СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

P2 - 9753

Г.Е.Доготарь, Р.А.Сакаев, Ю.А.Салганик

3085 2-76

C343a IL-598

> выход быстрых протонов и их асимметрия в ядерном µ⁻-захвате

P2 - 9753

Г.Е.Доготарь, Р.А.Сакаев, Ю.А.Салганик²

выход быстрых протонов и их асимметрия в ядерном µ⁻-захвате

BARMOTEKA

¹ Институт прикладной физики АН МССР.

² Сыктывкарский государственный университет.

Доготарь Г.Е., Сакаев Р.А., Салганик Ю.А. P2 - 9753 Выход быстрых протонов и их асимметрия в ядерном

μ-эахвате

Рассматривается выход быстрых протонов при поглощении мюонов на примере ядра ¹⁶ О. Процесс исследовался в рамках импульсного приближения по слабому взаимодействию с использованием традиционного эффективного мюон-нуклонного гамильтониана.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1976

Dogotar G.E., Sakajev R.A., Salganik Yu.A. P2 - 9753

Fast Proton Yield and Their Asymmetry in Nuclear μ^- - Capture

The fast proton yield in the μ^- -capture has been considered by the example of ¹⁶O nucleus. The process has been studied within the impulse approximation on a weak interaction using the traditional effective muon-nucleon Hamiltonian.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research

Dubna 1976

Исследование быстрых частиц, вылетающих при поглощении отрицательных мюонов ядрами, представляет большой интерес с точки эрения изучения как самого слабого взаимодействия, так и механизма рассматриваемого процесса. За последнее время известный прогресс был достигнут в теоретическом /1-5/ и экспериментальном /6,7/ исследованиях нейтронного канала реакции, то есть процессов вида (µ, vn). В то же время имеются весьма скудные данные, касающиеся эмиссии быстрых заряженных частиц, в частности, протонов, выход которых составляет более 50% от всех Заряженных частиц /87. На сегодняшний день практически отсутствуют сведения о механизме такого процесса. Естественным является предположение о том, что в упомянутых реакциях преобладают процессы прямого захвата мюонов на нуклонных ассоциациях в ядре, а в случае вылета протонов - захват на скоррелированной паре протонов /9-10/ Корректный расчет конкретного процесса в рамках такого предположения отсутствует.

В настоящей работе рассматривается процесс (µ, νр) в области энергий протонов больше 15 МэВ. Остановимся несколько подробней на предлагаемом механизме реакции. Будем рассматривать процесс ядерного µ-захвата в рамках импульсного приближения по слабому взаимодействию, используя традиционный эффективный мюон-нуклонный гамильтониан¹¹. При исследовании реакций (µ, νп) нами было отмечено ³,5/, что в данном подходе при корректном выделении центра масс нуклонной системы в начальном и конечном состояниях и использовании волновых функций, антисимметризованных по всем нуклонам, каждый из ядерных матричных элементов M^(a), входящих в амплитуду процесса, может быть представлен в виде:

$$M^{(\alpha)} = \text{const} \{ \sqrt{A} < \Psi_{J_{r}M_{r}}^{(1,2,...,A-1)} \Psi_{1/2\epsilon}^{(\vec{p},\vec{r})} | f_{A}^{(\alpha)} | \times \Psi_{J_{i}M_{i}}^{(\alpha)} (1,2,...,A) > + (A-1)\sqrt{A} < \Psi_{J_{r}M_{r}}^{(\alpha)} (1,2,...,A-1) \times (1) \times \Psi_{1/2\epsilon}^{(\vec{p},\vec{r})} | h_{A-1}^{(\alpha)} | \Psi_{J_{i}M_{i}}^{(\alpha)} (1,2,...,A) > \},$$

