ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

15/17-76

P2 - 9356

972/2-76

H-379

Нгуен Суан Хан, В.Н.Первушин

ВЫСОКОЭНЕРГЕТИЧЕСКОЕ РАССЕЯНИЕ ЧАСТИЦ С АНОМАЛЬНЫМИ МАГНИТНЫМИ МОМЕНТАМИ В КВАНТОВОЙ ТЕОРИИ ПОЛЯ, НУКЛОН-НУКЛОННОЕ РАССЕЯНИЕ

P2 - 9356

Нгуен Суан Хан, В.Н.Первушин

ВЫСОКОЭНЕРГЕТИЧЕСКОЕ РАССЕЯНИЕ ЧАСТИЦ С АНОМАЛЬНЫМИ МАГНИТНЫМИ МОМЕНТАМИ В КВАНТОВОЙ ТЕОРИИ ПОЛЯ, НУКЛОН-НУКЛОННОЕ РАССЕЯНИЕ

Направлено в ТМФ

Нгуен Суан Хан, Первушин В.Н.

P2 - 9356

Высокознергетическое расседние частии с аномальными магнитными моментами в квантовой теории поля, нуклоннуклонное расседние

В неперенормируемой квантовой теории поля вычисляется асництотика S - •• ; |t| << S амплитуд рассеяния частиц с аномальными магинтными моментами. Получены представления эйконального типа для нуклоннуклонного рассеяния. При этом учет аномального магинтного момента нуклона приводит и добавлению ряда амплитуд, которые описывают переворот спика рассеквающихся частиц в процессе рассеяния. Показано, что в асимптотике S - • проблема перенормировии не возникает.

Работа выполнена в Лаборатории теоретической физник ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

Nguyen Suan Han, Pervushin V.N.

P2 - 9356

High-Energy Scattering of Particles with Anomalous Magnetic Moments in Quantum Field Theory, Nucleon-Nucleon Scattering

The asymptotic form $S \rightarrow \infty$, $|i| \ll S$ of the scattering amplitude of particles with anomalous magnetic moments is calculated in nonrenormalized quantum field theory. The eikonal type representations have been obtained for the nucleon-nucleon scattering. In this case taking into account of the anomalous nucleon magnetic moment leads to the addition of a number of amplitudes that describe the spin flip of the scattered particles in the process of scattering. It is shown that in the asymptotic form $S \rightarrow \infty$ the renormalization problem does not appear.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research Dubna 1975

Введение

Успешное описание экспериментальных данных на основе феноменологических эйкональных моделей /1, 2/ стимулировало большое число работ по обоснованию и исследованию эйконального приближения при высоких энергиях в квантовой теории поля /3-8/. Однако эти работы в основном посвящены исследованию перенормируемых взаимодействий элементарных частиц. При этом было получено эйкональное представление для амплитуды рассеяния двух частиц без учета их спина в области больших энергий и малых передач импульса.

Представляет интерес изучение эйконального приближения в неперенормируемых взаимодействиях /9/. В настоящей работе рассматривается взаимодействие частицы, обладающей аномальным магнитным моментом, с электромагнитным полем $A_{\mu}(x)$. Как было отмечено рядом авторов /9–12/, характерные особенности неперенормируемых теорий проявляются лишь при учете бесконечного множества диаграмм. Поэтому в данной работе проводится суммирование всех лестничных и кросслестничных диаграмм Фейнмана с помощью метода функционального интегрирования.

Получены представления эйконального типа для амплитуды "нуклон-нуклонного" рассеяния в области высоких энергий и при малых передачах импульса. При этом учет аномального магнитного момента приводит к добавлению ряда амплитуд, которые описывают переворот спина рассеивающихся частиц в процессе рассеяния. Показано, что в асимптотике $s \to \infty$; |t| << s проблема перенормировки не возникает. Рассмотрим рассеяние двух нуклонов с аномальными магнитными моментами в области высоких энергий и при фиксированных передачах. Амплитуду рассеяния будем искать по формуле /см. /3, 13//

$$i(2\pi)^{4}\delta^{(4)} (p_{1}+p_{2}-q_{1}-q_{2})T(p_{1},p_{2};q_{1},q_{2}) = = \exp\{-\frac{i}{2}\int dz_{1}dz_{2}\frac{\delta}{\delta A_{\rho}(z)}D_{\rho\sigma}^{e}(z_{1}-z_{2})\frac{\delta}{\delta A_{\sigma}(z)}\} \times /1/\times F_{N}^{9}(p_{1},q_{1}|A)F_{N}^{9}(p_{2},q_{2}|A)|_{A=0};$$

где $F_N^9(p_i, q_i / A)$ (i = 1, 2)- амплитуда рассеяния нуклона / p_i и p_i - импульсы нуклона до и после рассеяния/ на внешнем векторном поле $eA_\mu(x)$ ($\partial^\mu A_\mu(x) = 0$), которая в эйкональном приближении имеет вид /14/

$$F_{N}^{9}(p,q|A) = -\frac{\overline{u}(q)}{2m} \int dx e^{i(q-p)x} T \times /2/$$

$$\times (\frac{d}{d\alpha} \exp\{i\int_{\alpha}^{\infty} 2j^{\mu}[p,\gamma(\xi)]A_{\mu}(x-2p\xi)d\xi\})_{\alpha=0} u(p).$$

