СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3087 2-76

san thill nunner

9/111-70

P2 - 9701

Э.Г.Бубелев, В.П.Хен, В.Г.Яцюк

ПАРАМЕТРИЗАЦИЯ НАПРАВЛЕНИЙ ДИНАМИЧЕСКОЙ ОСИ КВАНТОВАНИЯ СПИНА *р*, к<sup>\*0</sup> и Δ<sup>↔</sup> -РЕЗОНАНСОВ ПРОИЗВОЛЬНЫМ ПУЧКОМ ПРЯМЫХ ЛОБАЧЕВСКОГО



P2 - 9701

## Э.Г.Бубелев, В.П.Хен, В.Г.Яцюк

# ПАРАМЕТРИЗАЦИЯ НАПРАВЛЕНИЙ ДИНАМИЧЕСКОЙ ОСИ КВАНТОВАНИЯ СПИНА $\rho_{,}$ к \* ° и $\Delta^{++}$ -резонансов ПРОИЗВОЛЬНЫМ ПУЧКОМ ПРЯМЫХ ЛОБАЧЕВСКОГО



## Summary

The best of the published world's data on the t -dependence of the density matrix elements for  $\rho$  ,  $K^{*\circ}$ ,  $\Delta^{++}$  -resonances at  $2.8 \div 17$  GeV have been analyzed in the patterns of the Lobachevsky velocity space, which plays the role of the invariant phase space in high energy physics. A natural from the point of view of the velocity space parametrization of the invariant Donohue-Högaasen axis z' known as the dynamic spin quantization axis, by pencils of straight lines on the non-Euclidean plane of resonance production was suggested by one of the authors (E.G.B.). It is realised by an arbitrary pencil in the range of momentum transfers  $\sqrt{-t} = 0 \div 1$  (0 ÷ 2)GeV/c. The straight lines of this pencil are transformed one into another by a concrete subgroup of motions in this space which is equivalent to the corresponding subgroup of Lorentz transformations. This parametrization permits one to use the eigenvalues of the density matrix (Donohue-Högaasen parameters a,  $\beta$ ,  $\gamma$ ) for invariant description of polarization states of resonances. Their t -dependence has a simple and dynamically definite structure. The results, obtained by invariant spin quantization, significantly differ from those obtained by non-invariant spin quantization in the Jackson direction and in the reaction CMS direction.

К 150-летию геометрии Лобачевского

#### 1. ВВЕДЕНИЕ

ы.

,

При анализе неупругих пр-реакций в образах пространства скоростей Лобачевского /1/ была замечена любопытная особенность анализируемых данных. Оказалось, что плоскости приближенной симметрии угловых для пар частиц в выборках, распределений **₩(**θ, φ) интерпретированных по ряду признаков как продукты распада возбужденных адронов, ориентированы не вдоль направления на адрон до взаимодействия или на СЦМ реакции, а между ними. Эта особенность была проверена о значениях элементов на опубликованных данных матрицы плотности для распадов  $\rho$ ,  $\omega$ и  $\Lambda^{++}$ -резонансов. На основе результатов этой проверки одним из авторов данной работы /Э.Г.Б./ была поставлена задача о параметризации "главной оси" z'угловых распределений распадов резонансов при различных переданных импульсах √-t пучками прямых Лобачевского.

Геометрическая постановка задачи анализа угловых распределений резонансов опирается на известную формулировку Черникова  $^{9,10/}$  релятивистской кинематики в образах пространства скоростей Лобачевского  $^{7-9/}$ . Основополагающие работы Черникова инициировали исследования  $^{14-17}$  по изучению спина на основе геометрии пространства скоростей. В настоящей работе геометрия Лобачевского для пространства скоростей применена для экспериментального исследования инвариантных характеристик поляризационных состояний резонансов.

## 2. Кинематика квантования спина

Как известно  $^{/3/}$ , поляризационное состояние резонанса со спином S характеризуется  $(2S+1) \times (2S+1) - мат$ рицей плотности, заданной в базисе сферических функций |Sm>, где m - проекция спина на направление оси квантования в системе покоя резонанса. Направление оси квантования при этом задают или в системе координат Готфрида-Джексона ( J), или в "системе спиральности"  $(H)^{/3.4/}$  Зависимость элементов матрицы плотности от t выражает связь определенных поляризационных состояний резонанса с динамикой его образования. Вид этой зависимости в значительной степени определяется априорным заданием направления оси квантования и, следовательно, содержит несущественные кинематические особенности.

