СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

P2 - 9947

13/411-76

В.Р.Гарсеванишвили, С.В.Голоскоков, М.И.Джгаркава, Ю.М.Казаринов, С.П.Кулешов, В.А.Матвеев, В.К.Митрюшкин, И.К.Поташникова, А.В.Ракитский, И.Н.Силин

К ВОПРОСУ О 77 N - РАССЕЯНИИ ПРИ ВЫСОКИХ ЭНЕРГИЯХ В КВАЗИПОТЕНЦИАЛЬНОМ ПОДХОДЕ

4974 2-76

C346.46 T-214

P2 - 9947

В.Р.Гарсеванишвили, С.В.Голоскоков, М.И.Джгаркава, Ю.М.Казаринов, С.П.Кулешов, В.А.Матвеев, В.К.Митрюшкин, И.К.Поташникова, А.В.Ракитский, И.Н.Силин

К ВОПРОСУ О **77 N** - РАССЕЯНИИ ПРИ ВЫСОКИХ ЭНЕРГИЯХ В КВАЗИПОТЕНЦИАЛЬНОМ ПОДХОДЕ

Настоящая работа посвящена описанию *п*N-рассеяния при высоких энергиях и фиксированных передачах в рамках квазипотенциального подхода/1,2/ на основе уравнения, описывающего систему мезон-нуклон ^{/3/}. В работе^{/4/} был проведен подробный анализ экспериментальных данных по *п*N-рассеянию на основе решения этого уравнения в представлении Фолди-Войтхойзена. При этом обрабатывался экспериментальный материал по полным и дифференциальным сечениям, а также по параметрам поляризации Р и Копубликованный до конца 1971 года.

В ином подходе обрабатывались некоторые данные по мезон-нуклонному рассеянию в работе /5/, а также полные сечения в работе /6/.

Большой интерес представляет совместное описание известных в настоящее время экспериментальных данных по πN - рассеянию /см. *табл*. 1/, которое проводится в настоящей работе на основе уравнения /3/:

$$\{\mathbf{E}\cdot\boldsymbol{\gamma}_{0} + \mathbf{i}\hat{\boldsymbol{\beta}}\vec{\boldsymbol{\gamma}}\vec{\boldsymbol{\nu}} - \hat{\boldsymbol{\beta}}\cdot\mathbf{m} + \frac{1}{\hat{\omega}}\boldsymbol{\nabla}(\vec{\mathbf{r}};\mathbf{E})\}\boldsymbol{\psi}(\vec{\mathbf{r}}) = 0, \qquad /1/$$

где $\hat{\beta} = 1 + \frac{\hat{\omega}}{\hat{W}}, \quad \hat{\omega} = \sqrt{\mu} - \vec{\nabla}^2, \quad \hat{W} = \sqrt{m} - \vec{\nabla}^2, \quad \mu m = maccы$

мезона и нуклона, соответственно.

Решение уравнения /1/ было предложено в работе^{/7/} для произвольного гладкого локального потенциала. Выбирая гладкий потенциал в виде

$$V = V^{(I)} = \gamma_0 \cdot \{V_1^{(I)} + \frac{1}{p} \cdot V_2^{(I)} \cdot \vec{\Sigma} \vec{L}\},$$

$$\vec{\Sigma} = (\vec{\sigma} \quad 0 \quad \vec{\sigma}); \quad \vec{L} = -i \cdot [\vec{r} \times \vec{V}],$$

$$/2/$$

3

Таблица 1

/ $\vec{\sigma}$ - матрицы Паули, а I = 1/2; 3/2 - изотопический индекс/, будем иметь выражение для амплитуд с определенным изотопическим спином. При этом амплитуда без переворота спина

$$T_{nf}^{(I)} = -ip \cdot \int_{0}^{\infty} \rho d\rho \cdot J_{0}(\Delta_{\perp}\rho) \cdot [e^{\chi_{0}^{(I)}(\rho)} - 1],$$

