СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

ЧІЧ6/2 В.А.Втюрин, Ю.П.Попов

C341,18

B-878

СИЛОВЫЕ ФУНКЦИИ у-ПЕРЕХОДОВ МЕЖДУ КОМПАУНД-СОСТОЯНИЯМИ ИЗ РЕАКЦИЙ (n, ya) И (n, yf)

P3 - 10775

В.А.Втюрин, Ю.П.Попов

СИЛОВЫЕ ФУНКЦИИ **у**-переходов между компаунд-состояниями из реакций (n, ya) и (n, yf)

Втюрин В.А., Попов Ю.П.

Силовые функции у-переходов между компаунд-состояниями в реакциях (п, уа) н (п, уf)

Описание средних вероятностей у-переходов между компаундсостояниями в терминах радиационных силовых функций, развитое ранее для реакции (n,ya), обобщается на случай реакции (n,yf). Найдено выражение, связывающее ширину Губ с силовой функцией.

Из экспериментальных данных по реакции (n,yf) рассчитаны значения силовых функций для ²³⁵U, ²³⁹Pu, ²⁴¹Pu, которые сравниваются с силовыми функциями мягких у -переходов в области A~150, для случая реакции (n,ya), и с силовыми функциями жестких у-переходов. Показано, что силовая функция мягких у-переходов в пределах ошибок совпадает с силовой функцией жестких M1 -переходов, и не обнаруживает зависимости от атомного веса ядра.

На основании последней и с учетом постоянства силовой функции у -переходов между компаунд-состояниями сделаны оценки ширин Гуј для широкого круга деляшихся ядер.

Работа выполнена в Лаборатории нейтронной физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

Vtyurin V.A., Popov Yu.P.

P3 - 10775

Strength Functions of Gamma-Transitions between Compound States in the Reactions $(n, \gamma a)$ and $(n, \gamma f)$

Averaged probabilities for γ -transitions between compound states described in radiation strength function terms and developed earlier for the reaction(n, γa) are generalized for the case of the reaction(n, γf). Values of strength functions for 235 U, 239 Pu, 241 Pu have been calculated from experimental data of the reaction (n, γf) and are compared with strength functions of soft-transitions in the region of A ~ 150, with those for the reaction (n, γa), and for high energy transitions. It is shown that the soft-transition strength function coincides within the limits of errors with that of high energy-transitions and does not depend on an atomic weight of a nucleus. On the basis of the latter and assuming the constancy of strength function of γ -transitions between compound states widths are presented for a wide range of fissionable nuclei.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

ВВЕДЕНИЕ

Для понимания механизма распада нейтронных резонансов и, в частности, начальной стадии испускания каскадов у -квантов при радиационном захвате нейтронов, а также сложных двухступенчатых реакций типа (n,yn'), (n,ya), (n,yf) и др. необходимо знать закономерности у -переходов между высоковозбужденными компаунд-состояниями ядер /переходы типа с→с' /.

В настоящее время при изучении реакций (n, y) и (p, y) накоплена большая информация о вероятностях жестких y - переходов между сложными /компаунд-состояниями/ и сравнительно простыми низколежащими состояниями ядер / переходы с - s //см. например, /1,2//.

Однако простая экстраполяция свойств таких γ -переходов на переходы с \rightarrow с' может привести к ошибочным заключениям.

Дело в том, что переходы $c \rightarrow s$ определяются в заметной степени перекрытием малоквазичастичных компонент волновых функций, что связано с существенным преобладанием последних в конечном слабовозбужденном состоянии ядра, в то время как *у*-переходы $c \rightarrow c'$ могут быть обусловлены многоквазичастичными компонентами волновых функций высоковозбужденных начального и конечного состояний ядра.

В связи с этим изучение переходов с \cdot с'интересно еще и потому, что может дать информацию о многоквазичастичных компонентах волновых функций, необходимую для сравнения с предсказаниями интенсивно развивающейся полумикроскопической теории ядра/3/. К сожалению, выделение индивидуальных γ -переходов между компаунд-состояниями и даже их усредненных спектров с помощью средств современной экспериментальной γ -спектроскопии весьма сложно^{/4/}, поэтому экспериментальные результаты крайне малочисленны $^{/5-7/}$.