Поэтому естественным является предложение Донохью-Хёгаасена /Д-Н/ анализировать t-зависимость инвариантов матрицы плотности - ее собственных значений <sup>/4/</sup>. t - зависимость собственных значений матрицы плотности для распадов  $\rho$ ,  $\omega$ ,  $\Delta^{++}$  - резонансов /а, в, у -параметров Д-Н/ экспериментально исследовалась в работе 757. Но для задания поляризационных состояний резонансов при помощи  $\alpha$  ,  $\beta$  ,  $\gamma$  -параметров Д-Н необходимо решить вопрос о кинематике квантования спина в динамической системе координат Донохью-Хёгаасена.  $\alpha$ ,  $\beta$ ,  $\gamma$  -параметры представляют элементы матрицы плотности в динамической системе координат Д-Н, характеризуемой выбором оси квантования вдоль оси симметрии экспериментального углового распределения вероятности распада резонанса в плоскости рождения \*. Направления динамической оси квантования Д-Н в различных системах покоя резонанса, отличающихся величиной t, определяются из вида экспериментального углового распределения распада резонанса и не связаны друг с другом.

\* Координатные оси системы Д-Н являются пересечениями плоскостей симметрии углового распределения W( $\theta, \phi$ ) распада резонанса, а плотности вероятности распада вдоль этих осей - собственными значениями матрицы плотности. Поэтому а , β , γ - параметры Д-Н не имеют смысла вероятностей определенных поляризационных состояний в различных системах покоя резонанса до тех пор, пока не указан закон кинематического преобразования направления динамической оси Д-Н при переходе из одной системы покоя резонанса в другую \*. Простой способ кинематической связи направлений динамической оси Д-Н в различных системах покоя резонанса вытекает из представления кинематики реакции в пространстве скоростей Лобачевского.

## 3. Кинематика и геометрия бинарной реакции

,

.

\*

Геометрическое представление релятивистской кинематики опирается на фундаментальное понятие пространства скоростей материальной точки  $^{7-9}$ . Это пространство является пространством Лобачевского с кривизной, равной  $-1/c^2$ , где с - скорость света /в дальнейшем она принята равной 1/.Для простоты и наглядности мы введем здесь пространство скоростей, следуя работам  $^{8,13/}$ , при помощи хорошо известного понятия систем отсчета. Будем считать, что точки его представляют всевозможные системы покоя реальных частиц или инерциальные системы отсчета \*\*.

\*Отметим, что направления J(H) в различных системах покоя резонанса на плоскости его рождения всегда кинематически связаны друг с другом. Связь достигается априорным заданием системы отсчета: системы покоя одной из начальных частиц (J) или СЦМ реакции /H/; на направление импульса резонанса в этой системе и проектируется спин. Поэтому все направления J(H) преобразуются друг в друга вращением вектора импульса резонанса в этой выделенной системе отсчета.

\*\* Строго говоря, точки пространства скоростей представляют собой всевозможные положения безотносительной /к выбору каких-либо систем отсчета/ скорости /9,11-13/ частицы или системы отсчета, называемой "мировой скоростью" /13/. Для упрощения изложения мы опускаем это важное понятие "мировой скорости", но всегда подразумеваем его там, где говорим о системах отсчета или системах покоя частиц в пространстве скоростей Лобачевского.

В качестве координат системы покоя частицы в этом пространстве можно использовать ортогональные компоненты (x, y, z) вектора относительной скорости частицы в выделенной системе отсчета "O"  $\frac{78,9,11,13}{5}$ . В этих координатах точки пространства скоростей Лобачевского заполняют эвклидов шар  $x^2 + y^2 + z^2 < 1$  с центром в точке "O" /поскольку относительные скорости реальных частиц ограничены скоростью света/.