Здесь используется сокращенная запись:

$$j^{\mu}[p, \gamma(\xi)] = -ep^{\mu} - i\kappa [p^{\nu}\gamma^{\mu}(\xi) - p^{\mu}\gamma^{\nu}(\xi)]\partial_{\nu} .$$
 /3/

 T_{γ} - символ упорядочивания γ -матрицы по переменной $^{/15/}$, а спиноры $\bar{u}(q)$, u(p) на массовой поверхности удовлетворяют свободному уравнению Дирака и условию нормировки $\bar{u}(q)u(q) = 2m$.

После подстановки в /1/ формулы /2/ и выполнения вариационного дифференцирования имеем

$$i(2\pi)^{4}\delta^{(4)}(p_{1} + p_{2} - q_{1} - q_{2})T(p_{1}, p_{2}; q_{1}, q_{2}) =$$

$$= \frac{\overline{u}(q_{1})\overline{u}(q_{2})}{(2m)^{2}} \int_{k=1}^{2} dx_{k} \exp[i(q_{k}-p_{1})x_{k}] T_{\gamma_{1}} T_{\gamma_{2}} \times (\frac{\partial^{2}}{\partial a_{1}\partial a_{2}} \exp\{4i\int_{a_{1}}^{\infty} d\xi_{1}\int_{a_{2}}^{\infty} d\xi_{2}j_{1}^{\mu}[p_{1},\gamma(\xi_{1})] \times /4/$$

$$\times D_{\mu\nu}^{e}(x_{1}-x_{2}-2p_{1}\xi_{1}+2p_{2}\xi_{2})j_{2}^{\nu}[p_{2},\gamma(\xi_{2})])_{a_{1}=a_{2}=0} u(p_{1})u(p_{2}).$$

В формуле /4/ рассматривается рассеяние вперед, поэтому были опущены радиационные поправки к рассеивающимся частицам.

Дальнейшие вычисления производятся точно так же, как и в работе/13/. Окончательно выражение для амплитуды рассеяния в системе центра масс сталкивающихся частиц $\vec{p}_1 = -\vec{p}_2 = \vec{p}_z$, $t = (q_1 - p_1)^2 = -\Delta^2$, (i=1,2) в области $s \to \infty$, $\frac{|t|}{s} \to 0$ принимает вид

$$T(s, t) = -2is\bar{\psi}_{q_{1}}\bar{\psi}_{q_{2}} \int d\dot{b}_{\perp} e^{i\Delta \vec{b}_{\perp}} \{e^{i\chi_{0}(b)}\Gamma_{12}(b) - 1\}\psi_{p_{1}}\psi_{p_{2}}, /5/$$

где ψ_p , ψ_q - обычные двухкомпонентные спиноры, а χ_0 (b) - фаза, соответствующая кулоновскому рассеянию. Она определяется формулой

$$\chi_{0}(\mathbf{b}) = \frac{\mathbf{e}^{2}}{(2\pi)^{2}} \int \vec{d\mathbf{k}}_{\perp} \frac{\mathbf{e}^{-\mathbf{i} \cdot \mathbf{k}_{\perp} \cdot \mathbf{b}_{\perp}}}{\mu^{2} + \vec{\mathbf{k}}_{\perp}^{2}} = \frac{\mathbf{e}^{2}}{2\pi} K_{0}(\mu | \vec{\mathbf{b}}_{\perp} |);$$
 /6/

К $_{0}(\mu | \mathbf{b}_{\perp} |)$ - функция Кельвина нулевого порядка, а выражение $\Gamma_{1,2}(\mathbf{b})$ равно:

$$\Gamma_{12}(\mathbf{b}) = \frac{1}{4} (1, \sigma_{1z}) (1, -\sigma_{2z}) T_{\tau_1} T_{\tau_2} \times \\ \times \exp\{2\mathbf{e}\kappa \int_{-\infty}^{\infty} d\mathbf{r}_1 \int_{-\infty}^{\infty} d\mathbf{r}_2 [\vec{\gamma}_1^{\perp}(\tau_1) \cdot \vec{\partial}_{\perp} + \vec{\gamma}_2^{\perp}(\tau_2) \cdot \vec{\partial}_{\perp}] \mathbf{D}_0(\mathbf{b}_{\tau_1 \tau_2}) +$$

