СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 26/1-70 P2 - 9719

5-90 2807/2-76

C323.5a

Э.Г.Бубелев, В.М.Мальцев, С.И.Синеговский

МНОЖЕСТВЕННАЯ ГЕНЕРАЦИЯ АДРОНОВ КАК МАРКОВСКИЙ ПРОЦЕСС ПО ПРОДОЛЬНОЙ БЫСТРОТЕ

P2 - 9719

Э.Г.Бубелев, В.М.Мальцев, С.И.Синеговский

МНОЖЕСТВЕННАЯ ГЕНЕРАЦИЯ АДРОНОВ КАК МАРКОВСКИЙ ПРОЦЕСС ПО ПРОДОЛЬНОЙ БЫСТРОТЕ

> объедиленный институт пасрных исследований БИБЛИОТЕКА

Бубелев Э.Г., Мальцев В.М., Синеговский С.И.

Множественная генерация адронов как марковский процесс на продольной быстроте

P2 - 9719

P2 - 9719

Для описания интегральных характеристик множественной генерация адронов при высоких энергиях реальный процесс моделируется однородным марковским процессом. В качестве непрерывной переменной такого случайного процесса выбран предольный размер области в пространстве скоростей, занимаемой образующимися адронами. Показано, что логарифмический рост средней множественности вторичных частиц отвечает марковскому процессу с равными интенсивностями размножения и уничтожения частиц. Получена связь параметров такого процесса с параметрами модели частично когерентного рождения адронов.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1976

Bubelev E.G., Maltsev V.M., Sinegovsky S.I.

> Multiple Hadron Generation as the Markov Process on the Longitudinal Velocity

In order to describe the integral characteristics of the multiple hadron generation at high energies the real process is modelled as the Markov process. As a continuous variable of such a random process the longitudinal dimension of the region in the velocity space occupied by the generated protons has been chosen. It has been shown that the logarithmic increase of the average multiplicity of secondary particles corresponds to the Markov process with the equal intensities of the production and annihilation of particles. The parameters of such a process are connected with those of the model of partially coherent hadron production. **Communication of the Joint Institute for Nuclear Research**

Dubna 1976

I. Применение теории марковских цепей для анализа процессов рождения большого числа частиц во взаимодействиях адронов высоких энергий позволяет получить/I-3/ интегральные характеристики (распределение по множественности вторичных частиц $P_n = G_n/G_{intel}$, среднюю множественность, факториальные моменты, корреляционные параметры), представляющие интерес для понимания динамики сильных взаимодействий. Естественно, что вероятностные модели могут рассматриваться лишь как первое приближение к сложным реальным процессам генерации частиц.

В качестве такого приближения мы рассмотрим модель однородного марковского процесса размножения и гибели и покажем, что хотя включение процессов гибели частиц не изменяет формы распределения по множественности по сравнению с полученной в модели без поглощения^{/3/}, но существенно влияет на зависимость средней множественности и корреляционных параметров от энергии.

Отметим также, что результаты, полученные в *S* -матричном подходе в предположении частично когерентного характера образования частиц^{/4/}, отвечают частному случаю однородного марковского процесса с равными инфинитезимальными вероятностями рождения и гибели частиц. Вес некогерентных состояний однозначно определяется через параметры марковской цепи.

3

2. При обычном рассмотрении марковского процесса говорят о вероятности какого-либо события в тот или иной момент времени. Если применить теорию марковских процессов с переменной-временем к описанию множественной генерации частиц, то интегральные характеристики, полученные как результат решения уравнений Колмогорова, будут функциями ненаблюдаемой величины – времени развития процесса. Для получения же зависимости этих характеристик от энергии необходимы какие-то специальные предположения о конкретном поведении инфинитезимальных вероятностей с ростом энергии.

С другой стороны, зависимость интегральных величин от энергии может быть получена естественно, если вместо времени в качестве марковской переменной^{*}) случайного процесса выбрать энергетическую переменную, которая имела бы свойства, аналогичные свойствам марковского времени, т.е. была бы непрерывна, аддитивна и монотонно возрастала в процессе взаимодействия.