В настоящей работе сделана попытка с помощью статистического подхода к описанию вероятностей γ переходов между компаунд-состояниями, усредненных по большому числу конечных состояний, сопоставить силовые функции γ -переходов в реакциях (n, $\gamma \alpha$) и(n, γf).

РАДИАЦИОННЫЕ СИЛОВЫЕ ФУНКЦИИ

Характерными особенностями метода исследования мягких y-лучей при помощи двухступенчатых реакций (n,ya), (n,yf) являются многочисленность /1O³ -1O⁴/ индивидуальных y-переходов, дающих вклад в спектр, а также то, что расстояние между отдельными y-линиями значительно меньше энергетического разрешения используемой аппаратуры.

Это обуславливает не только естественность, но и необходимость усредненного описания радиационного этапа вышеупомянутых реакций. Для описания средних вероятностей γ -переходов различных мультипольностей (ℓ) статистическая теория предлагает довольно удобное понятие радиационной силовой функции

$$S_{y}(\ell) = \frac{1}{D_{i}} < \frac{\Gamma_{yi}}{E_{yi(i)}^{2\ell+1}} >,$$
 /1/

где $\Gamma_{\gamma j}$ - парциальная ширина γ -распада в состояние j; $E_{\gamma j(i)}$ - энергия соответствующего перехода, а D_i - среднее расстояние между распадающимися состояниями с одинаковым спином. Усреднение здесь может производиться как по начальным состояниям / резонансы с данным спином/, так и по конечным. Радиационные силовые функции, определенные таким образом, в общем случае являются функциями атомного веса ядра, причем вид зависимости от А определяется мультипольностью у -переходов.

Данное определение S_{γ} основано на вычислении вероятностей γ -переходов в приближении Вайскопфа^{/8/}. Для E1 -переходов существует альтернативный подход, предполагающий, что вероятность γ -переходов определяется гигантским дипольным резонансом. При этом зависимость Γ_{γ} от энергии дается формулой Лорентца ^{/9/}, и зависимость радиационной ширины от энергии оказывается более сильной / - E⁵ при E_{γ} = 6÷8 МэВ и - E⁴_{γ} при E_{γ} = 2÷3 МэВ/. Кроме того, иной оказывается и зависимость S_{γ} от атомного веса.

Экспериментальные данные о поведении силовых функций в широком диапазоне атомных весов получены в основном при изучении жестких γ -лучей /переходы с \rightarrow s /. Для E1 -переходов наилучшее описание эксперимента дает подход с учетом гигантского дипольного резонанса, согласно которому S_{γ} ~ $A^{B/3/9}$.Экспериментальные значения силовой функции для M1 -переходов /2/ в основном не противоречат следующей из приближения Вайскопфа /8/ независимости ее от атомного веса ядра. Поскольку в ширины двухступенчатых реакций (n, γa) и (n, γf) могут давать вклад мягкие γ -переходы различной мультипольности, то для получения значений силовых функций необходимо знать соотиошение их вкладов.

Первичные мягкие γ -переходы начали изучаться сравнительно недавно. Основные результаты получены при исследовании реакции $(n, \gamma \alpha)^{/4, 5/}$. Измерялись энергетические спектры α -частиц из реакции $(n, \gamma \alpha)$, однозначно связаиные со спектрами первичных γ -лучей, поскольку $E_{\gamma \alpha} = E_{\alpha 0} - E_{\gamma}$, где $E_{\gamma \alpha}$ - энергия α -частицы, испускаемой после вылета γ -кванта, а $E_{\alpha 0}$ - энергия прямого α -перехода в основное состояние дочернего ядра. На *рис.* 1 приведен экспериментальный α -спектр, полученный из данных работы $^{/10/}$. Сплошные линии расчетные спектры, нормированные на площадь экспериментального, полученные в предположении преобладания E1 -переходов, для которых использовалась гипотеза о гигантском дипольном резонансе, и M1 -переходов, радиационная ширина которых принималась пропорцио-

Puc. 1

нальной E^3 . Можно видеть, что последнее предположение позволяет добиться значительно лучшего согласия с экспериментом. Отсюда следует, что или преобладают M1-переходы, или необходимо предположить, что для первичных мягких γ -лучей гигантский дипольный резонанс не играет существенной роли.

