СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

19/vi -78 P3 - 11381

Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов, М.Стэмпиньски

123 120 ИССЛЕДОВАНИЕ РЕАКЦИИ Те(n, y a) Sn НА РЕЗОНАНСНЫХ НЕЙТРОНАХ

P3 - 11381

Во Ким Тхань, В.А.Втюрин, А.Корейво, Ю.П.Попов, М.Стэмпиньски

ИССЛЕДОВАНИЕ РЕАКЦИИ 123 120 НА РЕЗОНАНСНЫХ НЕЙТРОНАХ

Во Ким Тхань и др. РЗ - 11381
Исследование реакции ¹²³ Те(п.уа) ¹²⁰ Sn на резонансных нейтронах Приводятся результаты исследования реакции ¹²³ Те(п.уа) ¹²⁰ Sn на резонансных нейтронах, предпринятого с целью получения информации о первичных мятких у -переходах. Измерена ширина Г _{уа} в резонансе 2,33 ЭВ и получена верхняя оценка ширины Г _{уа} в резонансе 24,1 ЭВ. Значение радиационной силовой функции мятких у -переходов Sy , рас- считалное на основе этих данных, оказалось несколько меньше среднего значения Sy для других ядер. Полученный результат обсуждается в связи с гипотезой о возможной корреляции Sy с величиной нейтрон- ной силовой функции S ₀ . Работа выполнена в Лаборатории нейтронной физики ОИЯИ.
Сообщение Объединенного института ядерных исследований. Дубна 1978
Vo Kim Tkhan et al. P3 - 11381
The Study of ¹²³ Te(a,ye) ¹²⁰ Sa Reaction on Resonance Neutrons
The results of the study of ¹²⁰ Te(n, γa) ¹²⁰ Sn reaction on re- sonance neutrons are given. The study was undertaken in order to derive information on primary soft γ -transitions. The $\Gamma_{\gamma a}$ width was measured in the 2.33 eV resonance and the upper estimate for $\Gamma_{\gamma a}$ width in the 24.1 eV resonance was obtained. The value of radiative strength function for soft γ - transitions S_{γ}^{cc} , calculated on its basis, turned out to be a little less than the S_{γ}^{cc} mean value for other nuclei. The result obtained is discussed in connection with the hypothesis concerning possible correlation of S_{γ}^{cc} to neutron strength function value \mathbf{s}_{0} .
The investigation has been performed at the Neutron Physics Laboratory, JINR.
Communication of the Joint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

ВВЕДЕНИЕ

Исследования реакции (n,ya) с целью получения информации о первичных мягких у -переходах проводятся в Лаборатории нейтронной физики ОИЯИ уже в течение нескольких лет /1-4/. Хотя такой подход позволяет изучать лишь усредненные по многим состояниям свойства у переходов, эти данные пока не могут быть получены другими методами. В то же время они представляют интерес как для понимания общих закономерностей у распада, так и для изучения структуры высоковозбужденных состояний, к описанию которых, в частности, подходит полумикроскопическая теория ядра /5/. Результаты изучения реакции (n,ya) важны и для поисков закономерностей в механизме широкого класса двухступенчатых реакций типа $(n, \gamma n')$, $(n, \gamma p)$, $(n, \gamma f)$ и др. С точки зрения реакторостроения существенной оказалась оценка вклада реакции (n, yf) при расчете ве-

личины $\alpha = \frac{\langle \sigma_{\gamma} \rangle}{\langle \sigma_{f} \rangle}$ в области энергии нейтронов выше не-

скольких кэВ /6/.

Раднационный этап реакцин (n, ya) удобно описывать в терминах радиационной силовой функции для гамма-переходов между компаунд-состояниями ядер S_{γ}^{cc} /2/. К настоящему времени получены значения силовой функции для ¹⁴³ Nd и ¹⁴⁹Sm^{/1,3}/_а также верхние оценки S_{γ}^{cc} для ⁹⁵ Мо и ⁹⁹Ru^{/4/}. Кроме того, удалось рассчитать значения S_{γ}^{ce} из данных по(n, yf)реакции для ²³⁵ U, ²³⁹ Pu и ²⁴¹Pu^{/7/}. Все полученные

значения S^{сс} оказались близки к силовой функции жестких гамма-переходов мультипольности М1 и в пределах ошнбок - независимыми от атомного веса ядра. Имеются экспериментальные указания на преобладание в мягких у - переходах мультипольности M1 как в случае реакции 143 Nd (n, γa) 140 Ce /1/ , так и в реакции $235 U(n, \gamma f)^{/8/}$. Кроме того, сопоставление данных по реакции 2^{39} Pu(n, vf)^{9/} с результатами расчетов работы/10/ также говорит в пользу преобладания мультипольности M1. Отмеченные особенности у -переходов между компаунд-состояниями ждут своего теоретического объяснения. В связи с этим интересно получение значеный S. для более широкого круга ядер, в частности, в районе минимума нейтронной силовой функции S₀ при A=120-130^{/11}/Наиболее удобным в этой области А оказалось ядро ¹²³ Те.