а амплитуда с переворотом спина

$$T_{f}^{(I)} = +i\sigma_{y} \cdot p \cdot \int_{0}^{\infty} \rho d\rho \cdot J_{1} (\Delta_{\perp} \rho) \cdot e^{\chi_{0}^{(I)}(\rho)} \cdot \chi_{1}^{(I)} ,$$

где фазы $\chi^{(1)}_{0;1}$ определяются равенствами:

$$\chi_{0}^{(I)} = \frac{1}{2pi} \cdot \int_{-\infty}^{\infty} dz \cdot V_{1}^{(I)} ,$$

$$\chi_{1}^{(I)} = \frac{1}{2pi} \cdot \frac{\rho}{2} \cdot \int_{-\infty}^{\infty} dz \cdot (i V_{2}^{(I)} + \frac{i}{p \cdot \rho} \cdot \frac{\partial}{\partial \rho} V_{1}^{(I)}).$$

$$V_{1}^{(1)} = -2ip \cdot g_{1} \cdot a_{1}^{-3/2} \cdot e^{-\frac{r^{2}}{4a_{1}}} - \frac{(\frac{p}{\sqrt{s_{0}}})^{1-\xi} [g_{0;0}^{(I,1)} + g_{0;2}^{(I,2)} \cdot r^{2}] \cdot e^{-\frac{r^{2}}{4a(I,1)}};$$

$$V_{2}^{(I)} + \frac{1}{p \cdot \rho} \cdot \frac{\partial}{\partial \rho} V_{1}^{(I)} = i \cdot (\frac{p}{\sqrt{s_{0}}})^{1 - \xi} \left[g_{0,0}^{(I,2)} + g_{0,2}^{(I,2)} r^{2} \right] \times -\frac{r^{2}}{4s_{0}^{(I,2)}} \sqrt{s_{0}} \sqrt{s_{0}}$$

$$\times e^{-\frac{4a(1,2)}{4a(1,2)}}$$
. /3/

Реакция	Величина	Гэв/с	Чысло Точек	Но рма	Ссылка
<u> </u>	2	3	4	5	6
9 ⁻ 17	do/dt	9.84	9	I,0034 ± 0,0083	10
	, u -	9.89	12	I,0I25 ± 0,0076	
		I0.8	14	I,096I ± 0,0249	
		II,89	II	$1,0062 \pm 0,0075$	
		12.4	20	I,0430 ± 0,0208	
		13.0	13	I,1005 ± 0,0246	- - -
		14,16	II	I,0I0I ± 0,0083	
		14,84	8	I,I007 ± 0,032I	
		15,0	13	I,0827 ± 0,026I	
		15,99	14	0,99I ± 0,0066	-n-
		16,0	16	0,9924 ± 0,006I	- " -
		17,0	12	I,0624 ± 0,0253	
		18,19	14	I,0I26 ± 0,0064	-"-
		18,4	15	$1,1194 \pm 0,0276$	
		18,9	6	I,0663 ± 0,0369	
		19,75	7	I,2328 ± 0,0340	-*-
		20,15	I7	0,9938 ± 0,0069	
		20,38	18	0,9799 ± 0,0054	
		22,13	19	C,9888 ± 0,0065	
		23,18	7	I,I443 ± 0,0293	
		24,22	19	0,9855 ± 0,0065	
		25,34	8	I,II72 ± 0,0306	
		26,2 3	20	0,9706 ± 0,0060	
		14,15	4 I	$1,0637 \pm 0,0055$	
		32,82	14	0,946I ± 0,0I55	.II
		35,39	18	0,9405 ± 0,0I40	
		42,02	26	$1,0164 \pm 0,0074$	
		45,34	18	$1,0345 \pm 0,0135$	
		48. 6I	2 5	I,0635 ± 0,0098	-#-
π-ρ	do/dt	50,96	24	I,0506 <u>+</u> 0,0I02	11
	/	54,74	19	I,0000 <u>+</u> 0,0500	-"-
		55,IO	17	0,9002 <u>+</u> 0,0187	_"_
		25,20	37	0,9508 <u>+</u> 0,0I07	12
		4 0,I0	36	I,0078 ± 0,0117	-"-
		205	15	$I_{0}0105 + 0_{0}0365$	13
π*ρ	45/22	9.86	9	I,0192 + 0,0091	10
	1/41	10.02	IO	I,0722 + 0,009I	_"-
		IO.80	15	1.1003 ± 0.0243	**_
		11,95	15	$1,0120 \pm 0,0080$	_"_
		12.40	19	$0,9550 \pm 0,0330$	
		12.80	I4	$1,1083 \pm 0,0260$	-"-