В релятивистской кинематике имеется подходящая непрерывная переменная с размерностью скорости, введенная независимо еще В.Варичаком, Г.Герглотцем и А.А.Роббом^{/5/} и названная последним быстротой (*rapidity*) в отличие от скорости (*velosity*). Эта переменная является расстоянием в пространстве скоростей Лобачевского^{/6/} и как расстояние – аддитивна. Относительная быстрота двух нуклонов, столкнувшихся при энергии E в лабораторной системе и $E^* = [2M(E+M)]^{\frac{4}{7}}$ в системе их центра масс, до взаимодействия равна $Y = \operatorname{arch} \frac{E}{M} = 2\operatorname{arch} \frac{E}{2M}^*,$ (I)

где M - масса нуклона. (Здесь и далее принято C = I).

Рассмотрим генерацию адронов при взаимодействии нуклонов высокой энергии как случайный процесс, развивающийся по мере увеличения энергии, передаваемой вторичным адронам от взаимодействующих с ними и между собой нуклонов. Чтобы учесть наблюдающуюся в эксперименте неполную неупругость столкновения нуклонов, охарактеризуем процесс инвариантным энерговыделением \mathcal{M}^* , равным массе образовавшихся адронов как целого

 $\mathcal{M}^* = K E, *$ (2) где $K = \sqrt{K_1 K_2}$, $K_{1(2)}$ - коэффициенты неупругости нуклонов в отдельности*).

В качестве марковской аддитивной переменной этого процесса зададим продольный размер У области в пространстве скоростей, охватывающей точки, которые представляют "мировые скорости"/?/ (или системы покоя) частиц, образующихся в процессе взаимодействия нуклонов (рисунок а,б). Связь переменной У с инвариантным энерговыделением Эл* получим из соотношения

$$m^{*=2} \int_{(S_{1})}^{y_{2}} \varphi(s_{11},s_{1}) mch s_{11} chs_{1} cls_{11} cls_{11},$$

 *) В общем случае система центра масс образовавшихся адронов не совпадает с центром масс реакции, (СЦМ) причем смещение
 г первой определяется соотношением/8/:

 $chr = \gamma = \frac{\kappa_1 + \kappa_2}{2\sqrt{\kappa_1 + \kappa_2}} , \gamma = \text{лоренц-фактор}$

системы центра масс вторичных адронов в СЦМ реакции.

^{*)} В вероятностных моделях множественных процессов в качестве марковской непрерывной переменной наряду со временем^{/2/} использовалось и расстояние в обычном пространстве^{/I/}.

Рисунок. Схема множественной генерации частиц в образах пространства скоростей; марковский процесс предполагается развивающимся в обе стороны от центра области генерации вдоль собственной оси ее в случае совпадения (а) и несовпадения (б) оси области с осъю реакции – отрезком N, N₂. здесь $\varphi(\varsigma_{n}, \varsigma_{1})$ - плотность числа частиц массы m, имеющих поперечную ς_{1} и продольную ς_{n} компоненты быстроты. Представляя $\varphi(\varsigma_{n}, \varsigma_{1})$ в виде произведения плотности вероятности $\varphi^{2}(\varsigma_{n})$ найти частицу с поперечной быстротой ς_{1} на продольную плотность числа частиц $\varphi''(\varsigma_{n})$, в простейшем предположении об однородности последней на отрезке у находим

m*= 2m; sh¥,

то есть

$$Y = 2 \operatorname{arsh} \frac{m^*}{2\overline{m}_L^*}, \qquad (3)$$

где $\overline{m_1} = \overline{m_1} \varphi''(4)$ – средняя энергия поперечного движения, приходящаяся на единицу интервала продольной сыстроты; $\overline{m_2} = \int f'(f_1) m ch_2 df_1$ – средняя поперечная масса частицы.

