

14-325

объединенный институт ядерных исследований дубна

P2-94-325

М.А.Иванов¹, В.Е.Любовицкий²

ФУНКЦИЯ ИЗГУРА — ВАЙЗЕ И ПОЛЯРИЗАЦИОННЫЕ ХАРАКТЕРИСТИКИ Ль-БАРИОНА

Направлено в журнал «Письма в ЖЭТФ»

¹E-mail: ivanovm@thsunl.jinr.dubna.su ²E-mail: lubovit@thsunl.jinr.dubna.su

1. Слабые распады тяжелых адронов являются уникальным инструментом для определения элементов матрицы Кабиббо-Кабаяши-Маскава, изучения внутренней структуры адронов, а также исследования явлений, лежащих вне рамок стандартной модели.

Прогресс в изучении процессов физики тяжелых кварков связан, в первую очередь, с появлением новых возможностей в экспериментальимх исследованиях в области физики промежуточных энергий. Длительное время экспериментальные программы были направлены на изучение процессов с участием тяжелых мезонов и очарованных барионов. Однако, за последние несколько лет паметились заметные сдвиги в изучении свойств прелестных барионов. В частности, в СЕRN на протонантипротонном коллайдере впервые наблюдался Λ_b -барион в распаде $\Lambda_b \rightarrow J/\Psi\Lambda$ [1]. Группами ALEPH и OPAL на LEP исследовались полулептонные распады Λ_b - барионов: $\Lambda_b \rightarrow \Lambda_c X \epsilon \nu$ [2]. Исследования процесса рождения Λ_b -бариона в распадах Z^0 -бозона и измерение его времени жизпи были выполнены коллаборацией DELPHI [3]. Планируются эксперименты с целью измерения поляризационных характеристик Λ_b -бариона.

С теоретической точки зрения столь живой интерес к исследованию слабых распадов тяжелых адронов связан, главным образом, с открытием нового вида симметрии сильных взаимодействий - спин-флэйворной симметрии в мире тяжелых кварков (симметрия Изгура-Вайзе) [4,5], которая проявляется в пределе $m_Q \rightarrow \infty$, и разработкой эффективной теории тяжелых кварков (HQET) | [4—7] — пертурбативной вычислительной схемы для исследований свойств адронов, содержащих один тяжелый кварк.

1

Важным динамическим следствием симметрии Изгура-Вайзе явились групновые соотношения между релятивистскими формфакторами слабых распадов тяжелых адронов [4,5]. Было показано, что формфакторы полулептонных распадов прелестных адропов $B \to D(D^*)\ell\nu$, $\Lambda_b \to \Lambda_c \ell\nu$ и $\Omega_b \to \Omega_c(\Omega_c^*)\ell\nu$ выражаются через четыре универсальные функции ξ, ζ, η, ι (функции Изгура-Вайзе), зависящие от скалярного произведения 4-скоростей начального (v) и конечного (v') адронов: $\omega = v \cdot v'$. Так, например, слабый адропный ток, соответствующий распаду $\Lambda_b \to \Lambda_c e\nu$, в пределе Изгура-Вайзе имеет вид: $J_{\mu}(v, v') \propto \zeta(\omega)\bar{u}(v')\gamma_{\mu}(1+\gamma_5)u(v)$.

Явный вид барионной функции Изгура-Вайзе ζ был получен в работах [8-11]. В работах [8,9] в вычислениях функции ζ использовались волновые функции барионов в так называемой системе бесконечного импульса. В работе [10] функция $\zeta(\omega)$ была вычислена исходя из правил сумм КХД. В работе [11] полулентонные распады тяжелых барионов $\Lambda_b \to \Lambda_c e\nu$ и $\Sigma_b \to \Sigma_c e\nu$ рассматривались в рамках модели конфайнмированных кварков (МКК) [12] с использованием кварк-дикварковой аппроксимации [11,12]. В работе [11] было показано, что все формфакторы распадов $\Lambda_b \to \Lambda_c e\nu$ и $\Sigma_b \to \Sigma_c e\nu$ выражаются через универсальную функцию $\Phi(\omega)$, которая совпадает с функцией Изгура-Вайзе ζ и имеет вид $\Phi(\omega) \equiv \zeta(\omega) = \ln(\omega + \sqrt{\omega^2 - 1})(\omega^2 - 1)^{-1/2}$. Однако такое поведение не согласуется с ограничением на функцию Изгура-Вайзе, полученным в работе [13] с помощью правил сумм Бьеркена: $\zeta^2(\omega) \leq 3/(1 + 2\omega^2)$.