ЭКСПЕРИМЕНТ

Малость ширин реакции (n, ya) потребовала некоторой модернизации ионизационной камеры, использовавшейся в качестве *a* -спектрометра в предыдущих работах¹¹. В нашем эксперименте мишени была придана форма усеченного конуса с малым углом при вершине, а сетке и собирающему электроду - цилиндрическая форма /puc. 1/. Такая геометрия при пятикратном увеличении площади мишени позволила сохранить малую емкость камеры, а следовательно, и приемлемое разрешение по энергии *a* -частиц. Калибровка по энергии таких частиц осуществлялась с помощью уранового *a* источника, установленного на поверхности мишени. Сечение иейтронного пучка имело форму кольца, засвечивавшего поверхность мишени и относительно малую долю рабочего объема камеры /см. puc. 1/.

Измерення проводились на импульсном реакторе ИБР-ЗО, работавшем в бустерном режиме при средней мощности 6 кВт. Разрешение по времени пролета составляло 48 нс/м. Данные, относящиеся к условиям измерений, приведены в табл. 1.

Рис. 1. Схема эксперимента на пучке нейтронов. 1 кольцевой коллиматор, 2 - корпус ионизационной камеры, 3 - сетка ионизационной камеры, 4 - собирающий электрод, 5 - калибровочный ^а-источник, 6 - образец с исследуемым веществом.

Таблица 1

Ядро-	Вид сое-	Обогащение,	Толщина	Площадь	Время
мишень	динений	%	мишени мг/см ²	мишени, см ²	измере- ния, ч
¹²³ Te	TeO ₂ +Te	6 7,3	0,53	3300	200

Регистрация сигналов с детектора производилась многомерным анализатором с магнитной лентой^{/12/} в режиме записи амплитуда импульса - время пролета. При воспроизведении с магнитных лент отбирался временной спектр в широком амплитудном окне. По этому спектру уточнялось положение временных окон для отбора амплитудных спектров в резонансах и фоновых амплитудных спектров.

Наиболее удобным для исследования реакции $(n, \gamma a)$ оказался резонанс с $E_0 = 2,33 \ \beta B$ и $J^{\pi}=1^+$, у которого *a*-переход в основное состояние запрещен, а большое /1,2 *М* βB / расстояние между основным и первым возбужденным состояниями дочернего ядра позволяет наблюдать значительную часть спектра реакции $(n, \gamma a)$ без помех от прямых *a* -переходов. Кроме того, сравнительно большая нейтронная ширина и низкое положение резонанса по энергии позволяют иметь большую статистическую точность по сравнению с другими резонансами. На *рис. 2* приведен участок временного спектра с резонансом ¹²³Te $E_0 = 2,33$ *эВ.* Амплитудный спектр в

Рис. 2. Участок временного спектра реакции ${}^{123}\text{Te}(n,\gamma a){}^{120}\text{Sn}$. Стрелкой показано расчетное положение резонанса $E_0 = 2,33$ эВ.

этом резонансе, полученный после вычитания фона, показан на *рис. З.* Поскольку теоретическое описание формы a -линии для камеры с такой геометрией затруднительно из-за наличия краевых эффектов, для разделения вклада a -перехода в первое возбуждениое состояние (a_1)и реакции ($n, \gamma a$) использовалась экспериментальная форма спектра a -перехода в основное состояние (a_0), полученная в резонансе 96 эВ. При этом предполагалось, что для a_1 -перехода форма a -линии будет такой же, как и для a_0 -перехода. Так как статистическая точ-

Рис. 3. Амплитудный спектр во временном окне резонанса 2,33 эВ ¹²³Te. Пунктиром показана расчетная форма спектра реакции (п, уа) в предположении M1 - переходов. Сплошная линия - парциальный вклад a_1 - перехода.

ность амплитудного спектра в резонансе 2,33 эВ недостаточна для заключений о форме спектра a-частиц реакции (n, ay). мы ограничились лишь определением ширины реакции (n, ya) Γ_{ya} .