4

Таблица 1 /продолжение/							
1	2	3	4	5	6		
		I4,00	12	I,0I06 <u>+</u> 0,0086	_"-		
		I4,8	13	I,0997 <u>+</u> 0,0255	-"-		
		16,02	I8	I,0I4I <u>+</u> 0,0072	-"-		
		I6 , 7	13	I,0463 <u>+</u> 0,0266	-"-		
		17,96	17	0,9985 <u>+</u> 0,008I	-"-		
j, →7°n	. 1	20,19	17	0,99I5 <u>+</u> 0,0087	-"-		
	40/dt	9.8	14	I.1020 + 0.0440	_"-		
		10.0	7	I,085I + 0,0629	_"_		
		13.3	13	$1,2230 \pm 0,0576$	_"-		
		13,3	10	I,22 3 0 <u>+</u> 0,0576	"		
		18,2	13	I,0535 <u>+</u> 0,0553	-"-		
		18,2	9	I,0535 <u>+</u> 0,0553	-"-		
		21,0	15	I,I297 <u>+</u> 0,0364	14		
		25,0	15	I,0589 <u>+</u> 0,0382	-"-		
		32,5	15	I,0272 <u>+</u> 0,0370	-"-		
		4 0,0	15	0,9882 <u>+</u> 0,0360	_"-		
		48,0	15	0,9644 <u>+</u> 0,0 3 55	-"-		
η-ρ	Jan IO	-28.68	27		Ite		
,		21-65	19		_"_		
		205	I		15		
πtp	5, 9,8	4-2I,I	3 0		IE		
-	0	15-60	10		-"-		
q=11	Ρ	10,0	15		10		
		12,0	13		-"-		
		10,0	21		17		
		I4, 0	19		<u>-</u> "- т 8		
	•	40,0	14		10		
П*р	p	10 , 6	6		I 0		
/		12,0	5		_"-		
		14,0	7		-"-		
		10,0	15		17		
		I4,0	19		-"-		
		17,5	8		-"-		
i [−] p •⇒π°n	ρ	9 0	ĥ		17		
	4	0,0 TT 2	7		19		
- - ~	ai o	11,~ 0/_26_23	, TT		20		
" P	~ 9	,0 <u>4</u> -20,20			*		
7 * P	≪ 9	,86-20,19	7		-"-		
71-p	ĸ	16, 0	8		21		
r		40, 0	7		18		