Такое евклидово представление пространства Лобачевского называют моделью Бельтрами, а используемые координаты (x, y, z) -координатами Бельтрами  $^{12,13,18}$ . Граничная сфера  $x^2 + y^2 + z^2 = 1$  называется абсолютом пространства Лобачевского и представляет бесконечно удаленные его точки.

Механика контактных столкновений частиц в образах пространства скоростей Лобачевского впервые сформулирована Черниковым<sup>79,107</sup> В рамках этой формулировки рассмотрим бинарную реакцию

$$a + b \rightarrow A + B$$
. /1/

В плоскости рождения частиц А и В введем декартову систему координат с началом в точке С, представляющей собой СЦМ реакции, и осью Х, направленной вдоль оси реакции. Координаты систем покоя частиц, участвующих в реакции /1/, в модели Бельтрами плоскости рождения / puc. 1a/ равны:

$$x_{i} = \frac{p_{i}^{||}}{E_{i}}, \quad y_{i} = \frac{p_{i}^{\perp}}{E_{i}}, \quad i = a, b, A, B,$$
 /2/

где  $p_i^{||}$ ,  $p_i^+$ ,  $E_i$  - продольная и поперечная компоненты импульса и полная энергия частицы "i" в СЦМ реакции.

Расстояние  $\rho_{iK}$  между двумя точками  $i (x_i, y_i)$  и  $k (x_k, y_k)$  на плоскости Лобачевского выражается формулой /11,12, 18/.\_\_\_\_

$$\rho_{ik} = \frac{1}{2} \ln \frac{1 + \sqrt{1 - \tau^2}}{1 - \sqrt{1 - \tau^2}}$$

где

.

$$\tau = 1 / \operatorname{ch} \rho_{ik} = \frac{\sqrt{(1 - x_i^2 - y_i^2)(1 - x_k^2 - y_k^2)}}{1 - x_i x_k - y_i y_k}.$$
 /3/

Если одна из точек, например, <sup>"k",</sup> совпадает с началом координат, то выражение /3/ дает расстояние от точки "i"до начала координат.

Если массы  $m_i$  (i = a, b, A, B) частиц, участвующих в реакции/1/, фиксированы, то законы сохранения энергии-импульса ограничивают кинематически возможные положения частиц A и B на плоскости их рождения диаметрально противоположными точками A и B полуокружностей \* с центром в точке "С ", представляющей СШМ реакции. Неевклидовы радиусы их равны (11,13,1)

ch 
$$\rho_{CA(B)} = (s + m \frac{2}{A(B)} - m \frac{2}{B(A)}) / 2 m_{A(B)} \sqrt{s}, /4/$$

где s - квадрат полной энергии в СЦМ реакции. Евклидовы радиусы R<sub>A</sub>, R<sub>B</sub> их образов в модели Бельтрами равны

$$R_{A(B)} = \operatorname{th} \rho_{CA(B)},$$
 /5/

если начало координат модели помещено в точку "С" / puc. la/.

В дальнейшем нам потребуется поместить начало координат в точку <sup>(а)</sup> представляющую собой систему покоя одной из столкнувшихся частиц до взаимодействия, т.е. совершить преобразование Лоренца с переносной скоростью х<sub>ов</sub>.

Тогда в модели Бельтрами полуокружности / рис. 1а/ преобразуются в полуэллипсы / рис. 16/. Граничная окружность

 $x^{2} + y^{2} = 1$ 

\* Эти полуокружности в плоскости бинарной реакции /1/ являются свертками по азимутальному углу ф /являющемуся углом ориентации этой плоскости/ "сфер столкновений" в пространстве скоростей, введенных в кинематику Черниковым <sup>10,11</sup>



Рис. 1. Кинематика бинарной реакции а + b → A + B в модели Бельтрами неевклидовой плоскости рождения резонанса A: а/ начало координат Бельтрами в точке "С", изображающей СЦМ реакции; б/ начало координат Бельтрами в точке <sup>"а"</sup>, изображающей систему покоя частицы до взаимодействия.

является геометрическим инвариантом этого преобразования /puc. la,б/, а именно, абсолютом неевклидовой плоскости рождения в модели Бельтрами.