4

$$+ 2i\kappa^{2}\int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} [\vec{\gamma}_{1}^{\perp}(\tau_{1}) \cdot \vec{\partial}_{\perp} \vec{\gamma}_{2}^{\perp}(\tau_{2}) \cdot \vec{\partial}_{\perp} + \vec{\gamma}_{1}^{\perp}(\tau_{1}) \cdot \vec{\gamma}_{2}^{\perp}(\tau_{2}) \partial_{\tau_{1}} \partial_{\tau_{2}}]D_{0}(b_{\tau_{1}}\tau_{2}) i(\frac{1}{\sigma_{1z}}) (\frac{1}{-\sigma_{2z}});$$

$$b_{\tau_{1}}\tau_{2} = b_{\perp} - \hat{p}_{1}\tau_{1} + \hat{p}_{2}\tau_{2}.$$
/7/

Перейдем к цилиндрическим координатам $\vec{b}_{\perp} = \vec{\rho} = \rho \cdot \vec{n}$, $\vec{n} = (\cos\phi, \sin\phi)$, ϕ - азимутальный угол в плоскости (x, y). Далее вводим единичный вектор $\vec{m} = (-\sin\phi; \cos\phi), (\vec{n} \cdot \vec{m}) = 0$ и разложим $\vec{\gamma}_i^{\perp}(\tau_i) = \vec{\beta}(\tau_i)$ по векторам \vec{n}, \vec{m} .

$$\vec{\beta}(r_i) = \vec{\beta}_n(r_i) \cdot \vec{n} + \vec{\beta}_m(r_i) \cdot \vec{m},$$

$$\hat{\beta}_n(r_i) = \vec{\beta}(r_i) \cdot \vec{n},$$

$$\hat{\beta}_m(r_i) = \vec{\beta}(r_i) \cdot \vec{m}, \quad (i = 1, 2).$$
/8/

Здесь индексы (n, m) указывают проекции вектора $\beta(r_i)$ на (\vec{n}, \vec{m}) соответственно, а индекс i (i = 1, 2) - на частицу, с которой мы имеем дело.

Матрицы $\hat{\beta}_{\ell}(\tau_i)$ ($\ell = n, m; i = 1, 2$) обладают свойством антикоммутативности по индексам ℓ :

$$\hat{\beta}_{\ell}\hat{\beta}_{k} + \hat{\beta}_{k}\hat{\beta}_{\ell} = -2\delta_{\ell k} \qquad (\ell, k = m, n); \qquad /9/$$

и свойством коммутативности при различных значениях і и *т*:

$$\hat{\beta}(\tau)\hat{\beta}(\tau') - \hat{\beta}(\tau')\hat{\beta}(\tau) = 0,$$

$$(i \neq j; i, j = 1, 2).$$
(10/

Учитывая

$$\hat{\beta}_{\mathbf{m}}(r_1)\hat{\beta}_{\mathbf{m}}(r_2) = [\vec{\beta}(r_1) - \hat{\beta}_{\mathbf{n}}(r_1)\cdot\vec{\mathbf{n}}][\vec{\beta}(r_2) - \hat{\beta}_{\mathbf{n}}(r_2)\cdot\vec{\mathbf{n}}] =$$

$$= \vec{\beta}(r_1)\vec{\beta}(r_2) - \vec{\beta}_{\mathbf{n}}(r_1)\vec{\beta}_{\mathbf{n}}(r_2) ,$$

окончательно представим $\Gamma_{12}(b)$ в следующем виде:

$$\Gamma_{12}(\mathbf{b}) = \frac{1}{4} (\mathbf{1}, \sigma_{1z}) (\mathbf{1}, -\sigma_{2z}) T_{\tau_1} T_{\tau_2} \times \\ \times (\exp \{2e\kappa \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 [\beta_n(\tau_1) - \beta_n(\tau_2)] \partial_\rho D_0(\rho_{\tau_1 \tau_2}) + \\ + 2i\kappa^2 \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_1) \hat{\beta}_n(\tau_1) [\partial_\rho^2 + \partial_{\tau_1} \partial_{\tau_2}] D_0(\rho_{\tau_1 \tau_2}) + \\ + 2i\kappa^2 \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_1) \hat{\beta}_n(\tau_2) \partial_{\tau_1} \partial_{\tau_2} D_0(\rho_{\tau_1 \tau_2})](\frac{1}{\sigma_{1z}}) (\frac{1}{\sigma_{2z}}).$$

Для упрощения полученной формулы /11/ рассмотрим вначале рассеяние незаряженных частиц с аномальными магнитными моментами.

а/ Рассмотрим рассеяние нейтрона на нейтроне, т.е. в формуле /11/ положим e=0, $\kappa \neq 0$, тогда для $\Gamma_{nn}(b)$ получим следующее выражение:

$$\Gamma_{nn}(b) = \frac{1}{4} (1, \sigma_{1z}) (1, -\sigma_{2z}) T_{\tau_1} T_{\tau_2} \times \\ \times (\exp\{2i\kappa^2 \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_1) \hat{\beta}_n(\tau_2) [\partial_{\rho}^2 + \partial_{\tau_1} \partial_{\tau_2}] D_0(\rho_{\tau_1 \tau_2}) + \\ + 2i\kappa^2 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_1) \hat{\beta}_n(\tau_2) \partial_{\tau_1} \partial_{\tau_2} D_0(\rho_{\tau_1 \tau_2}) \}) (\frac{1}{\sigma_{1z}} (\frac{1}{-\sigma_{2z}}),$$