Предположение о монотонном росте величины \mathcal{Y} в процессе взаимодействия не противоречит наблюдаемой для линей и струй высокой энергии сигарообразности распределения частиц в пространстве скоростей^{/9/}. При заданной энергии реакции \mathcal{E}^* \mathcal{Y} изменяется (виртуально) от **0** ($\mathcal{M}^*=0$) до наслюдаемого значения \mathcal{Y}_{mex} соответствующего реализующемуся $\mathcal{M}^*=\mathcal{K}\mathcal{E}^*$:

$$Y_{max} = 2 \operatorname{arsh}\left(\frac{KM}{m_{2}}\operatorname{ch}\frac{V}{2}\right)$$
 (5)

Для больших Y (У) 2) имеем простую связь Умах и У:

$$Y_{max} \simeq Y - A,$$
 (6)

где A= 2ln <u>m</u>

Значения Беличин, входящих в параметр \mathcal{A} , можно определить по литературным данным:

 $K \approx 0.5$ $\overline{m}_{1} \approx 0.43$ /10/ . $\varphi'' \approx 3 \div 4$ (оценка с использованием диаграмм для струй с энергией $E > 10^{3}$ ГэВ, взятых из работы/II/). В результате имеем $H \approx 1.2$.

· 6

7

2. Будем моделировать множественную генерацию адронов целочисленным однородным марковским процессом размножения и уничтожения частиц с управляющим потоком вдоль оси у *), т.е. случайный процесс задается последовательностью "элементарных" актов испускания, распада и слияния виртуальных частиц, происходящих по мере увеличения у и отображающихся в пространстве скоростей системой точек (мировых скоростей этих частиц), расположенных между точками, представляющими мировые скорости нуклонов до взаимодействия. Дискретное пространство состояний этого процесса определяется числами 💋 образующихся адронов. (Для простоты рассматривается случай частиц одного сорта). Поскольку мы используем понятие марковского процесса со счетным множеством состояний. непрерывная переменная У задана на интервале [0, ∞). В нашем случае это означает предположение об однородности процесса при люсой относительной быстроте У сталкивающихся нуклонов. При люсом, сколь угодно сольшом значении Y переменная $m{y}$ пробегает все значения в интервале [0, утах], где Утах зависит от У согласно (5), (6). Для применимости такого описания к реальному процессу при конечных (хотя и сольших) энергиях необходимо, чтобы вероятности каналов с сольшим числом частиц $n > \overline{n}$ (\overline{n} средняя множественность) достаточно быстро убывали с ростом множественности Л. Экспериментальные данные/12/ указывают на то, что выполняется, по крайней мере, условие $P_{n>\bar{n}} \leq 2P_{n-1}$, где $\rho_n = \frac{\sigma_n}{\sigma_{inec}}$. Из этого условия можно оценить вклад оесконечного "хвоста" распределения по множественности:

$$\sum_{K=1}^{\infty} P_{N_{may}+K} \leq 2 P_{N_{may}}$$

*) Введенная здесь переменная У отличается по смыслу от марковского "времени" У в расоте/3/. (Эдесь Минер Максимальная множественность, зарегистрированная при данной энергии. Например, при энергии первичных нуклонов 400 Гэв этот вклад очень мал:

$$\sum_{k=1}^{5} P_{N_{max}^{+}K} \leq 2.0.5.10^{-3},$$

т.е. поправка менее 0,1%.

Подчеркнем, что рассматриваемая здесь модель относится к отражению в образах пространства скоростей реального процесса, развивающегося в пространстве-времени. Поскольку пространственновременная картина не конкретизируется, то применение вероятностного подхода, вместо динамического, совершенно естественно.