Алгебраические инварианты s и t, используемые в кинематике бинарных реакций, связаны с соответствующими геометрическими инвариантами /неевклидовыми длинами  $\rho_{ab}$ ,  $\rho_{AB}$  и  $\rho_{aA}$ ,  $\rho_{bB}$  отрезков ab, AB, аA, bB /puc. la,6// и массами частиц, участвующих в реакции, соотношениями /11.14/

$$s = m_{a}^{2} + m_{b}^{2} + 2m_{a}m_{b}ch\rho_{ab} = m_{A}^{2} + m_{B}^{2} + 2m_{A}m_{B}ch\rho_{AB}$$
$$t = m_{a}^{2} + m_{A}^{2} - 2m_{a}m_{A}ch\rho_{aA} = m_{b}^{2} + m_{B}^{2} - 2m_{b}m_{B}ch\rho_{bB}.$$

$$/6/$$

Поэтому величина s определяет неевклидовы расстояния  $\rho_{ab}$  и  $\rho_{AB}$  между частицами a., b до взаимодействия и A, B - после взаимодействия, а также раднусы  $\rho_{CA}, \rho_{CB}$  полуокружностей для частиц A и B /по формулам /4/ и /6//, причем  $\rho_{CA} + \rho_{CB} = \rho_{AB}$  Величина (-t) квадрата переданного импульса определяет расстояние  $\rho_{aA}$  или  $\rho_{bB}$ , задающее положение системы покоя частицы A(B) на своей полуокружности.

Пусть частица A - резонанс со спином. Тогда в плоскости рождения набору кинематически возможных положений точки "A", представляющей систему покоя резонанса A, на своей полуокружности соответствует множество направлений /совокупность прямых/, вдоль которых выбирается ось квантования спина частицы A. Эти направления можно связать друг с другом кинематически при помощи пучка прямых Лобачевского. Такая кинематическая связь вытекает из того, что прямые пучка преобразуются друг в друга движениями в плоскости Лобачевского /12,18/, эквивалентными преобразованиям Лоренца<sup>6/</sup>. Априорные направления, вдоль которых задается ось квантования J(H), кинематически связаны друг с другом именно потому, что они образуют в плоскости Лобачевского тривиальный фиксированный пучок прямых, пересекающихся в точке "а" ("С") / рис. 16/.

Точка пересечения прямых пучка называется его полюсом. Пучок, полюс которого лежит внутри абсолюта  $x^2 + y^2 = 1$ , называется эллиптическим. Совокупности осей квантования J и H принадлежат к пучкам эллиптического типа. В пространстве Лобачевского существуют также параболические пучки /полюс лежит на абсолюте/ и гиперболические пучки /полюс лежит вне абсолюта/.

¥.

1

٠

/7/

Использование пучка прямых Лобачевского для параметризации направлений динамической оси Д-Н в различных системах покоя позволяет получить кинематическую связь их между собой. Направления динамической оси Д-Н окажутся кинематически связанными, если они будут принадлежать некоторому апостериорному пучку прямых Лобачевского, подобранному в результате анализа экспериментальных данных.

### 4. МЕТОД ПОДБОРА ПУЧКА

Для каждого положения системы покоя резонанса А на своей полуокружности направление динамической оси Д-Н в плоскости рождения отличается на угол поворота  $\theta(t)$  от направления оси квантования J. Этот угол вычислялся по формулам  $^{/4,5/}$ 

$$tg2\theta(t) = -\frac{2\sqrt{2} \operatorname{Re} \rho_{10}}{\rho_{00} - \rho_{11} + \rho_{1-1}}$$
для векторного мезона  
$$-\frac{4\operatorname{Re} \rho_{31} / \sqrt{3}}{\rho_{11} + \rho_{33} + 2\operatorname{Re} \rho_{3-1} / \sqrt{3}} - для нзобары \Lambda^{++},$$

где ' $\rho_{ik}$  - элементы матрицы плотности резонанса A в системе J\*. Тем самым в плоскости рождения резонанса A задается совокупность направлений динамической оси Д-H, соответствующая различным значениям <sup>t</sup> /показана стрелками на *рис. 16*/.

