ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Экз. ЧИТ ЗАЛА

P2 - 9940

Д.Ю.Бардин, Н.М.Шумейко

9940

РАДИАЦИОННЫЕ ПОПРАВКИ К ПРОЦЕССУ ГЛУБОКОНЕУПРУГОГО **Д** N -РАССЕЯНИЯ

P2 - 9940

Д.Ю.Бардин, Н.М.Шумейко*

РАДИАЦИОННЫЕ ПОПРАВКИ К ПРОЦЕССУ ГЛУБОКОНЕУПРУГОГО **Д** N - РАССЕЯНИЯ

Направлено в "Physics Letters"

 Белорусский государственный университет, Минск. P2 - 9940

Радиационные поправки к процессу глубоконеупругого (N -рассеяния

В рамках простой кварк-партонной модели вычислено дважды дифференциальное по переменным х и у сечение процесса l + N → l + адроны(l - электрон или мюон) с точностью до членов a^3 . Показано, что при больших $q^2 u \nu$ становится значительным вклад в радиационную поправку, обусловленный электромагнитным взаимодействием адронов.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Bardin D.Yu., Shumejko N.M.

Бардин Д.Ю., Шумейко Н.М.

P2 - 9940

Radiation Corrections to the Process of Deep Inelastic (N-Scattering

In the framework of a simple quark-parton model the double-differential cross section of the processes $\ell + N \rightarrow \ell +$ hadrons ($\ell - is$ the electron or muon) is calculated up to a^3 -order terms. It is shown that at large q^2 and ν the contributions of the electromagnetic corrections involviny hadrons becames essential.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

Знание радиационных поправок к процессам глубоконеупругого рассеяния лептонов на нуклонах необходимо для недвусмысленной интерпретации экспериментальных данных. Радиационные поправки нарушают скейлинг, поэтому без их реалистического учета нельзя ответить на вопрос, в какой мере скейлинг нарушается самими сильными взаимодействиями.

Вычисление электромагнитных поправок к процессам с участием адронов встречается с принципиальной трудностью, связанной с отсутствием теории сильных взаимодействий. Поэтому такой расчет требует привлечения некоторой модели. Принимая во внимание тот факт, что простая партонная модель /1/ удовлетворительно описывает общие черты глубоконеупругого рассеяния, представляется разумным использовать ее для подобных вычислений. В литературе уже имеются примеры такого приложения партонной модели. Так, в работах /2,3/ она была использована для оценки вклада двухфотонного обмена в глубоконеупругое ℓ_p -рассеяние, а в работе/4/ для оценки полной электромагнитной поправки низшего порядка - к процессу глубоконеупругого рассеяния нейтрино на нуклонах.

В этой работе мы применили простые идеи партонной модели /1/ к проблеме вычисления полной радиационной поправки порядка *а* к процессу глубоконеупругого рассеяния заряженных лептонов на нуклонах

l + N → l + адроны,

/1/

где l - электрон или мюон.

3

В модели предполагается, что протон состоит из точечных невзаимодействующих частиц - партонов и что глубоконеупругое рассеяние обусловлено упругим взаимодействием лептона с партоном. В рамках таких предположений расчет радиационных поправок к процессу /1/ сводится к вычислению поправок к сечению рассеяния двух заряженных точечных частиц со спином 1/2 - лептона и партона - с последующим усреднением по спектру партонов и суммированием по их типам. При этом мы считаем, что в сечение в порядке а³ дают вклад только свободные, валентные партоны и что последние являются SU(3) -кварками и и d. распределение которых по импульсах дается некоторыми функциями u(x) и d(x). Вклад "моря" c(x) учитывается лишь в сечении низшего порядка по а, которое определяется формулой

$$\frac{d^{2}\sigma}{dxdy} = \frac{\pi a^{2}}{ME xy^{2}} [1 + (1 - y)^{2}] [\frac{4}{9}u(x) + \frac{1}{9}d(x) + c(x)], /2/$$

где М - масса протона, Е - энергия налетающего лептона, х и у - обычные "скейлинговые" переменные. При вычислении радиационной поправки $\delta(x, y)$, которая определяется как отношение сечения $d^2\sigma_1/dxdy$ в порядке a^3 к сечению /2/, для функций u(x) и d(x) мы использовали их экспериментальную подгонку из работы /5/.