3. Прямые уравнения Колмогорова/13,14/ для случайного процесса в матричной форме имеют вид

$$\frac{d \mathcal{P}(y)}{d y} = \mathcal{P}(y) \times \mathcal{A}, \qquad (7)$$

где

Нас интересуют процессы перехода $2 \rightarrow n_{ch}$ + нейтральные частицы. Полное число заряженных частиц n_{ch} условимся пересчитывать на число одноименно заряженных частиц (для определенностиотрицательного знака) по формуле $N \equiv n^{-} = \frac{n_{ch} - 2}{2}$ *). Тогда вероятности $P_{2n_{ch}}$ будут представлены величинами $P_{on} = \frac{G_{n-2}}{G_{inc}}$

^{*)} Если одна из начальных частиц нейтральная, то формула пересчета $n = \frac{n_{e}h - 1}{2}$.

(σ_{n} - сечение рождения n отрицательно заряженных частиц, $\sigma_{ine\hat{c}}$ - полное неупругое сечение).

Условие марковского свойства процесса $Q_{ij} = 0$ для /*i-j*/>/ дает матрицу $\hat{\mathcal{A}}$ в виде

$$\hat{H} = \begin{pmatrix}
-\lambda_{0} & \lambda_{0} & 0 & 0 \\
\mu_{1} & -(\lambda_{1} + \mu_{1}) & \lambda_{1} & 0 & 0 \\
0 & \mu_{2} & -(\lambda_{2} + \mu_{1}) & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},$$
(8)

где $\lambda_i > 0, \mathcal{M}_i > 0$ - интенсивности распада и слияния частиц соответственно; $\lambda_0 > 0$ - интенсивность внешнего источника.

ля того чтобы матрица (8) однозначно определяла регулярный марковский процесс $\left(\sum_{\kappa} \mathcal{P}_{o\kappa} = \mathbf{1}\right)$, необходимо^{/I3/} выполнение услония $\sum_{n=1}^{\infty} \left(\frac{\lambda_{o} \prod_{i=1}^{n} \lambda_{i}}{\prod_{i=1}^{n} \mathcal{A}_{i}} \sum_{\kappa=i}^{n} \frac{\prod_{i=1}^{n} \mathcal{A}_{i}}{\prod_{i=1}^{n} \lambda_{i}}\right) = \infty$ (9)

Регулярность процесса означает, что на конечных интервалах энерговыделения не может родиться бесконечное число частиц.

Случай линейного роста интенсивностей распада и слияния $\lambda_n = n \lambda$, $\mu_n = n \mu$, который мы рассмотрим, описывается уравнениями

$$\frac{dP}{cly} = \left(P_{00} \cdots P_{0K} \cdots\right) \begin{pmatrix} -\lambda_0 & \lambda_0 & 0 & \cdots \\ \lambda_1 & -(\lambda_0 + \lambda + \mu) & \lambda + \lambda_0 & 0 & \cdots \\ 0 & 2\mu & -(\lambda_0 + \tilde{\lambda} + 2\mu) & 2\lambda + \lambda_0 \\ 0 & 0 & 0 & 0 \end{pmatrix} (10)$$

или в развернутом виде

$$\frac{d' P_{o}(y)}{d' y} = -\lambda_{o} P_{o}(y) + \omega P_{i}(y)$$
(II)

$$\frac{d' P_{n}(y)}{d' y} = [\lambda(n-i) + \lambda_{o}] P_{n-i}(y) - [\lambda + \omega)n + \lambda_{o}] P_{n}(y) + \omega(n+i) P_{n+i}(y)$$

(Здесь и далее вместо ρ_{on} судем писать ρ_n).

Для процессов чистого размножения условие регулярности

$$\sum_{n} \frac{1}{\lambda_{n}} = \infty$$
 (I2)

допускает только линейную зависимость $\lambda_n = n\lambda / I^4/$. Вопрос о том, является ли такой рост единственно возможным для случайных процессов с гибелью, нуждается в дополнительном исследовании. Из (9) видно, например, что при $\lambda_n = \mu_n = \alpha n^2$ и $\lambda_o << \alpha$ условие регулярности становится аналогичным выражению (12).