Таблица 2

$$\begin{aligned} \mathcal{Q}_{L} &= \left[(1,083 \pm 0,067) + (0,481 \pm 0,015) \left(l_{*} \frac{s}{s} - \frac{i\pi}{2} \right) \right] (F_{9.3}/c)^{-2} \\ \mathcal{G}_{L} &= \left[(0,571 \pm 0,024) + (0,026 \pm 0,004) \left(l_{*} \frac{s}{s_{*}} - \frac{i\pi}{2} \right) \right] (F_{9.3}/c)^{-2} \\ \mathcal{Q}_{L}^{(3/2,+)} &= (8,240 \pm 0,170) (F_{9.3}/c)^{-2} \\ \mathcal{Q}_{L}^{(3/2,+)} &= (11,800 \pm 0,311) (F_{9.3}/c)^{-2} \\ \mathcal{G}_{L}^{(3/2,+)} &= \left[(0,131 \pm 0,006) + i(0,040 \pm 0,003) \right] (F_{9.3}/c)^{2} \\ \mathcal{G}_{L,2}^{(3/2,+)} &= \left[(0,0251 \pm 0,0047) - i(0,0146 \pm 0,0030) \right] (F_{9.3}/c)^{2} \\ \mathcal{G}_{L,2}^{(3/2,+)} &= \left[(0,0251 \pm 0,0047) - i(0,0146 \pm 0,0030) \right] (F_{9.3}/c)^{2} \\ \mathcal{G}_{L,2}^{(3/2,+)} &= \left[(-2,966 \pm 0,612) \cdot 10^{-5} + i(5,484 \pm 0,249) \cdot 10^{-5} \right] (F_{9.3}/c)^{-2} \\ \mathcal{G}_{L,2}^{(4/2,+)} &= \left[(7,487 \pm 0,133) + (0,299 \pm 0,023) \left(l_{*} \frac{s}{s_{*}} - \frac{i\pi}{2} \right) \right] (F_{9.3}/c)^{-2} \\ \mathcal{G}_{L,2}^{(4/2,+)} &= \left[(0,173 \pm 0,006) + i(0,0298 \pm 0,0035) \right] (F_{9.3}/c)^{-2} \\ \mathcal{G}_{L,2}^{(4/2,+)} &= \left[(-0,0271 \pm 0,0122) + i(-0,0351 \pm 0,1268) \right] (F_{9.3}/c)^{2} \\ \mathcal{G}_{L,2}^{(4/2,+)} &= \left[(-2,317 \pm 0,649) \cdot 10^{-5} + i(-0,598 \pm 9,506) \cdot 10^{-5} \right] (F_{9.3}/c)^{4} \\ \frac{s}{s} &= 0,968 \pm 0,037 \\ \frac{s}{s} &= 1 (F_{9.3}/c)^{2} \end{aligned}$$

Все значения параметров, полученные в результате обработки, выписаны в *табл. 2.* При этом достигается описание экспериментальных данных $/\chi^2 = 1458$ при числе обработанных точек N = 1174 - см. *табл. 1/.*

На рис. 1-5 приведены некоторые кривые, построенные на основе проведенного анализа.

Подчеркнем, что выбранная параметризация^{/3/} обеспечивает логарифмический рост полных сечений π^{\pm} р рассеяния /см. рис. 1/ при высоких энергиях.

Дифференциальное сечение процессе перезарядки при $p_L = 40 \Gamma_{\mathcal{B}B/c} / puc. 2/$ не имеет явно выраженного "провала" при t ~ 0 / сравни с /4//.

Рис. 1. Полные сечения π^{\pm} р - взаимодействия.

Отметим, что предсказания для параметра поляризации R /см. *рис.* 5/ при $p_L = 40 \Gamma \beta B/c$, полученные $B^{/4/}$, подтвердились в результате анализа, проведенного в настоящей работе.

В настоящей работе приведены только кривые при $p_L \ge 40 \ \Gamma \Im B/c$. Результаты данной обработки при более низких энергиях практически совпадают с анализом, проведенным в работе $^{/4/}$, где и приведены соответствующие графики.

Одним из качественных результатов работы /см. также /4/ / является факт положительности параметра поляризации в процессе перезарядки на малые углы. Такой же качественный вывод получается в модели комплексно-сопряженных полюсов Редже /9/ К настоящему времени проведено небольшое количество экспериментов по измерению этого параметра /максимальный импульс p_L , при котором производился эксперимент, равен 11,2 ГэВ/с/. Параметр поляризации перезарядки является весьма критичным при проверке предсказаний различных моделей, описывающих πN -рассеяние при высоких

Рис. 2. Дифференциальное сечение в процессе перезарядки при $p_L = 40 \Gamma \beta B/c$.

