектрах нейтронов, охватывающих порядка сотни или более резонансов.

Здесь публикуются первые результаты исследования спектров a-частиц из реакции (n, a) на пучке нейтронов со средней энергией 2 кэВ. В качестве мишени был выбран изотоп ¹⁴⁷Sm, наиболее полно исследованный на резонансных нейтронах $^{/3,4/}$.

МЕТОДИКА

Схема эксперимента изображена на *рис. 1.* Пучок нейтронов со средней энергией 2,0 кэВ и с шириной

Рис. 1. Схема эксперимента. 1 - горизонтальный канал реактора BBP-M; 2 - борный фильтр, 3 - оправка скандиевого фильтра, 4 - биологическая защита реактора, 5 - защита выносной части Sc - фильтра, 6 - Sc фильтр толщиной 96 см, 7 - место для марганцевого фильтра, 8 - ионизационная камера и ее вид с торца, 9 - литиевая мишень, 10 - самариевая мишень.

спектра на полувысоте 600 эВ выделялся на горизонтальном канале реактора ВВР-М ИЯИ АН УССР с помощью 96-сантиметрового скандиевого фильтра /d = = 280 г/см²/^{5/}. Фильтр был заключен в специальную систему коллиматоров, обеспечивающую формирование нейтронного пучка диаметром 10 мм. Поток нейтронов на выходе составлял 5.10^6 нейтр./см² с, гамма-лучей -7 мкр/с, расходимость пучка не превышала 2 мм на расстоянии 1 м. Со стороны активной зоны /канал выводил нейтроны непосредственно из активной зоны реактора/ на входном торце скандиевого фильтра крепился тонкий борный фильтр из B_4C с пропусканием T= 0,04 для нейтронов с энергией 0,025 эВ и T= 0,95 для нейтронов с $E_n = 2 \kappa э B$.

Кроме основной энергетической группы / E_n = 2 кэВ/ скандиевый фильтр пропускал некоторое количество нейтронов с более высокими энергиями в диапазоне /8-500/ кэВ. Вклад этих нейтронов определялся с помощью марганцевого фильтра толщиной 4,1 $г/cm^2$, который полностью высеивал нейтроны основной группы и всего лишь в 1,5 раза ослаблял более быстрые нейтроны /8-500 $\kappa \beta B$. Было показано, что вклад быстрых нейтронов составляет 24% по отношению к нейтронам основной группы со средней энергией 2 $\kappa \beta B$.

Для уменьшения фона от нейтронов, рассеянных марганцевым фильтром, последний помещался в специальное гнездо 7 /puc. 1/ в скандиевом фильтре на расстоянии 20 см от выходного торца. Кроме этого, пучок был тщательно сколлимирован с помощью текстолитовых коллиматоров, а выносная часть фильтра защищена парафином с борной кислотой.

Для спектрометрии *а*-частиц использовалась цилиндрическая ионизационная камера с диаметром внешнего электрода 175 мм. На противоположных концах диаметра вдоль электрода располагались полоски образцов лития и самария /см. рис. 1/. Смена образцов осуществлялась поворотом камеры на 180° Для надежного определения фона использовались измерения как с образцом лития, так и с чистой подложкой. Кроме того, фон измерялся с образцом самария и марганцевым фильтром в пучке нейтронов, что позволило исключать нейтроны с энергией 2 кэВ. Для защиты камеры от нейтронов из соседних пучков и рассеянных фильтром на выходном торце скандиевого фильтра был установлен дополнительный борный фильтр такой же толщины, как и на его входе, а ионизационная камера окружалась со всех сторон кадмиевым экраном толщиной 1 мм. При измерении эффекта с самариевым образцом счет, обусловленный тритонами от реакции ⁶ Li(n, a) T, характеризовал фон рассеянных нейтронов. Данные о мишенях и некоторые детали эксперимента приведены в табл. 1.

Таблица 1

Мишень	Обогаще-	Толщина,	Время	Интеграл	<u>ьный сче</u>
	ние, %	мг/см ²	измере-	эффект+	фон
	•		ния	+фон	
LiF Sm ₂ O ₃	3,65 <u>+</u> 0,10 93	(2,8 <u>+</u> 0,7).1 0,34 <u>+</u> 0,03	0 ⁻² 30 мин 140 ч	4599 5131	1512 2601

Толщина мишени ¹⁴⁷Sm определялась по его естественной *а* -активности, а литиевой - путем взвешивания.

Положение известных линий *a* -переходов в основное и первое возбужденное состояния 147Sm(n,*a*) 144 Nd /E_{a0} = 9,8 *МэВ*, E_{a1} = 9,1 *МэВ*/ оказалось в хорошем согласии с калибровкой шкалы энергий по линиям 234 U и 288 U / E_a = 4,18 и 4,76 *МэВ*/. Сечение реакции 147 Sm(n, *a*) 144Nd было измерено по отношению к сечению ⁶ Li(n, *a*) T, которое было получено экстраполяцией теплового сечения, взятого из работы $^{6/2}$, по закону 1/v и принималось равным 3,3 б при E_n = 2 кэВ.