Система уравнений (II) эквивалентна дифференциальному уравнению в частных производных для производящей функции Q(2,9)= Z = ??//у/

$$\frac{\partial G}{\partial z} = \int \lambda z^2 - (\lambda + \lambda) z + \frac{\partial Q}{\partial z} + \lambda_0 (z - 1) Q. \qquad (13)$$

Еудем решать это уравнение методом характеристик:

$$dy = \frac{dZ}{\lambda z^{2}} + \frac{dQ}{(\lambda + u)Z + u} = \frac{dQ}{\lambda_{o}(z - 1)Q}.$$
 (14)

Общее решение уравнения (I3) есть произвольная функция двух интегралов уравнений (I4) $F(C, C_2) = 0$;

$$C_{1} = 1 - \frac{2}{2} - \frac{2}{4} e^{(\lambda - \mu) y}, \quad C_{2} = Q_{1} \left(2 - \frac{\mu}{4}\right)^{\lambda_{0} / \lambda}$$
(15)

Частное решение, удовлетворяющее начальном; и граничному условиям Q(z, y=o) = Q(z=1, y) = 1, отражающим условия отсутствия частиц в начальный момент (y=o) и нормировки, есть

$$Q(z, y) = \left[\frac{1 - \frac{M}{A}}{z - \frac{M}{A} + (1 - z)e^{(A - M)y}}\right]^{A_0/A}$$
(16)

Из (16) легко определяются средняя множественность и второй корреляционный параметр:

$$\overline{n} = \frac{\Im \ell_n Q(\overline{z}, y)}{\Im \overline{z}} \bigg|_{\substack{y=y \\ y=y_{max}}} = \frac{\lambda_o}{\lambda_{-xi}} \bigg[e^{(\lambda - xi)y_{max}} - 1 \bigg]$$
(17)
$$f_z = \frac{\Im^2 \ell_n Q(\overline{z}, y)}{\Im \overline{z}^2} \bigg|_{\substack{z=y \\ z=y}} = \frac{\lambda_o \lambda}{(\lambda - xi)^2} \bigg[e^{(\lambda - xi)y_{max}} - 1 \bigg]^2$$
(18)

Рассмотрим три случая: /у=умех дэли, д < ли и д=ли . В первом имеем степенную зависимость средней множественности от энергии:

$$\overline{n}(E^*) = \beta_1 \left(\frac{E^*}{M}\right)^2 - \beta_2 \qquad (19)$$

$$Y = \lambda - \lambda \qquad , \qquad \beta_1 = 0,3 \frac{\lambda_c}{\lambda - \lambda} \qquad , \qquad \beta_2 = \frac{\lambda_0}{\lambda - \lambda}$$

Второй (Х<ц) - интересен тем, что в асимптотике получаем для

$$Q(z, y) = \left[1 - \lambda y (z - I) \right]^{-\lambda_0/\lambda}, \qquad (20)$$

следствием которого является логарифмический рост средней множественности:

$$\overline{n}(E^*) \simeq 2\lambda_o \left(\ell_m \frac{E}{M}^* - l_i 2 \right). \tag{21}$$

Заметим, что полученная в модели частично когерентного рождения адронов/4/ производящая функция распределения по множественности 11

$$\mathcal{A}(2, 0, (S)) = \left[1 - (2-1) \frac{d G_{1}(S)}{1 - d G_{1}(S)} \right]^{-1/2}$$
(22)

аналогична функции (20), полученной для марковского однородного процесса с равными интенсивностими распада и слияния частиц Дери . В формуле (22) 🛃 - вес некогерентных состояний и

$$\mathbf{a}_{i}(\mathbf{s}) = \frac{1}{(2\pi)^{3}} \int \frac{d^{3}p}{2E} / i \int_{a}^{a} B_{i}(\mathbf{p}, \mathbf{s}, g') dg' / \frac{2}{2E}$$