Кроме того, мы можем исключить из рассмотрения γ -излучение высших мультипольностей, поскольку зависимость его радиационной ширины от E_{γ} еще сильнее, чем в первом случае.

Сравнение ширин $\Gamma_{\gamma\alpha}$, измеренных в резонансах ¹⁴³ Nd, имеющих разный спин, также дает указание на преобладание M1 - переходов ^{/5/}. На вероятное преобладание M1 - переходов в реакции ²³⁵U(n, γ f) указывалось и в работе ^{/11/}.Имеются также данные о преимущественном вкладе мягких M1 - переходов в (n, γ) - реакции ^{/12/}.

Таким образом, имеющиеся в настоящее время эк-

спериментальные данные указывают на преобладание мультипольности М1 для γ -переходов между компаундсостояниями. Поэтому мы приняли что переходы с $c \rightarrow c'$ имеют мультипольность М1. Тогда, анализируя данные из реакции (n, γa), получаем значение радиационной силовой функции для М1 -переходов из следующего выражения /4/:

$$S_{\gamma}^{cc}(M1) = \frac{2\pi I_{\gamma\alpha} I_{\gamma} (B_{n})}{D_{j} \Lambda E_{\gamma} \sum_{\ell, j=0}^{jmax} E_{\gamma}^{3} T_{\alpha \ell}},$$
 /2/

где $\Gamma_{\gamma\alpha}$ - ширина $(n, \gamma\alpha)$ реакции, Γ_{γ} (B_n) и D_i - соответственно полная гамма-ширина при энергии связи нейтрона B_n и расстояние между исходными компаундсостояниями, имеющими одинаковый спин, а F_{γ} - энергия γ -перехода и $T_{\alpha}\ell$ - проницаемость потенциального барьера для α -частицы с орбитальным моментом ℓ , испускаемой из промежуточного состояния вслед за γ -квантом.

Число интервалов усреднения в выражении /2/ $j_{max} = \frac{E_{\gamma max}}{\Delta E_{\gamma}}$

определяется шириной области энергии $E_{\gamma max}$, на которую приходится основной вклад реакции $(n, \gamma a)$, составляющей, практически, 1,5-2 *МэВ* из-за быстрого спада проницаемости потенциального барьера для вторичных *а*-частиц.

Результаты исследования реакции $(n, \gamma f)$ значительно труднее поддаются интерпретации ввиду большей сложности /по сравнению с *a* -распадом/ делительного этапа реакции. В сущности, к настоящему времени получены только первые, в основном косвенные, экспериментальные данные о ширинах реакции $(n, \gamma f)$ для $2350^{-11,14}$, $241 Pu / 13^{\prime}$, $239 Pu / 14^{\prime}$ Систематизация их и обсуждение в связи с другими результатами не проводились. Найдем приближенное выражение для радиационной силовой функции в случае реакции $(n, \gamma f)$. Ширина одного каскада $\gamma - f$ из начального состояния і через промежуточное состояние со спином и четностью J^{π} и проекцией k может быть представлена в виде

$$\Gamma_{\gamma f}^{i, J^{\prime\prime}} \stackrel{K}{=} \Gamma_{\gamma}^{i, J^{\prime\prime}} \stackrel{K}{=} W_{f}^{J^{\prime\prime}} \stackrel{K}{=} , \qquad /3/$$

где относительная вероятность деления из промежуточного состояния

$$W_{f}^{J^{\pi}K} = \frac{\Gamma_{f}^{J^{\pi}K}}{\Gamma_{\gamma}^{J^{\pi}K} + \Gamma_{f}^{J^{\pi}K}} .$$
 /4/