В сечение лептон-партонного рассеяния в порядке *а*³дают вклад обычные диаграммы.

Здесь --- - лептонная линия, -- - линия партона.

При вычислении вклада в сечение диаграмм с испусканием реального фотона необходимо интегрировать по полному фазовому объему, поскольку инклюзивную реакцию $\ell + N \rightarrow \ell + \gamma +$ адроны, в которой регистрируется лишь конечный лептон, невозможно отличить от процесса /1/. В таком случае радиационная поправка оказывается не зависящей от энергетического разрешения.

Если обозначить заряд кварка через fe, то можно принять следующую классификацию вкладов в сечение $d^2 \sigma_1 / dx dy$:

1/ вклады порядка $a^3 f^2$, обусловленные днаграммами 1,2,3,7,10 и 11; они представляют собой электромагнитные поправки к лептонному току;

2/ вклады порядка $a^3 f^4$, происходящие от диаграмм 4,5,6,12 и 13 - поправки к партонной линии;

3/ вклады порядка $a^3 f^3$, отвечающие двухфотонному обмену 8 и 9 и интерференции диаграмм 10,11 с диаграммами 12,13.

Только последние вклады меняют знак при переходе от ℓ^+N - к ℓ^-N - рассеянию.

Отметим, что электромагнитные поправки к лептонному току в глубоконеупругом ℓ N -рассеянии могут быть учтены модельно-независимым образом, поскольку как безрадиационное сечение, так и сечения, соответствующие диаграммам первого типа, описываются двумя феноменологическими структурными функциями W₁ и W₂. Именно такой учет радиационных поправок, базирующийся на результатах работы Мо и Tsai ^{/6/}, проводился при обработке проделанных экспериментов по глубоконеупругому ер- и µр-рассеянию. При этом всегда предполагалось, что все другие вклады в поправку /типа вкладов 2/ и 3// либо малы, либо компенсируют друг друга.

Обсудим теперь кратко результат наших вычислений. Мы представили $\delta(x, y)$ как сумму двух членов

$$\delta(\mathbf{x},\mathbf{y}) = \delta_{\ell}(\mathbf{x},\mathbf{y}) + \delta_{\mathbf{h}}(\mathbf{x},\mathbf{y}), \qquad /3/$$

где δ_{ℓ} отвечает вкладам первого типа, а δ_{h} - сумме второго и третьего типов.

4

5

Функция $\delta_{\rho}(x, y)$ была выражена в виде

$$\delta_{\ell}(x, y) = \delta_{\ell}^{a}(x, y) + \int_{x}^{1} F(x, y, \xi) \sum_{i=u, d} f_{i}^{2} f_{i}(\xi) d\xi.$$
 /4/

Первый член, не зависящий от спектра партонов, был вычислен аналитически. Он обусловлен диаграммами 1,2, 3,7 и вкладом области мягких фотонов /диаграммы 10 и 11/. Второй член описывает вклад области жестких фотонов диаграмм 10 и 11. Он был проинтегрирован до однократного интеграла по распределению партонов, в котором подынтегральная функция равна произведению спектра партонов f (x)[u(x) и d(x)] на вычисленную функцию $F(x, y, \xi)$. Оставшееся интегрирование проводилось численно на ЭВМ.

Часть δ_h , обусловленная днаграммами 4,5,6,8,9 и областью мягких фотонов /днаграммы 10-13/, была также вычислена аналитически; она зависит от спектра партонов. Часть δ_h , отвечающая валаду жестких фотонов, была представлена и вычислена аналогично второму члену в /4/.

Обсудим теперь численные результаты для $\delta_{\ell}(x, y)$ н $\delta_h(x, y)$, изображенные на *рис.* 2 и 3, для случая глубоконеупругого μ_p -рассеяния при $E = 250 \ \Gamma \ pB$. Из-за различия в знаке вклада 3/ величины $\delta_h(x, y)$ оказываются разными для $\mu^+ p$ - и $\mu^- p$ -рассеяния. Как видно из рисунков, наибольший вклад в поправку дает величина $\delta_{\ell}(x, y)$. Она меняется от -20% при x-1 до большого положительного значения при x ~ 0, y ~ 1. Последний факт отмечался и в предыдущих работах /3,7/. Рост радиационной поправки в этой области обусловлен тем, что падающий лептон может излучить большую часть своей энергии и претерпеть упругое рассеяние с большим сечением. Это ограничивает доступную для анализа кинематическую область изменения x и y. Фактически мы должны ограничиться той областью, где поправка не превосходит, скажем, величины 25%, поскольку в противном случае нельзя исключить больших радиационных поправок более высокого порядка.