Разделение вкладов a_1 - перехода и реакции $(n, \gamma a)$ производилось по методу χ^2 . При этом варьировались только соответствующие площади. Форма спектра реакции $(n, \gamma a)$, использовавшаяся при разделении, была получена с учетом экспериментальной формы a - линии и теоретического спектра a -частиц из реакции $(n, \gamma a)$, рассчитанного с использованием оптических проницаемостей кулоновского барьера в предположения преобладания γ - переходов, средняя интенсивность которых пропорциональна E_{γ}^3 /переходы E1 или M1 /. В дальнейшем мы пользовались предположением о мультипольности M1, поскольку, как упоминалось выше, в ее пользу говорят имеющиеся в настоящее время экспериментальные данные. Кроме того, правильность описания спектра определяется в основном видом зависимости вероятности γ -перехода от E_{γ} н, если для E1 переходов она будет пропорциональна E_{γ}^3 /как это следует из приближения Вайскопфа¹³/, то величина $\Gamma_{\gamma \alpha}$ не будет зависеть от предположений о типе / E1 или M1 / γ -переходов.

Исходя из того, что переход a_0 в данном резонансе запрещен, мы сначала проверили гипотезу об отсутствии вклада реакции (n, ya), а затем попытались описать экспериментальный спектр как сумму a_1 -перехода и реакции (n, ya). Общее число отсчетов a-частиц в резонансе 2,33 эВ составило 130±30.

Таблица	2
---------	---

Вариан т подгонк	и N _a	1 ^Ν γα	χ^2 $\nu=12$	Уровень достовер ности $\nu=12$	$- \chi^2$ $\nu = 10$	Уровень досто- верности ν=10
1	0	0	45,4	10 ⁻⁴	31,37	2.10 ⁻³
2	50	0	35,9	10-3	21,5	1,6.10-2
3	100	0	40,52	10-4	25,6	5 . 10 ⁻³
4	150	0	59,2	10-5	49,8	10-4
5	0	50	28,5	0,006	16,39	0,09
6	0	100	20,8	0,054	8,17	0,62
7	0	150	22 ,3	0,034	6,7	0,75
8	19	106	19,4	0,079	6,2	0,8

Некоторые из вариантов описания экспериментального спектра приведены в *табл. 2.* Можно видеть, что гипотеза об отсутствии вклада реакции $(n, \gamma a)$ /варианты 1-4/ имеет существенно меньший уровень достоверности по сравнению с описанием экспериментального спектра как суммы вкладов a_1 -перехода и реакции $(n, \gamma a)$. Последние две колонки таблицы соответствуют описанию спектра с исключением двух точек /черные на *рис.* 3/, - предположительно выбитых, дающих в некоторых случаях 2/3 величины χ^2 . Как можно видеть, результат от их исключения существенно не меняется.

Результаты обработки и полученные ширины приведены на *рис.* Зи в *табл.* З.

Радиационная силовая функция рассчитывалась при помощи выражения

$$\mathbf{S}_{\gamma}^{cc} = \frac{2\pi}{D_{i}} \frac{\Gamma_{\gamma a} \Gamma_{\gamma} (\mathbf{B}_{n})}{\Delta \mathbf{E}_{\gamma} \sum_{\ell, j=0}^{J_{max}} < \mathbf{E}_{\gamma}^{3} \mathbf{T}_{a\ell} >_{j}}, \qquad /1/$$

где $\Gamma_{\gamma \alpha}$ и $\Gamma_{\gamma}(B_n)$ - соответственно ширина реакции $(n, \gamma a)$ и полная гамма-ширина при энергии связи нейтрона; D_i - среднее расстояние между резонансами с одинаковым спином; ΔE_{γ} - величина интервала разбиения экспериментом спектра; ℓ - момент вылетающей a-частицы; j - номер интервала разбиения спектра.

Силовая функция для резонанса 2,33 *эВ*, полученная в предположении М1-переходов, приведена в *табл. 3*.