Здесь $\Gamma_{\rm f}^{J^{\prime\prime}K}$ и $\Gamma_{\gamma}^{J^{\prime\prime}K}$ - соответственно его делительная и полная гамма-ширины. Поскольку полная гамма-ширина слабо зависит от характеристик состояния и энергии возбуждения в рассматриваемой области, мы можем заменить ее на среднюю радиационную ширину захватных состояний Γ_{γ} (B_n) и представить выражение /3/ в виде

$$\Gamma_{\gamma f}^{i, J^{\pi} K} = \frac{\Gamma_{\gamma}^{i, J^{\pi} K} \Gamma_{f}^{J^{\pi} K}}{\Gamma_{\gamma} (B_{n})} (1 - W_{f}^{J^{\pi} K}).$$
 /5/

Просуммируем вклады одиночных каскадов, обладающих одинаковыми значениями J^{π} К в малом интервале энергий промежуточных состояний $\Delta E_{\gamma j}$, где можно пренебречь зависимостью $\Gamma_{f}^{J^{\pi}}$ К и Γ_{γ}^{i} , J^{π} К от энергии. Усреднив правую часть суммы по промежуточным состояниям, получим

$$\Gamma_{\gamma f \Lambda F_{\gamma j}}^{\mathbf{i}, \mathbf{J}^{\pi} \mathbf{K}} = \sum_{\Lambda E_{\gamma j}} \Gamma_{\gamma f}^{\mathbf{i}, \mathbf{J}^{\pi} \mathbf{K}} = \frac{1}{\Gamma_{\gamma h}^{\mathbf{i}, \mathbf{K}}} N_{\mathbf{j}}^{\mathbf{J}^{\pi} \mathbf{K}} < \Gamma_{\gamma h}^{\mathbf{i}, \mathbf{J}^{\pi} \mathbf{K}} > \frac{/6/}{f} (1 - W_{f}^{\mathbf{J}^{\pi} \mathbf{K}}) > F_{\mathbf{j}} \mathbf{F} ,$$

где $N_j = \Delta E_{\gamma} \rho^{J^{\pi} K}$ - число уровней в ј -м интервале.

Поправочный фактор $F = \frac{\langle \Gamma_{Y}^{i,J^{\pi}K} \Gamma_{f}^{J^{\pi}K} (1 - W_{f}^{j^{\pi}K}) \rangle_{j}}{\langle \Gamma_{Y}^{i,J^{\pi}K} \rangle_{Y} \langle \Gamma_{f}^{i,J^{\pi}K} (1 - W_{f}^{j^{\pi}K}) \rangle_{j}}$ можно положить равным единице в силу^j того, что гамма и де-

положить равным единице в силу того, что гамма и делительные ширины двух этапов реакции флуктуируют независимо.

Выразив делительную ширину в выражении /6/ через проницаемость барьера деления

$$F_{f} = \frac{1}{2\pi\rho J^{\pi}K} P_{J^{\pi}K}, r \pi e P_{J^{\pi}K} = [1 + \exp(\frac{E - E_{f}^{J^{\pi}K}}{\hbar \omega J^{\pi}K})]^{-1} / 7 /$$

и среднюю гамма-ширину $< \Gamma_{\gamma}^{i}$ i, J^{π} K > - через /1/, получим

$$\Gamma_{\gamma f \Lambda E_{\gamma j}}^{i, J^{\pi}K} = \frac{D_{i}}{2\pi \Gamma_{\gamma} (B_{n})} S_{\gamma}^{cc} (M1) \Lambda E_{\gamma j} < E_{\gamma}^{3} >_{j} < P_{J}^{\pi} K (1 - W_{f}^{T}) >_{j} /8/$$

Поскольку из эксперимента мы получаем суммарную $\Gamma_{\gamma f}$, просуммируем вклады переходов по всем спинам и четностям промежуточных состояний, полученных путем γ -распада, исходного во всем интервале энергий возбуждения. Тогда

$$\Gamma_{\gamma f}^{9KC\Pi} \doteq \frac{D_{i}}{2\pi\Gamma_{\gamma} (B_{n})} S_{\gamma}^{cc} (M1) \Delta E_{\gamma j} \frac{J_{max}^{max}}{J_{k,j=0}^{7} K} \langle E_{\gamma}^{3} P_{J}^{\pi} K (1 - W_{f}^{J}) \rangle_{j} / 9/$$

откуда

$$S_{\gamma}^{cc'}(M1) = \frac{2\pi \Gamma_{\gamma f}^{9KC\Pi} \Gamma_{\gamma} (B_{n})}{D_{i} \Delta E_{\gamma} \sum_{j=0}^{jmax} \langle E_{\gamma}^{3} P_{j} T_{K} (1 - W_{f}^{T} K) \rangle_{j}} . /10/$$

Верхний предел суммирования $j_{max} = \frac{E_{\gamma max}}{\Delta E_{\gamma}}$, как и в случае реакции (n, γa), определяется величиной $E_{\gamma max} \sim 2 M \Im B$ /см. *рис.* 1/.