где В, - функция источника, заданного взаимодействием двух первичных адронов. Сравнивая (20) и (22), получим

$$\begin{array}{rcl}
\Omega_{n}(S) = & \frac{\lambda_{n}(\ln \frac{S}{M_{2}} - R)}{1 + \lambda(\ln \frac{S}{M_{2}} - R)} & (S = E^{\star 2}) \\
\overline{n}(S) = & \frac{Q_{n}(S)}{1 - dQ(S)} = \lambda_{n}(\ln \frac{S}{M_{2}} - R)
\end{array}$$

d = 1/10 т.е. отношение интенсивности 🖌 распада частиц к интенсивности

А. генерации их внешним источником (нуклонами) определяет вес некогерентных состояний об , и частично когерентную генерацию адронов можно интерпретировать как марковскую однородную цепь · 1=11.

Производящие функции (16), (20) дают отрицательно-биномиальное распределение по множественности (распределение Пойя):

$$P_{a} = \left(1 + \frac{\lambda}{\lambda_{o}}\bar{n}\right)^{-\lambda_{o}/\lambda}$$

$$P_{n_{\lambda_{i}}} = \frac{(\lambda_{i}/\lambda_{o})^{n} \bar{n}^{n} \prod_{j=0}^{n-1} (\frac{\lambda}{\lambda_{j}} + j)}{n! (1 + \lambda_{i}/\lambda_{i})^{n+\lambda_{o}/\lambda_{i}}},$$
(23)

которое предлагалось в резличных моделях/I-3,I5,I6/, и,как было показано в /17/, этим распределением можно удовлетворительно описать экспериментальную зависимость $\overline{\mathcal{T}}_{n,h}/\overline{\mathcal{T}}_{inel} = f(n_{ch})$.

Характерным для этого распределения является существование предельной масштабной функции Кобы, Нильсена, Олесена (КНОскейлинг/18/):

$$\Psi(\mathbf{x}) = \lim_{\substack{n \to \infty \\ \bar{n} \to \infty}} \overline{n} P_n = \left(\frac{\mathbf{x}\lambda}{\lambda}\right)^{\lambda \cdot \lambda} \underbrace{e^{-\frac{\lambda \cdot \mathbf{x}}{\lambda}}}_{\mathbf{x} \cdot \Gamma(\frac{\lambda \cdot \mathbf{x}}{\lambda})}, \quad (24)$$

здесь X= "/ñ.

В работе^{/19/} было представлено описание экспериментальной зависимости $\bar{n_{eh}}^{(n_{eh})}(\bar{m_{eh}}) = \Psi(\frac{n_{eh}}{\bar{m_{eh}}})$ для $\rho\rho$ -соударений в диапазоне энергий I9+303 ГэВ (в лабораторной системе) функцией (24) с параметром $\lambda_{\lambda} = \int 0.259$, указывающее на характер распределения, близкий к универсальному, т.е. не забисящему от энергии.

Рассмотренная одномерная вероятностная модель множественной генерации адронов допускает как логарифмический (21), так и степенной (19) рост средней множественности с увеличением энергии. Логарифмический рост, как отмечалось, является следствием предположения о равновероятности распада и слияния виртуальных частиц. Тогда величина средней множественности при заданной энергии реакции зависит только от вероятности λ_0 непосредственного испускания частицы взаимодействующими нуклонами.

В свою очередь, степенной рост соответствует такому процессу, в котором вероятность распада виртуальной частицы больше вероятности обратного процесса - слияния пары виртуальных частиц в одну.

Следует отметить, что в последнем случае должна увеличиваться с ростом относительной быстроты Y и продольная плотность φ_y'' числа частиц. Тогда из условия $\overline{\eta}_1^*$ const получаем, что средняя масса \overline{m}_1 поперечного движения вторичного адрона относительно собственной оси области генерации должна зависеть от Y как

$$\overline{m}_{1}(\underline{Y}) \sim \frac{\text{const}}{\varphi_{\underline{Y}}''},$$

причем такое уменьшение *m* может и не приводить к противоречию с важной характеристикой множественных процессов-квазипостоянством среднего поперечного импульса, если собственная ось области генерации ь пространстве скоростей имеет в среднем ненулевой угол с осью реакции - отрезком, соединяющим нуклоны до езаимодействия (рисунок б).