Рис. 4. Параметр поляризации P в $\pi^- p$ -рассеянии при $p_L = 40 \Gamma \Im B/c$.

Рис. 5. Параметр поляризации R в $\pi^- p$ -рассеянии при $p_1 = 40 \ \Gamma \Im B/c.$

энергиях. Поэтому измерение этой величины при больших значениях энергии представляется чрезвычайно важным. Отметим, что в параметризации/3/значение радиуса взаимодействия а₁ практически не изменилось по сравнению с результатами обработки /4/.

В заключение мы рады выразить благодарность А.Н.Тавхелидзе за интерес к работе иценные замечания, а также Н.П.Зотову, А.Н.Сисакяну и М.А.Смондыреву за полезные обсуждения.

11

Литература

- 1. A.A.Logunov, A.N.Tavkhelidze. Nuovo Cim., 29, 380, 1963.
- 2. A.N.Tavkhelidze. Lectures on Quasipotential Method in Field Theory. Tata Institute of Fundamental Research, Bombey (1964).
- В.Р. Гарсеванишвили, С.В. Голоскоков, В.А. Матвеев, Л.А. Слепченко. ТМФ, 12, 384 /1972/.
 М.I.Dzhagarkava, V.R.Garsevanishvili, S.V.Goloskokov, Yu.M.Ka-
- M.I.Dzhagarkava, V.R.Garsevanishvili, S.V.Goloskokov, Yu.M.Kazarinov, V.A.Matveev, I.K.Pctashnikova, I.N.Silin, L.A.Slepchenko. Nucl.Phys., B67, 232 (1973).
- 5. V.F.Edneral, O.A.Khrustalev, S.M.Troshin, N.E.Tyurin. CERN preprint, TH-2126, 1976.
- 6. Александров, С. Мавродиев. ОИЯИ, Еб-9936, Дубна, 1976.
- 7. С.В. Голоскоков, С.П.Кулешов, В.К.Митрюшкин, М.А.Смондырев. ТМФ, 24, 147 /1975/.
- Р.Иден. "Соударения элементарных частиц при высоких энергиях". М., Наука, 1970.
 М.И.Джгаркава, Ю.М.Казаринов, И.К.Поташникова,
- М.И.Джгаркава, Ю.М.Казаринов, И.К.Поташникова, И.Н.Силин. ЖЭТФ, 67, 839 /1974/. Н.П.Зотов, В.А.Царев. Лекция на Школе-семинаре по физике элементарных частиц. Сочи, 1974, Изд. ОИЯИ, Р1,2-8529, Дубна, 1975.
- 10. G.Giacomelli, P.Pine, S.Stagri. CERN, HERA 69-1, 1969.
- 11. А.А.Деревщиков, Ю.А.Матуленко и др. Препринт ИФВЭ СЭФ-73-76, Серпухов, 1973.
- 12. Yu.M. Antipov, G. Ascoli et al. Nucl. Phys., B57, 333, 1973.
- 13. D.Bogert, R.Hanft, F.R.Huson et al. Phys Rev. Lett., 31, 1271, 1973.
- 14. В.Н.Болотов, В.В.Исаков, Д.Б.Какауридзе и др. Препринт ИФВЭ СЭФ-73-52, Серпухов, 1973.
- 15. S.P. Denisov, Yu.P. Dmitrievski et al. Phys. Lett., 36B, 528, 1971.
- 16. S.P.Denisov et al. Phys.Lett., 36B, 415, 1971
- 17. M.Borghini, L.Dick et al. Phys.Lett., 36B, 493, 1971.
- 18. C.Brunneton et al. Report at the Palermo Conference on High Energy Physics, June, 1975.
- 19. P.Bonami, R.Borgeaud et al. Nucl. Phys., B16, 335, 1970.
- 20. O.V.Dumbrais. JINR E2-5847, Dubna, 1971.
- 21. A. de Lesquen, B. Amblard et al. Saclay preprint, March, 1972.

Рукопись поступила в издательский отдел 7 июля 1976 года.