9

РАСЧЕТ СИЛОВЫХ ФУНКЦИЙ ДЛЯ РЕАКЦИИ (n,yf)

Выражение /10/ позволяет рассчитать силовую функцию как в предположении одногорбого барьера деления. так и двугорбого. Мы пользовались двугорбым барьером. Параметры барьеров Е, и ћ ω , необходимые для расчета проницаемостей, и зависимости вероятности деления от энергии возбуждения были взяты нами из работы $\frac{15}{1}$, где из экспериметальных данных по (d, pf) реакции определялись параметры двугорбого барьера. В этой работе приводятся средние по Ј^{*п*} К значения параметров, поэтому при расчете по формуле /10/ мы подставляли средние проницаемости и вероятности деления, считая, что в реакциях (d, pf) и (n, vf) дают вклад в среднем одни и те же промежуточные состояния. Поэтому экспериментальные ширины Губ при расчете также усреднялись по захватным состояниям, а вместо D_i бралось среднее расстояние между резонансами.

Использование предположения о двугорбом барьере обуславливает два типа реакций $(n, \gamma f)$: "мгновенные", когда после испускания γ -кванта идет деление сквозь оба барьера, и "задержанные", когда после прохождения первого барьера ядро оказывается в одном из состояний второй ямы и делится с периодом полураспада соответствующего изомерного состояния. Поэтому экспериментальное значение $\Gamma_{\gamma f}$ будет зависеть от методики измерений. Среди известных экспериментальных данных к измерениям "мгновенной" реакции $(n, \gamma f)$ можно отнести только результаты работы /11/.

Погрешность данного метода расчета S_{γ}^{cc} определяется в основном неопределенностями параметров барьера, которые могут измениться в полтора-два раза. Некоторые неточности вносятся также за счет фактической замены при расчете среднего от произведения в выражении /10/ произведением средних Р и (1- W_f) и Γ_y (B_n) вместо $\Gamma_y^{J^n}$ ($B_n - E_y$) и, кроме того, за счет упомянутого выше предположения о применимости данных по реакции (d, pf) для описания делительного этапа реакции (n, yf).

Рассчитанные нами радиационные силовые функции

 S_{γ}^{cc} (M1) мягких γ -переходов приведены на *рис. 2.* Для сравнения здесь же приводятся данные по силовым функциям жестких M1 -переходов /обозначены квадратиками/, пересчитанные из работы^{/2/} по формуле $S_{\gamma} = K_{M1} \ 10^{-6}$. Можно видеть, что отмечавшаяся ранее в работе^{/6/}близость $S_{\gamma}^{cc'}$ (M1) и S_{γ}^{cs} (M1) в районе редких земель в пределах ошибок имеет место и в области тяжелых ядер,

и поведение $S_{\gamma}^{cc}(M1)$ не противоречит ожидаемой из приближения Вайскопфа независимости $S_{\gamma}(M1)$ от атомного веса.

На основании последнего и с учетом постоянства $S_{\gamma}^{cc}(M1) = 24.10^{-9}$ были рассчитаны ширины $\Gamma_{\gamma f}$ для широкого круга делящихся ядер. Полученные величины $\Gamma_{\gamma f}$ приведены в *таблице*, где $\Gamma_{\gamma f}^{II}$ - ширины "мгновенной" (n, γf) - реакции, а $\Gamma_{\gamma f}^{I}$ - "задержанной".