$$/12/$$

заметим, что первый член в формуле /12/ равен

$$2 \mathbf{i} \kappa^{2} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \hat{\beta}_{n}(\tau_{1}) \hat{\beta}_{n}(\tau_{2}) \left(\partial_{\rho}^{2} + \partial_{\tau_{1}} \partial_{\tau_{2}} \right) \mathbf{D}_{0}(\rho_{\tau_{1}}\tau_{2}) =$$

$$= -2 \mathbf{i} \kappa^{2} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \beta_{n}(\tau_{1}) \beta_{n}(\tau_{2}) \delta^{(2)}(\vec{\mathbf{b}}_{\perp}) \delta(\tau_{1} - \tau_{2}) \delta(\tau_{1} + \tau_{2}) =$$

$$= -\mathbf{i} \kappa^{2} \hat{\beta}_{1n} \hat{\beta}_{2n} \delta^{(2)}(\vec{\mathbf{b}}_{\perp}) . \qquad /13/$$

Здесь $\hat{\beta}_{in}$ не зависит от τ_i ; (i=1,2). Учитывая соотношение /1O/ и равенство $\int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \partial_{\tau_1} \partial_{\tau_2} D_0(\rho_{\tau_1 \tau_2}) = 0$, имеем

$$T_{\tau_{1}} T_{\tau_{2}} \exp \{2i\kappa^{2} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \hat{\beta}_{m}(\tau_{1}) \hat{\beta}_{m}(\tau_{2}) \partial_{\tau_{1}} \partial_{\tau_{2}} D_{0}(\rho_{\tau_{1}}\tau_{2}) \} =$$

$$= \exp \{2i\kappa^{2} \hat{\beta}_{1m} \hat{\beta}_{2m} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \partial_{\tau_{1}} \partial_{\tau_{2}} D_{0}(\rho_{\tau_{1}}\tau_{2}) \} = I.$$

$$/14/$$

В результате амплитуда рассеяния нейтрона на нейтроне принимает вид

$$T_{nn}(s,t) = -2i s \bar{\psi}_{q_1} \bar{\psi}_{q_2} \int d\vec{b}_{\perp} e^{i\Delta \vec{b}_{\perp}} \times \\ \times \{(\cos[-\kappa^2 \delta^{(2)}(\vec{b}_{\perp})] - 1) - [\vec{\sigma}_1 \times \vec{n}]_z [\vec{\sigma}_2 \times \vec{n}]_z \sin[-\kappa^2 \delta^{(2)}(\vec{b}_{\perp})] \} \psi_{p_1} \psi_{p_2} .$$
 /15/

При получении формулы /15/ было учтено равенство $(\hat{\beta}_{1n}\hat{\beta}_{2n})^2 = 1$.

Если представить cos и sin в виде экспоненты, тогда нетрудно видеть, что /15/ выражается суммой интегралов /рассеяние вперед, $\Delta \stackrel{\sim}{=} 0$ / типа

$$\int_{0}^{\infty} \rho \,\mathrm{d}\rho \left[e^{\frac{\pm i\kappa^2 \,\delta^{(2)}(\vec{\rho})}{\rho}} - 1 \right]. \qquad /16/$$

Здесь имеем дело с $\delta^{(2)}$ -функцией /возникающей из-за

неперенормируемого взаимодействия ^{/9/} / под знаком экспоненты. Поэтому все дальнейшие вычисления необходимо проводить с регуляризацией. В приложении А вычисляется интеграл /16/, и оказывается, что он равен нулю после снятия регуляризаций. Этот результат довольно очевиден вследствие сильной осцилляции подынтегрального выражения.

Таким образом, амплитуда рассеяния, обусловленная только взаимодействием аномальных магнитных моментов двух нейтронов, в эйкональном приближении при асимптотике $s \rightarrow \infty$, $|t| \ll s$ равна нулю.

Отсюда во всех последующих вычислениях будем пренебрегать в экспоненте формулы /11/ вторым слагаемым, приводящим к δ -функции, вследствие сильной осцилляции.

в/ Рассмотрим рассеяние нейтрона на протоне. Тогда для Г_{пр}(b) имеем

$$\Gamma_{np} (b) = \frac{1}{4} (1, \sigma_{1z}) (1, -\sigma_{2z}) T_{\tau_1} T_{\tau_2} \times$$

$$\times (\exp\{2e\kappa \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_1) \partial_\rho D_0 (\rho_{\tau_1 \tau_2}) + /17/$$

$$+ 2i\kappa \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_m(\tau_1) \hat{\beta}_m(\tau_2) \partial_{\tau_1} \partial_{\tau_2} D_0 (\rho_{\tau_1 \tau_2}) \} (\frac{1}{\sigma_{1z}}) (\frac{1}{-\sigma_{2z}}) .$$