Эта совокупность направлений параметризовалась произвольным пучком прямых на плоскости рождения с полюсом в некоторой точке Р / рис. 16/. Выражение для угла  $\theta_{\rm P}(t)$  между прямой пучка и осью квантования ј имеет вид  $\frac{18}{2}$ :

$$\sin \theta_{\rm p}(t) = \sqrt{\frac{(1 - x_{\rm A}^2 - y_{\rm A}^2)}{(\lambda^2 + \mu^2 - 1)(x_{\rm A}^2 + y_{\rm A}^2)}}$$
$$\lambda = \frac{y_{\rm A} - y_{\rm P}}{x_{\rm P} y_{\rm A} - x_{\rm A} y_{\rm P}}$$
$$\mu = \frac{x_{\rm P} - x_{\rm A}}{x_{\rm P} y_{\rm A} - x_{\rm A} y_{\rm P}} .$$
 /8/

Здесь х<sub>А</sub>, у<sub>А</sub> - бельтрамиевы координаты резонанса А на своей полуокружности, а х<sub>Р</sub>, у<sub>Р</sub> - бельтрамиевы координаты полюса пучка Р/неизвестные параметры/.

Экспериментальным материалом являлись опубликованные данные о t-зависимости элементов матрицы плотности для  $\rho$ , K\*° и  $\Delta^{++}$ -резонансов, образованных в  $\pi$  р, Кр, рр-реакциях  $^{/19-26/}$ . По значениям элементов матрицы плотности в k-ом интервале t вычислялся, согласно /7/, угол поворота  $\theta(t_k)$ . Набор углов  $\{\theta(t_k)\}$ /рис. 2/ аппроксимировался кривой  $\theta_{\rm P}(t, x_{\rm P}, y_{\rm P})$ , вычисленной, согласно /8/, для прямых подбираемого пучка.

\* Величина  $\theta(t)$  определяется из формулы /7/ с точностью  $\pm \pi/2$ . Эта тригонометрическая неоднозначность разрешалась, как и в работе  $^{/5/}$ , качественно из условия гладкости t -зависимости угла  $\theta(t)$  и  $\alpha(t)$ ,  $\gamma(t)$  параметров Д-Н.





Параметры кривой - неизвестные координаты  $(x_p, y_p)$  полюса пучка Р и количественная оценка согласия направлений Д-Н с этим пучком определялись минимизацией  $\chi^2$ -функционала

$$\chi^{2} = \sum_{k=1}^{N_{9KC}} \left[ \frac{\theta(t_{k}) - \theta_{P}(t_{k}, x_{P}, y_{P})}{\Delta \theta(t_{k})} \right]^{2}, \qquad /9/$$

где  $\Delta \theta(t_k)$  - ошибки в угле поворота, вычисленные из экспериментальных ошибок  $\Delta \rho_{ij}$  элементов матрицы плоскости.

## 5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты минимизации для  $\rho$ ,  $K^{*^{o}}$  и  $\Delta^{++}$ -резонансов приведены в *табл. 1.* Близкие к единице значения  $\chi^2$  /NDF / NDF - число степеней свободы/ свидетельствуют об удовлетворительном согласии совокупности направлений динамической оси Д-Н с подобранным пучком прямых Р.Найденные значения (xp,yp) координат полюса позволяют определить тип пучка Р. Совокупность направлений динамической оси Д-Н для распадов  $\rho$  и K\*<sup>o</sup> - резонансов описывается пучками гиперболического типа в интервале импульсов пучковой частицы  $P_L \approx 2,8 \div 17$   $\Gamma \Im B/c$ . Направления динамической оси Д-Н для липтического типа в интервале  $P_L \approx 12 \div 17$   $\Gamma \Im B/c$ .