Целью данной работы является исследование поведения функции Изгура-Вайзе для перехода $\Lambda_b \to \Lambda_c$ в рамках кварк-дикварковой модели для барионов с учетом инфракрасного поведения тяжелого кварка. Необходимость учета инфракрасного поведения тяжелого кварка в полулептонных распадах была продемонстрирована в работе [14]. Данная идея была использована в работе [15] при исследовании поведения функции Изгура-Вайзе для $B \rightarrow D$ перехода и слабых лептонных констант *B*-и *D*-мезонов в рамках МКК.

Показано, что при определенном выборе параметров модели (параметра, характеризующего инфракрасное поведение тяжелого кварка, и величины массы легкого дикварка) удается получить "мягкое" поведение функции Изгура-Вайзе, согласующееся с результатами работы [9]. Полученная функция Изгура-Вайзе используется для вычисления ширин, дифференциальных распределений и поляризационных характеристик Λ_b -бариона.

2. При описании $b \to c$ распадов прелестных барионов будем использовать модель, в которой тяжелый барион представляется в виде связанной системы из легкого дикварка и тяжелого кварка соответствующего аромата. В случае Λ_b - и Λ_c -барионов легкий дикварк $D\{ud\}$ должен обладать следующими квантовыми числами: снином J = 0, изоспином I = 0 и отрицательной пространственной четностью. Тогда кваркдикварковый ток, обладающий квантовыми числами Λ_b -и Λ_c -барионов, имеет вид $J_Q(x) = Q^a(x)D^a(x)$, Q = c, b, а составная структура Λ_Q -барионов описывается лагранжианом сильного взаимодействия $\mathcal{L}_Q(x) = g_{\Lambda_Q} \bar{\Lambda}_Q J_Q + эрм.сопр. Здесь <math>g_{\Lambda_Q}$ - константа сильного взаимодействия, которая определяется из условия связности: $Z_{\Lambda_Q} = 1 + g_{\Lambda_Q}^2 \Pi'(M_{\Lambda_Q}) = 0$, где Π' -производная массового оператора Λ_Q -бариона, а M_{Λ_Q} -его масса.

Полулептонный распад $\Lambda_b \rightarrow \Lambda_c \ell \nu$ в однопетлевом приближении

3

описывается диаграммой Фейнмана (см. рис.1). Пропагатору легкого дикварка сопоставим стандартный пропагатор исевдоскалярного поля $S_D(p^2) = 1/(M_D^2 - p^2)$, где M_D -масса дикварка, которая будет фигурировать в наших вычислениях в качестве свободного параметра.

Учет инфракрасного поведения тяжелого кварка будем осуществлять стандартным образом, используя инфрапропагатор [14,15] $S_Q(p,\nu) = [m_Q - p]^{-1}(1 - p^2/m_Q^2)^{-\nu}$ в качестве пропагатора тяжелого кварка. Параметр $\nu > 0$ будем считать свободным параметром. Следует отметить, что условие $\nu > 0$ обеспечивает ультрафиолетовую сходимость фейнмановских интегралов, соответствующих фейимановской диаграмме на рис.1. Массы тяжелых барионов M_{Λ_Q} и тяжелых кварков m_Q свяжем стандартным соотношением [8,9]: $M_{\Lambda_Q} = m_Q + \bar{\Lambda}$.

3. Используя α-параметризацию Фейнмана, получаем выражение для функции Изгура-Вайзе:

$$\begin{aligned} \zeta(\dot{\omega}, R, \nu) &= \frac{\Phi(\omega, R, \nu)}{\Phi(1, R, \nu)}, \\ \Phi(\omega, R, \nu) &= \int_{0}^{\infty} du u^{1+2\nu} \int_{0}^{1} dt \frac{t^{\nu}(1-t)^{-1/2}}{[R^{2}-1+(u-1)^{2}+\frac{u^{2}t}{2}(\omega-1)]^{1+2\nu}}. \end{aligned}$$