Очевидно, T_{τ_2} - упорядоченная экспонента совпадает с обычной из-за соотношения /10/, т.е. $\beta_{m}(\tau_2)$ не зависит от τ_2 . Тогда второй член в экспоненте формулы /14/ равен нулю благодаря интегрированию по τ_2 от -∞ до +∞.Следовательно /см. /13//,

$$\Gamma_{\mathbf{np}}(\mathbf{b}) = \frac{1}{4} (1, \sigma_{1z}) (1, -\sigma_{2z}) T_{\tau_1} \times \\ \times (\exp\{2 \operatorname{e} \kappa \int_{-\infty}^{\infty} d\tau_1 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_{\mathbf{n}}(\tau_1) \partial_{\rho} D_0(\rho_{\tau_1}, \tau_2)\}) (\frac{1}{\sigma_{1z}}) (\frac{1}{-\sigma_{2z}}) =$$

$$= \exp\{i[\vec{\sigma}_1 \times \vec{n}]_z \chi_1(b)\}.$$
 /18/

В результате для амплитуды рассеяния нейтрона на протоне получим следующее эйкональное представление:

$$T_{np}(s,t) = -2i s \bar{\psi}_{q_1} \bar{\psi}_{q_2} \int d\vec{b}_{\perp} e^{i\vec{\Delta}\vec{b}_{\perp}} \{e^{i\vec{\sigma}_1 \times \vec{n}}\}_z \chi_1(b) = \frac{e\kappa}{2\pi} \partial_{\rho} K_0(\mu |\rho|), \quad |b| = \rho.$$

$$(19)$$

Интегрируя в формуле /19/ по угловой переменной, имеем:

$$T_{np}(s,t) = \psi_{q_1} \psi_{q_2} [f_0(s, \Delta) + i\sigma_{1y} f_1(s, \Delta)] \psi_{p_1} \psi_{p_2}, \qquad /20/$$

где

$$f_{0}(\mathbf{s}, \Delta) = -4\pi i \mathbf{s} \int_{0}^{\infty} \rho d\rho J_{0}(\Delta \rho) [\cos \chi_{1} - 1],$$

$$f_{1}(\mathbf{s}, \Delta) = -4\pi \mathbf{s} \int_{0}^{\infty} \rho d\rho J_{1}(\Delta \rho) \sin \chi_{1}.$$

Здесь $f_0(s,\Delta)$ и $f_1(s,\Delta)$ описывают процессы без переворота и с переворотом спина соответственно.

с/ Рассмотрим рассеяние протона на протоне. Для этого представим І_{ор}(b) в виде

$$\Gamma_{pp}(b) = \frac{1}{4} (1, \sigma_{1z}) (1, -\sigma_{2z}) \Gamma_{pp}^{*}(b) (\frac{1}{\sigma_{1z}}) (\frac{1}{-\sigma_{2z}}), \qquad /21/$$

где $\Gamma_{np}^{*}(b)$ определяется формулой

$$\Gamma_{pp}^{*}(\mathbf{b}) = \operatorname{T}_{\tau_{1}} \operatorname{T}_{\tau_{2}} (\exp\{2 \operatorname{ex} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \left[\hat{\beta}_{n}(\tau_{1}) - \hat{\beta}_{n}(\tau_{2}) \right] \partial_{\rho} \operatorname{D}_{0}(\rho_{\tau_{1}}\tau_{2})$$

$$+ 2 \operatorname{i} \kappa^{2} \int_{-\infty}^{\infty} d\tau_{1} \int_{-\infty}^{\infty} d\tau_{2} \beta_{m}(\tau_{1}) \beta_{m}(\tau_{2}) \partial_{\tau_{1}} \partial_{\tau_{2}} \operatorname{D}_{0}(\rho_{\tau_{1}}\tau_{2}) \}) .$$

$$/ 22/$$

После распутывания $\beta_{\ell}(\tau_i)$ ($\ell = n, m; i = 1, 2$) - матриц получим следующее выражение /см. приложение Б/:

$$\Gamma_{pp}^{*}(\mathbf{b}) = \sum_{\ell_{1}=0}^{\infty} \sum_{\ell_{2}=0}^{\infty} \frac{(2 \exp \beta_{1n})^{\ell_{1}}}{\ell_{1}!} \frac{(-2 \exp \beta_{2n})^{\ell_{2}}}{\ell_{2}!} \times \sum_{-\infty}^{\infty} d\xi_{1} \dots \int_{-\infty}^{\infty} d\xi_{\ell_{1}} \prod_{\mu_{1}=1}^{\ell_{1}} \hat{\Sigma}_{0}^{*}(\rho, \xi_{\mu}) \int_{-\infty}^{\infty} d\eta_{1} \dots \int_{-\infty}^{\infty} d\eta_{\ell_{2}} \prod_{\mu_{2}=1}^{\ell_{2}} \hat{\Sigma}_{0}^{*}(\rho, \eta_{\mu_{2}}) \times \sum_{-\infty}^{\ell_{2}} \frac{1}{\ell_{2}} \sum_{\mu_{2}=1}^{\ell_{2}} \hat{\Sigma}_{0}^{*}(\rho, \eta_{\mu_{2}}) \times \sum_{-\infty}^{\ell_{2}} \frac{1}{\ell_{2}} \sum_{\mu_{2}=1}^{\ell_{2}} \hat{\Sigma}_{0}^{*}(\rho, \eta_{\mu_{2}}) \times \sum_{\mu_{2}=1}^{\ell_{2}} \hat{\Sigma}_{0}^{$$

$$\times \exp\{8i\kappa^{2}(-1)^{\mu_{1}+\mu_{2}}\hat{\beta}_{1m}\hat{\beta}_{2m}\hat{\Sigma}_{0}(\rho,\xi_{\mu_{1}},\eta_{\mu_{2}})\}, \qquad /23/$$