На рис. 2а-д сплошной линией показана t'-зависимость угла  $\theta_p(t')$ , вычисленная, согласно /8/, по подобранным значениям координат полюсов (x<sub>P</sub>,y<sub>P</sub>). Видно, что экспериментальная t'-зависимость угла поворота  $\theta(t')$  удовлетворительно описывается подобранной кривой. Для сравнения в *табл. 1* приведены также значения  $\chi^2/NDF$  для эллиптических пучков J и H. Значения  $\chi^2/NDF$ для пучков J и H существенно больше единицы, т.е. экспериментальная совокупность направлений динамической оси Д-H резко не согласуется с общепринятыми пучками J и H неинвариантного квантования спина.

| 7 | αδλυμα  | 1 |  |
|---|---------|---|--|
| • | <i></i> | • |  |

| Kowennoe         | P <sub>L</sub> t-abracti  |                                | Число<br>Эксп. | χ <sup>2</sup> /NDF |              | Параметры   |                                   | Pa.                        |                   |
|------------------|---------------------------|--------------------------------|----------------|---------------------|--------------|-------------|-----------------------------------|----------------------------|-------------------|
| 50cm0,1+U        | (r=6/c)                   | ( <b>~\$6</b> /c) <sup>2</sup> | movek          | J                   | Н            | Р           | x <sub>p</sub>                    | У <sub>Р</sub>             | <i>50</i> -<br>та |
|                  | p - мезон                 |                                |                |                     |              |             |                                   |                            |                   |
| ₽ <sup>−</sup> Р | 2,77                      | 0-3.6                          | 29             | 12.8                | 18.2         | 0.7         | 1.05 -0.05                        | -0.01-0.00                 | 19                |
| p°n              | 2.77                      | 0-0.5                          | 17             | 6.7                 | 33.1         | 1.0         | 1.23 + 1.18                       | -0.16 + 0.18<br>-0.21      | 19                |
| ₽⁺₽              | <b>5</b> .0               | 0 - 0. <b>8</b>                | 5              | 4.9                 | 25.5         | 1.9         | 1.60 + 1.07<br>1.60 <u>- 0.13</u> | -0.28 + 0.21               | -                 |
| <u>р</u> +р      | 8.0                       | 0-1.0                          | 5              | 22.4                | 31.5         | 1.1         | 1.47 + 0.15<br>1.47 - 0.07        | -0.40-0.08                 | 5                 |
| p° n             | 15.0                      | 0-0.3                          | 15             | 103.9               | 37.4         | 0.3         | 1.29+1.10                         | -0.28-0.17                 | 21                |
| ۶°n              | 17.2                      | 0-1.0                          | 28             | 115.5               | 102.8        | 1.4         | 1.62+0.12                         | -0.63 + 0.10<br>- 0.43     | 22                |
| **۵*             | 3.7                       | 0-1.0                          | 8              | 11.4                | 98.6         | 2.7         | 1.15-0.18                         | +0.38                      | 23                |
| P∆**             | 8.0                       | 0-1.0                          | 11             | 3.0                 | 15.4         | 0.7         | 1.20+0.02<br>1.20-0.17            | -Q03-0.12                  | 5                 |
| <i>₽</i> ∆**     | £1.7                      | 0-0.5                          | 6              | 5.8                 | 32.6         | <i>0</i> .7 | 1.63 + 1.35                       | -0.30-0.24                 | 24                |
|                  | K+0- NESON .              |                                |                |                     |              |             |                                   |                            |                   |
| K                | 5.0                       | 0-1.0                          | 18             | 46.3                | 117.1        | 2.6         | 1.68 + 0.40                       | 013 - 0.35                 | 25                |
| K*° ^ **         | 10.0                      | 0-1.0                          | 20             | 26.1                | 5 <i>6</i> . | 1.1         | 1.54-0.02                         | 0.19±0.14<br>0.19±0.18     | 25                |
| K*° 4**          | 16.0                      | 0-1.0                          | 14             | 7.4                 | <u>16</u> .9 | 0.8         | 2.43 + 0.02<br>2.43 - 1.67        | 0.17 + 0.87<br>0.17 - 0.41 | 25                |
|                  | Δ <sub>33</sub> - изобара |                                |                |                     |              |             |                                   |                            |                   |
| $\Delta^{**}n$   | 12.5                      | 0-11                           | 14             | 12.2                | 10.7         | 0.4         | -0.13 -0.10                       | 0.18 - 0.19                | 26                |
| $\Delta^{++}n$   | 16.9                      | 0 - 1,1                        | 14             | 4.7                 | 8.2          | 0.6         | -0.05 - 0.10                      | 0.17 - 0.18                | 26                |