где $\Psi_{J,M_i}(1,2,...,A)$ - внутренняя волновая функция начального ядра (A, Z) со спином J; и проекцией его M_i ; Ψ_{J_M} (1,2,..,A-1)- внутренняя волновая функция ядра-остатка (A-1, Z-1) со спином J, и проекцией его M, ; $\Psi_{1/2\epsilon}(\vec{p},\vec{r})$ – функция вылетающего нейтрона, имеющего импульс $h\vec{p}$ относительно адра-остатка и проекцию спина ϵ . Операторы $f_A^{(a)}$ и $h_{A-1}^{(a)}$ (a = 1,2,3,4) введены в работе /5/,индекс снизу у оператора указывает, на переменные какой частицы он действует. Первый член в (1) называют прямым, второй - обменным. Можно провести некоторую параллель между прямым и обменным членами, возникающими при рассмотрении ядерных матричных элементов (1), а значит, и амплитудами процесса и полюсными диаграммами (рис. 1). Первой диаграмме соответствует прямой член, второй обменный. Подчеркнем, что указанная аналогия носит в известном смысле иллюстративный : характер. Обычно в расчетах пренебрегают обменными членами в матричных элементах. В работах /3,5/ нами были рас-

смотрены эффекты, связанные с их учетом в процессе (µ, vn). На рис. 2 и 3 приведены результаты расчета энергетических спектров dW/dE и асимметрии углового распределения a(E) нейтронов в реакции $\mu^{-(160,\nu n)^{15}N}$. Видно, что учет обменных членов существенно сказывается на рассматриваемых характеристиках нейтронов. Если теперь перейти к рассмотрению реакции (µ -, vp) в рамках тех же приближений, что и ранее /3,5/, то в (1) волновая функция Ψ_{J_r,M_r} будет соответство-вать ядру (A-1,Z-2), а волновая функция $\Psi_{1/2\epsilon}(\vec{p},\vec{r})$ -описывать вылетевший протон. Операторы $f_A^{(\alpha)}$ и $h_{A-1}^{(\alpha)}$ не изменятся, и прямой член в (1) обратится в нуль из-за правил отбора по изоспину. Таким образом, в рассматриваемом подходе амплитуда процесса (μ -, ν **p**) будет целиком обусловлена обменными матричными элементами. Грубо говоря, при захвате мюона ядром (A, Z), мы рассматриваем прямой процесс на виртуальной нуклонной ассоциации (А-1,Z-1), переводящей ее в реальное дочернее ядро (A-1, Z-2) (рис. 4).

Рис. 2. Энергетический спектр dW/dE и асимметрия углового распределения a(E) нейтронов в реакциях $\mu^{-(160,\nu n)} {}^{15}N(g.s.)$ (кривая 1) и $\mu^{-(160,\nu n)} {}^{15}N$ (3/2 , E = 6,33 МэВ) (кривая 2), полученные в искаженных волнах, но без учета обменных членов в матричных элементах.

5

Рис. 3. Энергетический спектр dW/dE и асимметрия углового распределения a(E) нейтронов в реакциях $\mu^{-}({}^{16}O,\nu n) {}^{15}N(g.s.)$ (кривая 1) и $\mu^{-}({}^{16}O,\nu n) {}^{15}N$ (3/2⁻, E = 6,33 МэВ) (кривая 2), полученные в искаженных волнах и с учетом обменных членов в матричных элементах.

Отметим некоторые трудности общего характера, возникающие в таком подходе. Во-первых, мы не учитываем других возможных механизмов процесса, таких, например, аналогом которых в некотором смысле является треугольная диаграмма и т.д. Их вклад может оказаться того же порядка, что и вклад рассматриваемого механизма. Во-вторых, связанные состояния нуклонов и состояния непрерывного спектра описываются обычно функциями различных феноменологических потенциалов. Это может привести к некоторой погрешности в оценке вклада механизма, обусловленного обменными матричными элементами. Таким образом, результаты, полученные в рассматриваемом подходе, чосят качественный характер.

Конкретный расчет процесса проведен на примере захвата поляризованных мюонов ядром ¹⁶0:

$$\mu^{-} + {}^{16}O \rightarrow {}^{15}C + P + \nu .$$
 (2)

Основное состояние ядра 160 рассматривалось как дважды магическое, волновые функции основного ($J^{\pi} = 1/2^{+}$) и возбужденного ($J^{\pi}=5/2^{+}$) состояний ядра $L^{15}C$ имеют структуру типа две частицы - одна дырка /12/ Все волновые функции связанных состояний нуклонов взяты в оболочечной модели с осцилляторным потенциалом. причем являются "хорошими" по центру масс, то есть центр масс находится строго в 18 -состоянии. Взаимодействие в конечном состоянии между протоном и ядром-остатком учитывалось посредством усредненного по области ядер оптического потенциала /13/ с поверхностным и объемным поглощением, содержащего энергетическую зависимость. Поскольку нас интересуют лишь высокоэнергетические протоны, кулоновское взаимодействие в конечном состоянии не учитывалось. Были рассчитаны энергетический спектр протонов dW/dE и асимметрия их углового распределения а(Е) относительно направления спина захватываемого мюона. гле Е - энергия относительного движения протона и ядраостатка. Результаты расчетов представлены на рис. 5. Отметим следующие факты.