где

$$\begin{split} & \mathfrak{D}_{0}^{*}(\rho,\,\xi_{\mu_{1}}) = \int_{-\infty}^{\infty} \mathrm{d}\tau_{2}\,\partial_{\rho}\,\mathsf{D}_{0}(\rho,\,\tau_{2}^{},\,\xi_{\mu_{1}}^{})\,,\\ & \mathfrak{D}_{0}^{*}(\rho,\,\eta_{\mu_{2}}^{}) = \int_{-\infty}^{\infty} \mathrm{d}\tau_{1}\partial_{\rho}\,\mathsf{D}_{0}(\rho\,,\,\tau_{1}^{},\,\eta_{\mu_{2}}^{})\,. \end{split}$$

Если представить

$$\mathcal{D}_{0}(\rho, \xi, \eta) = \frac{i}{(2\pi)^{2}} \left[\frac{1}{\rho^{2} - \xi \eta} - i \pi \delta \left(\rho^{2} - \xi \eta \right) \right] ,$$

то δ -функцией под знаком экспоненты формулы /23/ можно пренебречь вследствие сильной осцилляции экспоненты $\exp \{i\delta(\rho^2 - \xi\eta)\}/см.$ приложение А/.

Таким образом, оставшееся выражение будет конечным /11,12/, т.е. в рамках эйконального приближения при асимптотике s→∞ проблема перенормировки не возникает.

В заключение приведем амплитуду рассеяния, справедливую в первых двух порядках разложения по к. Для этого пренебрежем экспоненциальным множителем в /23/, в результате получим:

$$\Gamma_{pp}(b) = \frac{1}{4} (1; \sigma_{1z}) (1; -\sigma_{2z}) \times \\ \times \exp\{\frac{\kappa e}{2\pi} [\hat{\beta}_{1n} - \hat{\beta}_{2n}] \partial_{\rho} K_{0} (\mu |\rho|) \{ (\frac{1}{\sigma_{1z}}) (\frac{1}{-\sigma_{2z}}) .$$
 /24/

После подстановки /24/ в /5/ и некоторых несложных вычислений для амплитуды рассеяния протона на протоне имеем

$$T(s,t) = \overline{\psi}_{q_2} \overline{\psi}_{q_1} \{f_0(s,\Delta) + f_1(s,\Delta,\sigma_1,\sigma_2) + f_2(s,\Delta,\sigma_1,\sigma_2)\} \psi_{p_1} \psi_{p_2} / 25/$$

где $f_0(s,\Delta)$ - амплитуда рассеяния без переворота спина,

$$f_0(s,\Delta) = -2i\pi s I_1 \times I_2 \int_0^\infty \rho d\rho J_0(\Delta \rho) \{e^{-1\chi_0} [\cos \chi_2 + 1] - 2\}; /26/$$

f $_1({\bf s}\,,\!\Delta,\sigma_1,\sigma_2)$ - амплитуда рассеяния с однократным переворотом спина,

$$f_{1}(\mathbf{s}, \Delta, \sigma_{1}, \sigma_{2}) = 2i\pi \mathbf{s} [\sigma_{1y} \times I_{2} - I_{1} \times \sigma_{2y}] \times /27 / \\ \times \int_{0}^{\infty} \rho d\rho J_{1}(\Delta \rho) e^{i\chi_{0}} \sin \chi_{2} ,$$

 $f_2(s, \Delta, \sigma_1, \sigma_2)$ - амплитуда рассеяния с двухкратным переворотом спина,

$$f_{2}(s, \Delta, \sigma_{1}, \sigma_{2}) = 2i\pi s \sigma_{1x} \times \sigma_{2x} \int_{0}^{\infty} \rho d\rho e^{i\chi_{0}} [\cos\chi_{2} - 1] \times \\ \times [J_{0}(\Delta\rho) + \frac{J_{1}(\Delta\rho)}{\Delta\rho} - J_{2}(\Delta\rho)] + /28/ \\ + 2i\pi s \sigma_{1y} \times \sigma_{2y} \int_{0}^{\infty} \rho d\rho e^{i\chi_{0}} [\cos\chi_{2} - 1][-\frac{J_{1}(\Delta\rho)}{\Delta\rho} + J_{2}(\Delta\rho)].$$

Здесь используется обозначение

$$\chi_{2}(\rho) = 2\chi_{1}(\rho) = \frac{e\kappa}{\pi} \partial_{\rho} K_{0}(\mu | \rho |) .$$
 (29/

Авторы выражают глубокую признательность Б.М.Барбашову, М.К.Волкову, С.П.Кулешову, В.В.Нестеренко, А.Т.Филиппову за плодотворные обсуждения и ценные замечания.