Найденная кинематическая связь направлений динамической оси Д-Н в различных системах покоя резонансов позволяет анализировать t-зависимость их поляризационных состояний при помощи а , В , у - параметров Д-Н. Эти параметры можно вычислить, исходя из определенных экспериментально элементов матрицы плотности, по приведенным к единому виду формудам 73-5/:

$$a_{y} = 0.5 \{ (B-C+2A) \mp \sqrt{(B+C)^{2} + (2D)^{2}} \},\$$
  

$$\beta = A + C$$

$$a_{JJJJ} BEKTOPHEIX MESOHOB \qquad A_{JJJ} \Lambda^{++} - H30 GAPEIA = (1-\rho_{00})/2 \qquad A = (1+4\rho_{33})/6$$

$$B = (3\rho_{00}-1)/2 \qquad B = (1-4\rho_{33})/2$$

$$C = \rho_{1-1} \qquad C = 2 \operatorname{Re} \rho_{3-1} / \sqrt{3}$$

$$D = \sqrt{2} \operatorname{Re} \rho_{10} \qquad D = 2 \operatorname{Re} \rho_{31} / \sqrt{3} / 2$$

/10/

На рис. За-д показана с -зависимость параметров а,  $\beta$ ,  $\gamma$  для распадов  $\rho$ ,  $K^{*\circ}$  и  $\Lambda^{++}$ -резонансов, вычисленная согласно /10/. Эта зависимость имеет простую и четкую структуру, а именно - можно выделить одну или две области квазипостоянства значений а ,  $\beta$  ,  $\gamma$  . Области значений t, в которой наблюдается резкое изменение этих параметров, можно поставить в соответствие область изменения наклона сечения do 'dt соотфизического канала. В частности, на ветствующего рис. За,б парой пунктирных линий отмечена область изменения наклона сечения  $d \sigma/dt$  в канале  $\pi p \rightarrow \rho^{\circ}n$  по данным работ  $r^{27,28}$ . Такое динамически определенное поведение параметров  $\alpha$ ,  $\beta$ ,  $\gamma$  подтверждает предпо-ложение авторов работ /4.5 о фундаментальной роли этих параметров при исследовании поляризационных состояний резонансов и указание о важности исследования "природы направления динамической оси Д-Н, решающей часть динамики сильных взаимодействий". .

### 6. ЗАКЛЮЧЕНИЕ

В настоящей работе получена инвариантная параметризация совокупности направлений динамической оси Д-Н при помощи пучков прямых Лобачевского. Для  $\rho$ , K\*°,  $\Lambda^{++}$  - резонансов в интервале передач  $\sqrt{-t} \approx 0 \div 1$  $/O \div 2/$  /  $\Gamma \ni B/c/$  и импульсов  $P_{L} \approx 2,8 \div 17$   $\Gamma \ni B/c$  подобранные параметры пучков позволяют удовлетворительно описать эту совокупность направлений подобранным пучком прямых Лобачевского. Такое описание позволяет изучать поляризационное состояние резонанса в различных системах покоя, отличающихся величиной t, при помощи собственных значений матрицы плотности - $\alpha$ ,  $\beta$ ,  $\gamma$ -параметров Д-Н. t-зависимость параметров  $a, \beta, \gamma$  имеет простую структуру, связанную с линамикой образования резонанса.

Полученные результаты являются экспериментальным свидетельством в пользу указания Черникова о том, что "спиновые характеристики частиц следует относить к пространству скоростей /Лобачевского/, а не к пространству координат ... "/11/

В заключение авторы благодарят Р.А. Андрееву и А.Ф.Лукъянцева за помощь в написании части программ и Ю.М.Колесникова, участвовавшего в начальном этапе работы. Они благодарны И.С.Сантову и Б.А.Шахбазяну за полезное обсуждение полученных результатов. Один из авторов /Э.Г.Б./ выражает свою признательность А.М.Балдину, А.А.Кузнецову и М.И.Соловьеву за поддержку неевклидова подхода к анализу реакций при высоких энергиях, в рамках которого выполнена настоящая работа.