Таблица З

Резо- нанс	Тип реакции	Число а-частиц из реакции	Ширина для данной реак- ции 10 ⁻⁹ эВ	Силовая функция S _γ ^{сс} 10 ⁻⁹
2,334	n,ya	106 <u>+</u> 31	2 ,0 <u>+</u> 0,8	12 <u>+</u> 5
2,334	n, a 1	19 <u>+</u> 25	0,8	
24,1	n,ya	60	40	10

Здесь же представлены верхние оценки ширины $\Gamma_{a_{1}}$ для резонанса $E_{0} = 2,33 \ \mathcal{B} \mathbb{H} \Gamma_{\gamma a}$ - для резонанса $E_{0}^{\pm} = 24,1 \ \mathcal{B}.$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На *рис.* 4 собраны известные к настоящему времени значения S_y и их верхние оценки/соответственно темные точки и точки со стрелками/. Светлыми квадратами

Рис. 4. Радиационные силовые функции для различных ядер: квадратики - силовые функции жестких М1-переходов S_{γ}^{cs} ; черные кружки - то же для первичных мягких М1 - переходов S_{γ}^{cc} (М1); стрелками показаны верхние оценки S_{γ}^{cc} (М1).

обозначены силовые функции для жестких гамма-переходов мультипольности М1 $(S_{\gamma}^{cs})^{/11/}$, которые для сравнения нанесены на тот же график. Полученное нами значение S_{γ}^{cc} для 123 Те в пределах ошибок согласуется с общей тенденцией зависимости $S_{\gamma}^{cc}(A)$, близкой к постоянной.

Большой интерес для выяснения соотношения вкладов различных мультипольностей вмягкие γ -переходы представляло бы выделение спектра реакции ($n, \gamma a$) в резонансе ¹²³ Те $E_0 = 24, 1$ эВ. В силу того, что резонанс

имеет спин O⁺ у -распад промежуточных /после M1 переходов/ состояний, имеющих спин 1⁺, в основное состояние дочернего ядра ¹²⁰Sn, запрешен, а промежуточные /после Е1 -переходов/ состояния распадаются, испуская a -частицы с орбитальным моментом l=1, таким же как и промежуточные состояния в случае Е1 - переходов в резонансах 1^+ например, 2.33 $\beta B/cM$. puc. 5/. В связи с этим, поскольку доля ширины Г_{уа}, определяемая у переходами с одной мультипольностью и а переходами с одинаковым моментом ℓ , в силу усредненыя по большому числу промежуточных состояний должна мало меняться от резонанса к резонансу, то разность ширин Γ_{ya} в резонансах со спинами 1⁺ и 0⁺ дает долю ширины, определяемой только М1 - переходами. К сожалению, в настоящем измерении статистическая точность в резонансе 24,1 эВ и разрешение по энергии а -частии пока недостаточны для получения этой информации. Нам удалось получить лишь верхнюю оценку Г_{уа} для этого резонанса /см. табл. 3/.

В заключение авторы считают своим приятным долгом выразить благодарность Т.Зваровой за разработку метода нанесения и изготовление мишеней большой плошади из ¹²³ Те, а также К.Далецкому и К.Недведюку, участвовавшим в модернизации и наладке ионизационной камеры. Авторы благодарны Госфонду стабильных изоза предоставление в их распоряжение изотопа топов ¹²³ Те с высоким обогащением.

ЛИТЕРАТУРА

- 1. Furman W. e.a. Phys.Lett., 1973, B44, p.465.
- 2. Popov Yu.P. In: Neutron Capture Gamma-Ray Spectroscopy, RCN Petten Netherlands, 1975, p.379.
- 3. Втюрин В.А. и др. В кн.: "Неутронная физика" /материалы III Всесоюзной конференции по нейтронной физике, Киев, 9-13 июня 1975 г./, ч. 4, с.65, ЦНИИатоминформ, М., 1976.
- 4. Антонов А. и др. ОИЯИ, РЗ-10372, Дубна, 1977. 5. Соловьев В.Г. ЭЧАЯ, 1977, т.З. вып. 4, с.770.
- 6. Sukhovitskij E.Sh. e.a. INDC (CCP) 133/11, August, 1977, *b*.43.
- 7. Втюрин В.А., Попов Ю.П. ОНЯИ, РЗ-10775, Дубна, 1977.
- 8. Длоугы 3., Криштяк Й., Пантелеев Ц. Избранные вопросы структуры ядра, т.І. ОИЯИ, Д-9682, Дубна, 1976, c.113.
- 9. Ryabov Yu. e.a. Nucl. Phys., 1973, A216, p.325. 10. Lynn J.E. AERE R 7468, Nov., 1974.
- 11. Bird J.R. e.a. In: Proc. of the Conference "Neutron Interactions with Nuclei", Lowell, Massachusetts, USA, 1976, v. 1, p.77.
- 12. Попов Ю.П. и др. ЯФ, 1971, 13, с.913.
- 13. Блатт Дж., Вайскопф В. Теоретическая ядерная физика, ИЛ., М., 1954.

Рукопись поступила в издательский отдел 10 марта 1978 года.