Приложение А

Здесь вычислен интеграл /16/

$$A = \int_{0}^{\infty} \rho \, d\rho \, \left[\, e^{\pm i \kappa^2 \, \delta^{(2)}(\vec{\rho})} - 1 \, \right] \, . \qquad (A.1/4)$$

В экспоненте содержится $\delta^{(2)}(\vec{\rho})$ -функция, которая возникает из-за неперенормируемого взаимодействия. Поэтому необходимо ввести регуляризацию. В данном случае

$$\delta^{(2)}(\vec{\rho}) = \lim_{a \to 0} \frac{1}{2\pi} \int_{0}^{\infty} k dk e^{-a\rho^{2}} J_{0}(k\rho) =$$
$$= \lim_{a \to 0} \frac{1}{4\pi a} e^{-\frac{\rho^{2}}{4a}}.$$
(A.2/

После подстановки /А.2/ в /А.1/ и замены переменной интегрирования $e^{-\frac{\rho^2}{4a}} = t$ получим

$$A = \lim_{a \to 0} 2a \int_{0}^{\infty} \frac{dt}{t} \left[e^{\frac{t}{2} \frac{i\kappa^2}{4\pi a}} - 1 \right] =$$

$$= \lim_{a \to 0} 2a \{ E_i \left[\pm \frac{i\kappa^2}{4\pi a} \right] - \ln \left[\frac{i\kappa^2}{4\pi a} \right] - C \} = 0,$$

где С - постоянная Эйлера.

Приложение Б

В этом приложении рассматриваем переход от T_{τ_i} (i = 1,2) упорядоченной экспоненты /22/ к обычному выражению /"распутать" $\hat{\beta}_{\ell}(\tau_i)$ ($\ell = n, m; i = 1, 2$) матрицы, по терминологии Фейнмана /15//. Для этого введем обозначения

$$\begin{aligned} & \widehat{\mathbb{D}}_{0}^{*}(\rho,\tau_{i}) = \int_{-\infty}^{\infty} d\tau_{i} \frac{\partial}{\rho} \underbrace{\mathbb{D}}_{0}(\rho_{\tau_{k}}\tau_{i}), \quad (i \neq k; i, k = 1, 2), \quad /\mathbf{b} \cdot 1/\\ & \widehat{\mathbb{D}}_{0}^{**}(\rho,\tau_{2}) = \int_{-\infty}^{\infty} d\tau_{1} \hat{\beta}_{m}(\tau_{1}) \frac{\partial}{\partial \tau_{1}} \underbrace{\mathbb{D}}_{0}(\rho_{\tau_{1}}\tau_{2}) \cdot \cdot \quad /\mathbf{b} \cdot 2/ \end{aligned}$$

В этих обозначениях формула /22/ принимает вид

$$\begin{split} & \Gamma_{pp}^{*} (\mathbf{b}) = \mathbf{T}_{\tau_{1}} \left(e^{\frac{2e\kappa}{\int} d\tau_{1} \hat{\beta}_{n}(\tau_{1}) \hat{\Sigma}_{0}^{*}(\rho, \tau_{1})} \mathbf{T}_{\tau_{2}} \times \right. \\ & \left. - \frac{2e\kappa}{\int} d\tau_{2} \hat{\beta}_{n}(\tau_{2}) \hat{\Sigma}_{0}^{*}(\rho, \tau_{2}) + 2\kappa^{2} \int d\tau_{2} \hat{\beta}_{m}(\tau_{2}) \partial_{\tau_{2}} \hat{\Sigma}_{0}^{**}(\rho, \tau_{2}) \right. \\ & \times \left[e^{-\frac{2\kappa}{2} \int d\tau_{2} \hat{\beta}_{n}(\tau_{2}) \hat{\Sigma}_{0}^{*}(\rho, \tau_{2}) + 2\kappa^{2} \int d\tau_{2} \hat{\beta}_{m}(\tau_{2}) \partial_{\tau_{2}} \hat{\Sigma}_{0}^{**}(\rho, \tau_{2}) \right] \,. \end{split}$$