## ЛИТЕРАТУРА

- 1. В.А.Беляков, Э.Г.Бубелев, Е.С.Кузнецова. Письма в ЖЭТФ, 8, 197 /1968/.
- 2. F.Crijns et al. Phys.Lett., 22B, 533 /1966/.
- 3. P.H.Dalitz. The Production and Decay of Resonant States. Intern. School on Phys. E. Fermi, Varenna, *1964*.

 $D = \sqrt{2} \operatorname{Re} \rho_{10}$ 

- 4. J.T.Donohue and H.Hogaasen. Phys.Lett., 25B, 554 /1967/.
- 5. M.Aderholz et al. Nucl. Phys., B24, 509 /1970/.
- 6. Ф.Клейн. О геометрических основаниях лоренцевой группы. Сб. "Новые идеи в математике", Спб., 1914.
- 7. А.П.Котельников. Принцип относительности и геометрия Лобачевского. Сб. "In memoriam N.I. Lobačevski", 2, 37, Казань, 1927.
- 8. В.А.Фок. Теория пространства, времени и тяготения. §§16, 17, ГИТТЛ, М., 1955.
- 9. Н.А.Черников. а/ Научн. докл. высшей школы, физмат. науки, №4, 129 /1958/; б/ Препринт ОИЯИ, P-723, Дубна, 1961; сб. "Гравитация и теория относительности", вып. II, стр. 9, Казань, 1965.
- Н.А. Черников. Стохастическое движение релятивистской частицы. Кандидатская диссертация, Дубна, 1957, опубликованная препринтом ИТФ АН УССР № 44-68, Киев, 1968.
- 11. Н.А.Черников. Геометрия Лобачевского и теория относительности, Международная зимняя школа теоретической физики, т. 3, 151, ОИЯИ, Р-1772, Дубна, 1964.
- 12. Н.А.Черников. Геометрия Лобачевского. Лекции в НГУ, Новосибирск, 1965.
- 13. Н.А.Черников. Геометрия Лобачевского и релятивистская механика. ЭЧАЯ, 4, №3, 773, Атомиздат, 1973.
- 14. G.C. Wick. Annals of Physics (USA), 18, 65 /1962/.
- Я.А.Смородинский. ЖЭТФ, 43, 2217 /1962/; АЭ, 14, 110 /1963/; Международная школа теоретической физики, т. 3, 179. ОИЯИ, Р-1772, Дубна, 1964:
- Б.М.Головин, В.И.Никаноров. Препринт ОИЯИ, P2-5272, Дубна, 1970; ЖЭТФ 60, №1, 28 /1970/.
- 17. N.B.Skachkov. JINR Communications, E2-7159, E2-7333, Dubna, 1973; E2-8285, Dubna, 1975; TMF, 22, 213 /1975/.
- 18. В.Ф.Каган. Основания геометрии, ч. І. М.-Л., 1949; ч. II, М., 1955.
- 19. J.Bouchez et al. Prepr. CEN-Saclay B.P., no. 2, 91-Gif-sur-Yvette.
- 20. F.Bulos et al. Phys.Rev.Lett., 26, 1453 /1971/.
- 21. H.H.Williams. SLAC Report No. 142.
- 22. G.Grayer et al. Nucl. Phys., B50, 29 /1970/.
- 23. K.L.J.Barnhamm et al. Preprint LBL-960.
- 24. R.O. Maddock et al. Nuovo Cim., 5A, 433 /1971/.
- 25. G.Giapetti et al. Preprint CERN/D.Ph. II/PHYS.73-19.

- 26. G.Grayer et al. Measurement of  $pp = (p\pi^+)$  at 16.9 HeV/c and the Effective Trajectory in  $pp - \Delta^{++} (1240)n$ ., XVI-th Int. Conf. on High Energy Phys., Batavia, Sept. 6-13, 1972.
- 27. G. Grayer et al. High Statistic Study of the Reaction  $\pi^- p \rightarrow \pi^+ \pi^- n$  at 17.2 GeV/c, IV-th Int. Conf. on High Energy Collisions, Oxford, April 5-7, 1972.
- 28. J.P. Baton and G.Laurens. Nucl. Phys., B21, 551 /1970/.

Рукопись поступила в издательский отдел 8 апреля 1976 года.

20