Представляет интерес обобщение изложенной схемы на случай непрерывных процессов, аналогичных диффузионным, которое позволило бы описать инклюзивные спектры.

Можно было бы также исследовать вопрос, существуют ли регулярные решения уравнений Колмогорова для процесса размножения и гибели частиц с квадратичной зависимостью λ и \mathcal{M} от числа частиц n, и если существуют, то дают ли более адекватную экспериментальным данным картину множественной генерации.

Литература

- I.K.Fujiwara, T.Kitazoe. Progr. Theor. Phys., 43, 1244 (1970).
- 2. N.K.Dushutin, V.M.Maltsev. JIMR preprint E2-7276, Dubna, (1973).
- 3. А.С.Потупа. Доклады АН ЕССР, <u>18</u>, 21 (1974); <u>18</u>, 311 (1974).
- В.М.Мальцев, С.И.Синеговский. Препринт ОИЯИ, Р2-8878, Дубна (1975).
- 5. V.Varicak. Phys.Zeitschrift, <u>11</u>, 93, 287, 585 (1910); Darstellung der Relativitatstheorie in dreidimensionalen Lobatsheiskijschen Raume. Zagreb, 1924; G.Herglotz. Ann. der Phys., <u>31</u>, 404 (1910); A.A.Robb. Optical geometry of motion; a new view of the theory of relativity, Cambridge, 1911.
- 6. Н.А.Черников. Научные доклады высшей школы, физ-мат науки,
 № 2, I58 (I958); препринт ОИЯИ Р-723, Дуона (I96I);
 Международная зимняя школа теоретической физики при ОИЯИ,
 т.3, I5I (I964).

14

- 7. Н.А.Черников. ЭЧАЯ, т.4, вып. 3, 773 (1973).
- Г.Г.Зацепин. Труды Международной конференции по космическим лучам. т. I, стр. I70, "Наука", М., I960; Известия АН СССР, сер. физическая, т. 26, 674 (1962).
 Е.Г.Бубелев. Известия АН СССР, сер. физич. т. I, 284, (1962).
- 9. Е.Г. Губелев. Известия АН СССР, сер. физич. <u>28</u>, 1829, 1835 (1964); <u>31</u>, 1487 (1967).
- IO. В.С.Мурзин, Л.И.Сарычева. Космические дучи и их взаимодействия. "Атомиздат", М., 1968.
- II. High energy interactions from intermational co-operative emulsion flight.Suppl. Nuovo Cim. 1, No 4, 1039 (1963).
- I2. V.V.Amnosov et al. Phys.Lett. <u>42B</u>, 519 (1972).
 F.T.Dao et al. Phys.Rev.Lett. <u>29</u>, 1527 (1972).
 C.Bromberg et al. Phys.Rev.Lett. <u>31</u>, 1553 (1973).
- 13. С.Карлин. Основы теории случайных процессов. "Мир", М., 1971.
- I4. В.Феллер. Введение в теорию вероятностей и ее приложения. т.І., "Мир", N., 1967.
- I5. A.Giovannini. Nuovo Cim. 10A, 713 (1972).
- I6. A.B.Govorkov. JINR preprint E2-7170. Dubna (1973).
- I7. A.Giovannini et al. Nuovo Cim. 24A, 421 (1974).
- I8. Z.Koba, H.B.Elelsen, P.Olesen. Eucl. Phys. <u>B40</u>, 317 (1972).
- 19. А.Б.Говорков. В сб. "Международный семинар по глусоконеупругим и множественным процессам при высоких энергиях". Дубна, 1973.

Рукопись поступила в издательский огдел 16 апреля 1976 года.