Таким образом, функция Изгура-Вайзе в нашей модели зависит от двух параметров ν и $R = M_D/\bar{\Lambda}$. Обсудим выбор параметров ν и R. Чувствительность слабых характеристик тяжелых мезонов (функция Изгура-Вайзе ξ , константы лептонных распадов f_B и f_D) к выбору параметров ν и $\bar{\Lambda}$ была исследована в работе [15]. Было показано, что удовлетворительное описание экспериментальных данных достигается в том случае, когда параметр $\nu \leq 1$, а энергия связи меняется в широком интервале значений: $0 \leq \bar{\Lambda} \leq 0.6$ ГэВ. Теоретическая оценка вели-

Рис.1, Нолулентонный распад Ал-бариона

Рис.2.Функция Изгура-Вайзе

чины А была сделана с использованием техники правил сумм КХД [17]: $\Lambda = 0.5 \pm 0.07$ ГэВ. Величина массы легкого дикварка M_D в различных работах варьировалась в пределах ~ 0.6 ÷ 0.9 ГэВ. Таким образом, нараметр R может принимать значения, лежащие в интервале 1 < R < 2. В данной работе при фитировании свободных нараметров мы ставили задачу добиться разумного подавления функции Изгура-Вайзе в кинематической области $1 \leq \omega \leq \omega_{max}$. В частности, оказалось, что при $\nu = 1$ и R = 1.25 поведение функции Изгура-Вайзе согласуется с хорошей точностью с результатами работы [9]. Очевидно, что более серьезные оценки параметра и могут быть сделаны лишь после полного апализа всех полудентонных мод распадов тяжелых адронов. Графики функций Изгура-Вайзе для случая $\nu = 1$ и различных значений параметра R в интервале $1.2 \le R \le 1.5$ представлены на рис.2. Цифрами 1 – 5 обозначены соответственно результаты для $R = 1.2, 1.25, 1.3, 1.4, 1.5, \,\,$ Для сравнения приведены результаты правил сумм КХЛ [10] и модели [9]. Значения радиуса функции Изгура-Вайзе $\rho^2 = -d\zeta/d\omega|_{\omega=1}$ приведены в табл.1.

Таблица 1. Радиус функции Изгура-Вайзе

R	1.2	1.25	1.3	1.35	1.4	1.45	1.5
ρ^2	3.26	2.77	2.44	2.20	2.02	1.88	1.77

4. Наблюдаемые характеристики полулептонных распадов Λ_b -бариона (ширины распадов, дифференциальные распределения, лептонные спектры и параметры асимметрии) из соображений удобства будем определять в терминах так называемых *спиральных амплитуд* $H_{\lambda_f \lambda_W}^{\Gamma}$ [9.17], где λ_f - спиральность бариона в консчном состоянии, а λ_W спиральность слабого W-бозона, находящегося вне массовой поверхности. В пределе Изгура-Вайзе спиральные амилитуды выражаются через функцию ζ(ω):

$$\begin{split} H_{\pm\frac{1}{2}0}^{V} &= \zeta \sqrt{\frac{\omega-1}{\omega_{max}-\omega}} M_{\pm}, \quad H_{\pm\frac{1}{2}0}^{A} = \pm \zeta \sqrt{\frac{\omega+1}{\omega_{max}+\omega}} M_{-}, \\ H_{\pm\frac{1}{2}1}^{V} &= -2\zeta \sqrt{M_{\Lambda_{b}} M_{\Lambda_{c}}(\omega-1)}, \\ H_{\pm\frac{1}{2}1}^{A} &= \mp 2\zeta \sqrt{M_{\Lambda_{b}} M_{\Lambda_{c}}(\omega+1)}, \\ \omega_{max} &= \frac{M_{\Lambda_{b}}^{2} + M_{\Lambda_{c}}^{2}}{2M_{\Lambda_{b}} M_{\Lambda_{c}}} \quad M_{\pm} = M_{\Lambda_{b}} \pm M_{\Lambda_{c}}. \end{split}$$

Ширину полулептонного распада Ль-бариона вычислим по известной формуле

$$\Gamma = \int_{1}^{\omega_{\text{max}}} d\omega \ \frac{d\Gamma}{d\omega}, \quad \frac{d\Gamma}{d\omega} = \frac{d\Gamma_{T_{+}}}{d\omega} + \frac{d\Gamma_{T_{-}}}{d\omega} + \frac{d\Gamma_{L_{+}}}{d\omega} + \frac{d\Gamma_{L_{-}}}{d\omega}, \quad (1)$$