РЕЗУЛЬТАТЫ

Экспериментальные а-спектры, полученные при измерениях на самариевом образце с марганцевым фильтром и без него, приведены на рис. 2. Поскольку наличие марганцевого фильтра практически не искажает поле рассеянных нейтронов и всего в полтора раза меняет интенсивность пучка нейтронов с энергией более 8 кэВ, можно видеть, что наблюдаемый эффект обусловлен в основном нейтронами с энергией 2 кэВ. Результаты измерений с марганцевым фильтром при обработке данных служили для оценки фона. Нормировка по времени осуществлялась двумя способами. В первом случае определялось отношение площадей пиков от *а*-частиц vpaна-234 /что составило 6,15/, а во втором бралось отношение фоновых отсчетов в одинаковых амплитудных окнах в интервалах 6-8 МэВ и 10,4-11,4 МэВ. Оба способа дали результаты, совпадающие в пределах 2%. Слектр α -частиц из реакции ¹⁴⁷ Sm(n. α)¹⁴⁴ Nd 38 вычетом фона приведен на рис. 3, о состоянии эффекта и фона в интервале от 90 до 120 канала /8-10 МэВ/ можно судить по табл. 1. Выделение пиков для а -переходов в основное и первое возбужденное состояния /а, и а1 / проводилось следующим образом.

Альфа- переходы	N _а площадь пика	<i>о</i> (мкб)	у ² (отн.ед.)	у _{<i>a</i>i} рез.обл. отн.ед. (без Е ₀ = = 184 эВ)
На осн.сост. (a ₀)	1174	70 <u>+</u> 20	1,00 <u>+</u> 0,17	1,0 <u>+</u> 0,6
На 1 возб. состояние (а ₁)	862	55 <u>+</u> 15	1,40 <u>+</u> 0,15	3 <u>+</u> 1
Остальные	494	30 <u>+</u> 10		

Таблица З

Настоящая работа	Рассчитано по из резонансно	о эксп. данным ой области ^{/4/}	Расчет по кластерной модели
(1,7-2,3) кэВ	(1–100) эВ	(100 - 200) эВ	
150 <u>+</u> 40 мб	52 <u>+</u> 24 мб	220 <u>+</u> 80 мб	230 мб

При предположении, что форма линии a_1 идентична форме линии a_0 , методом последовательных приближений были определены форма и интенсивность линий a_0 и a_1 . Результаты обработки *a*-спектров представлены в *maбл. 2* и *3*. В *maбл. 2* приведены во второй колонке интенсивность парциальных *a*-переходов /полное количество отсчетов/, затем парциальные сечения (n,a)-реакций, а также усредненные по резонансам приведенные *a*-ширины в относительных единицах, полученные в данном опыте. В последней колонке представлены значения приведенных *a*-ширин, полученные усреднением по отдельным резонансам /подробнее см. работу^{/4/}, резонанс $E_0 = 184 \ 3B$ из рассмотрения исключен/. Следует отметить, что ошибки определения сечения связаны не с точ-

6

Рис. 2. Экспериментальные спектры из реакции 147 Sm(n, a)¹⁴⁴ Nd, полученные на скандиевом фильтре. а - без марганцевого фильтра, б - с марганцевым фильтром. Пунктир - усредненная кривая фона.

ностью определения интенсивности линий, а с точностью определения толщин мишени /~20%/. Точность относительных интенсивностей определяется в основном ограниченным числом резонансов / a_0 -переход возможен с 40 резонансов, тогда как a_1 -переход - с 80/. Разница в γ_{a0}^2 и γ_{a1}^2 , выходящая за пределы ошибок, качественно подтверждает выводы полумикроскопической теории В.Г.Соловьева о преобладании приведенных вероятностей a-распада на однофононные состояния 2⁺по сравнению с a-переходами в основное состояние^{/2/}.

Сравнение полученного нами сечения реакции (n, a) с расчетами, в которых использовалась кластерная модель Фурмана-Кадменского /7/ а также экспериментальные значения *а*-ширины, усредненные по отдельным резонансам в интервалах 1-100 *эВ* и 100-200 *эВ*, представлены в *табл. 3.* Здесь приводится уточненное по сравнению с нашими первыми результатами^{5/} значение сечения при $E_n = 2 \ \kappa \beta B$. Ошибка в экспериментальном значении обусловлена в основном неопределенностью толщины мишени /20%/, а в расчетных значениях, полученных по данным об *а*-ширинах резонансной области, малым числом резонансов, по которым производилось усреднение. Наши изменения свидетельствуют о флюктуации средних *а*-ширин с изменением энергии возбуждения ядра, что было впервые отмечено в работах^{/1,4/}, при этом в области /1-100/*зВ* величина $< \Gamma_a >$ оказалась существенно пониженной.

Рис. 3. Спектр а - частиц из реакции 147 Sm(n, a) 144 Nd при энергии нейтронов 2 кэВ. Стрелками указаны энергии а-переходов в основное, первое, второе и т.д. возбужденные состояния конечного ядра.

9

Таким образом, проведенные измерения показали перспективность использования пучков фильтрованных нейтронов для получения новой физической информации об *a*-ширинах.

Авторы благодарны В.И.Салацкому за изготовление мишеней и измерение их толщин, А.В.Мурзину, А.И.Кислицкому, О.И.Раскопину, В.С.Бабкову за помощь при проведении измерений.

ЛИТЕРАТУРА

- 1. Popov Yu.P. In: "Nuclear Structure Study with Neutrons". Plenum Press, 1974, p.65.
- 2. Соловьев В.Г. ЯФ, 1971, 13, с.48.
- 3. Popov Yu.P. e.a. Nucl. Phys., 1972, A188, p.212.
- 4. Balabanov N.P. e.a. Nucl. Phys., 1976, A261, p.35.
- 5. Попов Ю.П. и др. В кн.: "Нейтронная физика" /материалы 4-й Всесоюзной конференции по нейтронной физике, Киев, 18-22 апреля 1977 г./.ЦНИИатоминформ, М., 1977, ч.2, с.309.
- 6. Mughabghab S.F., Gurber D.I. BNL-325, 3d Ed., 1973, v.1.
- 7. Кадменский С.Г., Фурман В.И. ЭЧАЯ, 1975, т.б, с.469.

Рукопись поступила в издательский отдел 16 марта 1978 года.