Puc. 2

Что касается величины $\delta_h(x,y)$, включающей в рассмотренной модели электромагнитные поправки к адронам, то для $\mu^+ p$ -рассеяния ее величина, как видно, не превышает <u>+</u>3%. Это происходит из-за взаимной компенсации вкладов 2/ и 3/. Для $\mu^- p$ -рассеяния эти вклады складываются, и величина δ_h достигает 10%.

Таким образом, нельзя исключить, что по крайней мере при некоторых x и у традиционный неучет вкладов δ_h приводит к кажущемуся 10%-иому нарушению скейлинга.

Из графиков видно также, что разность сечений $\mu^+ p$ н $\mu^- p$ -рассеяния достигает 10-12% при x~1, у~1, т.е. может быть измерена экспериментально. Такое измерение позволит проверить рассматриваемую модель. Отметим, что главный вклад в эту разность дает интерференция днаграмм 10,11 и 12,13. Вклад двухфотонного обмена /диаграммы 8 и 9/ составляет лишь пятую часть этой разности, что согласуется с результатом работы /3/. Заметим также, что из нашего расчета диаграмм 8 и 9 в предельном случае у→1 следует асимптотическая формула работы /3/ для разности сечений, обусловленной этими диаграммами.

В заключение обсудим неопределенности в вычислении δ(x, y). Одна из них связана с наличием в конечных формулах массы партона М . Как показали вычисления, вариация M_Q в пределах 01М÷М не приводит к заметному изменению результата, что является следствием логарифмической зависимости δ от M_0 . В конечных формулах мы положим M_O = xM, как это требуется кинематикой. Другая неопределенность обусловлена зависимостью δ от спектра партонов. Наибольшая чувствительность δ к спектру наблюдается в области малых х, где проблематична применимость самой партонной модели. В области же ее применимости спектр партонов может быть извлечен из эксперимента и использован для вычисления радиационной поправки. Таким образом, собственно в рамках модели неопределенности малы, так что основным является вопрос о степени применимости самой модели, в частности вопрос о справедливости предположения о точечных, не взаимодействующих межлу собой

9

8

партонах. В этой связи отметим, что попытка оценить эффекты электромагнитного взаимодействия пионов в конечном состоянии процесса глубоконеупругого рассеяния была предпринята в работе /8/.Найденная в ней поправка при энергии E = 250 ГэВ составляет 10% в области $x_{-}0$ и $y_{-}1$.

Итак, обычная процедура вычисления радиационной поправки, при которой не учитываются электромагнитные поправки к адронам, представляется, по нашему мнению, недостаточной в области больших энергий.

Мы выражаем глубокую благодарность А.А.Ахундову, С.М.Биленькому, С.Б.Герасимову, С.Т.Петкову, Е.Х.Христовой и Д.В.Ширкову за полезные обсуждения проблемы.

Литература

- 1. Р. Фейнман. Взаимодействие фотонов с адронами. Пер. с английского. М., Мир, 1975.
- P.M.Fishbane, R.L.Kingsley. Phys.Rev., D8, 3074, 1973.
- G.T.Bodwin, C.D.Stockham. Phys.Rev., Dll, 3324, 1975.
- 4. J.Kiskis. Phys.Rev., D8, 2129, 1973.
- V.Barger, R.J.N.Phillips. Nucl. Phys., B73, 269, 1974.
- L.W.Mo, Y.S.Tsai. Rev.Mod.Phys., 41, 205, 1969.
- 7. J.Dress, M.Leenen in CERN (ECFA) 72/4, vol. I, p.237.
- 8. A.D.Dolgov. Ref. TH 1944-CERN, 1974.

Рукопись поступила в издательский отдел 5 июля 1976 года.