где индексы T и L обозначают парциальные вклады поперечной ($\lambda_W = \pm 1$) и продольной ($\lambda_W = 0$) компонент адронного тока. Парциальные дифференциальные распределения равны

$$\frac{d\Gamma_{T_{\pm}}}{d\omega} = \kappa_{\omega} |H_{\pm\frac{1}{2}\pm1}|^{2}, \quad \frac{d\Gamma_{L_{\pm}}}{d\omega} = \kappa_{\omega} |H_{\pm\frac{1}{2}0}|^{2},$$

$$\kappa_{\omega} = \frac{G_{F}^{2}}{(2\pi)^{3}} |V_{bc}|^{2} \frac{M_{\Lambda_{c}}^{3}}{6} (\omega_{max} - \omega) \sqrt{\omega^{2} - 1},$$

$$H_{\lambda_{f}\lambda_{W}} = H_{\lambda_{f}\lambda_{W}}^{V} - H_{\lambda_{f}\lambda_{W}}^{A},$$
(2)

Результаты наших вычислений и работы [9] для полной и парциальных ширин в единицах 10^{10} с⁻¹ представлены в табл.2. Графики для дифференциальных распределений приведены на рис. 3. Здесь и в дальнейшем характеристики Λ_b -бариона вычисляются для $\nu = 1$ и R = 1.25.

Рис.4. Лептонные спектры

Таблица 2. Ширины распада $\Lambda_b \to \Lambda_c \ell \nu$

Нодход	ſ	Γ_{T_+}	$\Gamma_{T_{-}}$	$\Gamma_{L_{\pm}}$	$\Gamma_{L_{-}}$
Наш подход	4.01	0.45	1.23	0.10	2.23
Работа [9]	4.57	0.42	1.46	0.11	2.58

Лентонный спектр $d\Gamma/dE_t$ вычисляется согласно формуле:

$$\frac{d\Gamma}{dE_t} = \frac{d\Gamma_{T_+}}{dE_t} + \frac{d\Gamma_{T_-}}{dE_t} + \frac{d\Gamma_{L_+}}{dE_t} + \frac{d\Gamma_{L_+}}{dE_t}$$
(3)

Выражения для парциальных лентонных спектров имеют вид:

$$\frac{d\Gamma_{T\pm}}{dE_{\ell}} = \int d\omega \kappa_{E} (1 \pm \cos \Theta)^{2} |H_{\pm\frac{1}{2}\pm1}|^{2},$$

$$\frac{d\Gamma_{L\pm}}{dE_{\ell}} = \int d\omega \kappa_{E} (1 - \cos^{2}\Theta)^{2} |H_{\pm\frac{1}{2}0}|^{2},$$

$$\frac{d\Gamma_{L\pm}}{dE_{\ell}} = \int d\omega \kappa_{E} (1 - \cos^{2}\Theta)^{2} |H_{\pm\frac{1}{2}0}|^{2},$$

$$FAC \quad \kappa_{E} = \frac{G_{F}^{2}}{(2\pi)^{3}} |V_{bc}|^{2} \frac{M_{\Lambda_{\ell}}^{2}}{8} (\omega_{max} - \omega),$$

$$\cos \Theta = \frac{E_{\ell}^{max} - 2E_{\ell} + M_{\Lambda_{c}} (\omega_{max} - \omega)}{M_{\Lambda_{c}} \sqrt{\omega^{2} - 1}},$$

$$E_{\ell}^{max} = \frac{M_{\Lambda_{b}}^{2} - M_{\Lambda_{c}}^{2}}{2M_{\Lambda_{b}}}, \quad \omega_{min}(E_{\ell}) = \omega_{max} - 2\frac{E_{\ell}}{M_{\Lambda_{c}}} \frac{E_{\ell}^{max} - E_{\ell}}{M_{\Lambda_{b}} - 2E_{\ell}},$$

Графики лептонных спектров представлены на рис.4.