ЗАКЛЮЧЕНИЕ

Оценивая результаты первых исследований мягких γ -переходов, отметим, что весьма интересной представляется близость S_{γ}^{cs} и S_{γ}^{cc} , поскольку природа конечных состояний γ -переходов в этих случаях сильно отличается.

Надеемся, что последующие исследования реакции $(n, \gamma a)$ позволят получить значения S_{γ}^{cc} для более широкого круга ядер, что дало бы возможность судить о причине близости силовых функций и степени общности полученных результатов.

Хотя область атомных весов, в которой можно наблюдать реакцию $(n, \gamma f)$, уже и погрешности при вычислении S_{γ}^{cc} сравнительно велики, полученные результаты относятся к новой области ядер, а точность значений S_{γ}^{cc} может быть значительно улучшена с получением данных о барьерах деления для состояний с различными спинами и четностями.

В заключение авторы выражают благодарность В.И.Фурману за интересные и плодотворные дискуссии и Н.С.Мелиховой за помощь в оформлении публикации. Ταблица

нашим-	2 3 3 U	235 U	²³⁷ Np	238 p _u	239 P _U	241 Pu	²⁴¹ Am	243 Am
1 Гүf [maB] оценка	8,3 8	3,2	0,15	2 . 10 ⁻²	16,5	6	5.10 6	10-4
[] Г ₇ f [мэВ] оценка	4,6	1,6	2.10-7	3 2 · 10 ⁻³	12	1, 4	ł	• 1
Г _ү ғ [лаВ] эксп.		2±07;4= : /14/ /9/		-1 <10 ⁻¹ /17/ /16/	10±3 /14/	4±2 /13/		
Sy ^{c → c} akc⊓.		16-16 60-50		· 120	14,5± 14.5	50± ⁵⁰		

- 1.
- Jackson H.E. In: Neutron Capture Gamma-Rav Spectroscopy, RCN, Petten, Netherlands, 1975, p.437.
- Bird J.R. e.a. In: Proc. of a Conference Lowell, 2. Massachusetts. USA, 1976, vol. 1, p.77.
- 3. Соловьев В.Г. ЭЧАЯ, 1972, 3, вып. 4, с. 770.
- Popov Yu.P. In: Neutron Capture Gamma-Ray 4 Spectroscopy, RCN, Petten, Netherlands, 1975, p.379. Попов Ю.П. ОИЯИ, РЗ-8140, Дубна, 1974.
- 5. Furman W. e.a. Phys. Lett., 1973, B44, p.465. Винивартер П. и др. ОИЯИ, РЗ-6754, Дубна, 1972.
- 6. Втюрин В.А. и др. В кн: Нейтронная физика /материалы 3-й Всесоюзной конференции по нейтронной физике, Киев, 9-13 июня 1975/, часть 4, с.65. M., 1976.
- 7. Поярков В.А., Прокопец Г.А., Стрижак В.И. ЯФ, 1974, 19, c.705.
- 8. Альфа-бета-гамма-спектроскопия /под ред. К.Зигбана/, Атомиздат, М., 1969, вып. 3, с.20.
- 9. Bollinger L.M. In: Nuclear Structure, JINR. Dubna, 1968, p.317.
- 10. Oakey N.S., Macfarlane R.D. Phys.Lett., 1968, 26B, Þ.662.
- 11. Длоугы З., Криштяк Й., Пантелеев Ц. В кн.: Избранные вопросы структуры ядра, ОИЯИ, Д-9682, Дубна, 1976, c.113.
- 12. Алдеа Л. и др. ОИЯИ, РЗ-7885, Дубна, 1974.
- 13. Simon G., Trochon J. CEA-N-1798, Juin 1975, p.67. 14. Trochon J., Simon G. In: Proc. of Int. Symp. on Neutron Induced Reactions. Smolenice 01-07, 1974.
- 15. Back B.B. e.a. Nucl. Phys., 1971, A165, No. 3, p.449.
- 16. BNL-325. Third ed., 1973, vol. 1. 17. Bowman C.D. e.a. Phys. Rev.Lett., 1967, 18, no. 1, p.15.
- 18. Антонов А. и др. ОИЯИ, РЗ-9815, Дубна, 1976.

Рукопись поступила в издательский отдел 22 июня 1977 года.