Рис. 5. Результирующие энергетический спектр dW/dE и асимметрия углового распределения $\alpha(E)$ протонов, просуммированные по рассмотренным состояниям ядра ${}^{15}C$.

1. Асимметрия углового распределения протонов *a*(E) оказалась отличной от нуля.

2. Асимметрия протонов a(E) невелика по абсолютной величине и противоположна по знаку асимметрии быстрых нейтронов $^{/5/}$. Этого можно было ожидать, так как протон, захвативший мюон, остается в дочернем ядре.

3. Релятивистские члены эффективного мюон-нуклонного гамильтониана (члены, пропорциональные \vec{p}/m , где \vec{p} – импульс нуклона в ядре, m – его масса) дают небольшой вклад в асимметрию быстрых протонов, тогда как асимметрия быстрых нейтронов существенно определяется этими членами.

4. Выход быстрых протонов уменьшается с ростом их энергий медленней, чем это имеет место в случае нейтронов, причем максимум спектра протонов смещен в область более высоких энергий (~15 МэВ), чем максимум спектра "прямых" нейтронов, что согласуется с экспериментом.

5. Полный вклад протонов с энергией больше 15 МэВ составляет ~90 с $^{-1}$, т.е. 0,1% от полной скорости захвата мюонов в кислороде (1.10⁵ с $^{-1}$). Согласно экспериментальным данным, эта величина составляет 0,9% для ядра 28 Si. Можно ожидать, что для ядра 16 O она будет ~ 0,5%.

6. В рамках рассматриваемого подхода очень плохим оказывается приближение, не принимающее во внимание взаимодействие в конечном состоянии между протоном и ядром-остатком. Это обусловлено тем, что неортогональность связанных состояний нуклонов и состояний непрерывного спектра, полученных без учета взаимодействия в конечном состоянии, вносит гораздо большую погрешность в результат, чем аналогичная неортогональность при расчете в искаженных волнах.

Учет механизма, связанного с поглощением мюонов на двух скоррелированных протонах, приведет к увеличению выхода быстрых протонов, и согласие с экспериментом улучшится.

Авторы благодарны Р.А.Эрамжяну за внимание к работе и полезные обсуждения.

ЛИТЕРАТУРА

- R.A. Eramzhyan, V.N. Fetisov, Yu.A. Salganic. Phys.Lett., <u>35B</u> (1971)143; Nucl. Phys., <u>B39</u> (1972)316.
- 2. C.A.Piketty and I.Procureur.Nucl.Phys., B26 (1971) 390.

- 3. Ю. А.Салганик, Р.А.Эрамжян. Сообщение ОИЯИ, Р4-5986, Дубна, 1971.
- A.Bouyssy and N.Vinh Mau.Nucl.Phys.,<u>A185</u> (1972) 32.
- 5. R.A.Eramzhyan and Yu.A.Salganic. Nucl.Phys A207 (1973) 609.
- R.M. Sundelin et al. Phys.Rev.Lett., <u>20</u> (1968) 1198, 1201.
- 7. R.M. Sundelin and R.M. Edelstein. Phys. Rev., <u>7C</u> (1973) 1037.
- 8. Ю.Г.Будяшов и др. Препринт ОИЯИ, Р1-5269, Дубна, 1970.
- 9. P.Singer. Phys.Rev., <u>124</u> (1961) 1602.
- M.Bertero, G.Passatore, G.A.Viano. Nuovo Cimento <u>38</u> (1965) 1669.
- 11. A.Fujii and H.Primakoff. Nuovo Cimento 12 (1959) 327.
- 12. М.А.Жусупов, В.В.Карапетян, Р.А.Эрамжян. Изв. АН СССР (сер. физ.), 32, 332 (1968).
- F.D.Becchetti, Jr., and G.W.Greenless, Phys.Rev., <u>182</u> (1969) 1190.

Рукопись поступила в издательский отдел 3 мая 1976 года.