Важными характеристиками слабого двухкаскадного распада $\Lambda_b \rightarrow \Lambda_c [\to \Lambda_s \pi] + W [\to \ell \nu]$ являются угловые распределения и связанные с ними параметры асиммстрии анализ которых имеет актуальный характер в связи с планируемыми экспериментами на установках CERN. Более подробно все необходимые определения даны в работах [9,16]. Здесь мы лишь приведем выражения для параметров асимметрии распада нецоляризованного Λ_b -барнона ($\alpha, \alpha', \alpha'', \gamma$) и распада поляризованного Λ_b -барнона (α_P, γ_P) в терминах спиральных амилитуд:

$$\alpha = \frac{H_T^- + H_L^-}{H_T^+ + H_L^+}, \quad \alpha' = \frac{H_T^-}{H_T^+ + 2H_L^+}, \quad \alpha'' = \frac{H_T^+ - 2H_L^+}{H_T^+ + 2H_L^+},$$

$$\gamma = \frac{2H_\gamma}{H_T^+ + H_L^+}, \quad \alpha_P = \frac{H_T^- - H_L^-}{H_T^+ + H_L^+}, \quad \gamma_P = \frac{2H_{\gamma_P}}{H_T^+ + H_L^+}.$$

the
$$H_T^{\pm} = |H_{1/2|1}|^2 \pm |H_{-1/2|-1}|^2$$
, $H_L^{\pm} = |H_{1/2|0}|^2 \pm |H_{-1/2|0}|^2$,
 $H_{\gamma} = Re(H_{-1/2|0}H_{1/2|1}^* + H_{1/2|0}H_{-1/2|-1}^*)$,
 $H_{\gamma F} = Re(H_{1/2|0}H_{-1/2|0}^*)$,

В данной работе вычислим средние значения параметров асимметрии (< α >, < α' > и т.д.), которые определяются следующим образом. В выражениях для параметров асимметрии нужно числитель и знаменатель дроби проинтегрировать независимо по кинематической переменной ω с весом ($\omega_{max} - \omega$) $\sqrt{\omega^2 - 1}$ в иптервале $1 \le \omega \le \omega_{max}$. Результаты для средних значений параметров асимметрии даны в табл.3, где для сравнения приведены результаты работы [9].

Подход	$< \alpha >$	< \alpha' >	$< \alpha'' >$	$<\gamma>$	$< \alpha_P >$	$ <\gamma_P> $
Наш подход	-0.72	-0.12	-0.47	0.60	0.34	-0.18
Работа [9]	-0.71	-0.12	-0.46	0.61	0.33	-0.19

Таблица З. Параметры асимметрии

Работа частично поддержана Российским фондом фундаментальных исследований (грант №94-02-03463-а).

Литература

- 1. UA1 Collab., C.Albajar et al. Phys.Lett., **B273**, 540 (1991).
- ALEPH Collab., D.Buskulic et al. Phys.Lett., **B294**, 145 (1992);
 OPAL Collab., P.D.Acton et al. Phys.Lett., **B281**, 394 (1992).
- 3. DELPHI Collab., P.Abreu et al. Phys.Lett., B311, 379 (1993).
- N.Isgur and M.Wise, Phys.Lett., B232, 113 (1989); B237, 527 (1990).
- N.Isgur and M.Wise, Nucl.Phys., B348, 276 (1991).
- 6. H.Georgi, Phys.Lett., **B240**, 447 (1990).
- B.Grinstein, Nucl. Phys., B339, 253 (1990).
- 8. X.-H.Guo and P.Kroll, Z.Phys., C59, 567 (1993).
- 9. B.König, J.G.Körner et al. Preprint DESY 93-011, 1993.
- 10. A.G.Grozin and O.I.Yakovlev, Phys.Lett., **B291**, 441 (1992).
- 11. G.V.Efimov, M.A.Ivanov et al. Z.Phys., C54, 349 (1992).
- G.V.Efimov and M.A.Ivanov, The Quark Confinement Model of Hadrons, IOP Publishing, Bristol & Philadelphia, 1993.
- Q.P.Xu, Phys.Rev., D48, 5429 (1993).
- A.I.Karanikas, C.N.Ktorides and N.G.Stefanis, Phys.Lett., B301, 397 (1993).
- 15. M.A.Ivanov and T.Mizutani, Preprint hep-ph/9406226, 1994.
- N.N.Bogolubov and D.V.Shirkov, Introduction to the Theory of Quantized Fields, Interscience Publishers Inc., New York, 4959.
- 17. M.Neubert, Phys.Rev., D45, 2451 (1992).
- J.G.Körner and M.Krämer, Phys.Lett., B275, 495 (1992).

Рукопись поступила в издательский отдел 11 августа 1994 года.