Переход от T_{τ_1} , T_{τ_2} упорядоченных экспонент к обычным выражениям совершается двумя последовательными шагами, сначала T_{τ_1} и затем T_{τ_2} . Используя выражение $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, запишем: $-2\kappa e \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_2) \hat{T}_0^*(\rho, \tau_2) + 2i\kappa^2 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_2) \partial_{\tau_2} \hat{T}_0^{**}(\rho, \tau_2)$] = $T_{\tau_2} [e^{-2\kappa e \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_2) \hat{T}_0^*(\rho, \tau_2) + 2i\kappa^2 \int_{-\infty}^{\infty} d\tau_2 \hat{\beta}_n(\tau_2) \partial_{\tau_2} \hat{T}_0^{**}(\rho, \tau_2)$] = $= T_{\tau_2} \sum_{l=0}^{\infty} \sum_{l_2=0}^{\infty} \frac{(-2e\kappa)^{l_1}}{l_1!} \frac{(2i\kappa^2)^{l_2}}{l_2!} \int_{-\infty}^{\infty} d\xi_{l_1} \dots \int_{-\infty}^{\infty} d\xi_{l_1} \int_{-\infty}^{\infty} d\eta_{l_2} \times \frac{l_1}{\mu_1} \frac{l_2}{\mu_1} \int_{0}^{\infty} (\rho, \xi_{\mu_1}) \partial_{\eta_{\mu_2}} D_0^{**}(\rho, \eta_{\mu_2}) \hat{\beta}_n(\xi_{\mu_1}) \hat{\beta}_m(\eta_{\mu_2})$. Упорядочение матрицы $\hat{\beta}_{\ell}(\tau_2)$, $(\ell = n, m)$, если она удовлетворяет условию антикоммутации /9/, может быть произведено следующим образом.

Чтобы перенести оператор $\hat{\beta}_n$, зависящий от параметра /времени/ ξ_{μ_1} , налево, надо прокоммутировать его со всеми операторами, зависящими от более поздних времен. При этом с оператором $\hat{\beta}_n$ он коммутирует, а с $\hat{\beta}_n$ - антикоммутирует. Это означает:

где

$$\epsilon(\mathbf{x}) = \begin{cases} 1, \ \mathbf{eсли} \ \mathbf{x} > 0; \\ & \ddots \\ -1, \ \mathbf{eслu} \ \mathbf{x} < 0. \end{cases}$$

Подставляя /Б.5/ в /Б.4/, получим

$$\sum_{\ell_{1}=0}^{\infty} \sum_{\ell_{2}=0}^{\infty} \frac{(2 \exp \hat{\beta}_{1n})^{\ell_{1}}}{\ell_{1}!} \frac{(-2i\kappa^{2}\hat{\beta}_{1m})^{\ell_{2}}}{\ell_{2}!} \int_{-\infty}^{\infty} d\xi_{1} \dots \int_{-\infty}^{\infty} d\xi_{\ell_{1}} \int_{-\infty}^{\infty} d\eta_{1} \dots \int_{-\infty}^{\infty} d\eta_{\ell_{2}} \times \prod_{\mu_{1}=1}^{\ell_{1}} \frac{\ell_{2}}{\mu_{2}=1} \sum_{0}^{*} (\rho, \xi_{\mu_{1}}) \partial_{\eta_{\mu_{2}}} \sum_{0}^{*} (\rho, \eta_{\mu_{2}}) \epsilon(\xi_{\mu_{1}} - \eta_{\mu_{2}}) \cdot /\mathbf{b} \cdot \mathbf{b} / \mathbf{b} \mathbf{b} /$$

Проинтегрировав по $d\eta_i$ (i = 1, ..., ℓ_2), суммируем по ℓ_2 и получаем:

$$\sum_{\ell=0}^{\infty} \frac{(2e\kappa\hat{\beta}_{1n})^{\ell_{1}}}{\ell_{1}!} \int_{-\infty}^{\infty} d\xi_{1} \cdots \int_{-\infty}^{\infty} d\xi_{\ell_{1}} \prod_{\mu_{1}=1}^{\eta} D_{0}^{*}(\rho, \xi_{\mu_{1}}) \times \exp\{(-1)^{\mu_{1}+1} 4i\kappa^{2}\hat{\beta}_{1m} \mathfrak{L}_{0}^{**}(\rho, \xi_{\mu_{1}})\}.$$
 /**b**.7/

Полставляем /Б.7/ в /Б.3/ и распутываем Т₇₁ совершенно аналогичным путем, в результате получим окончательное выражение:

$$\Gamma_{pp}^{*}(\mathbf{b}) = \sum_{\ell_{1}=0}^{\infty} \sum_{\ell_{2}=0}^{\infty} \frac{(2e\kappa \hat{\beta}_{1n})^{\ell_{1}}}{\ell_{1}!} \frac{(-2e\kappa \hat{\beta}_{2n})^{\ell_{2}}}{\ell_{2}!} \times \\ \times \int_{-\infty}^{\infty} d\xi_{1} \dots \int_{-\infty}^{\infty} d\xi_{\ell_{1}} \prod_{\mu_{1}=1}^{\Pi} \hat{\Sigma}_{0}^{*}(\rho, \xi_{\mu_{1}}) \int_{-\infty}^{\infty} d\eta_{1} \dots \int_{-\infty}^{\infty} d\eta_{\ell_{2}} \prod_{\mu_{2}=1}^{\Pi} \hat{\Sigma}_{0}^{*}(\rho, \xi_{\mu_{2}}) \times \\ \times \exp \{8i\kappa^{2}(-1)^{\mu_{1}+\mu_{2}} - \hat{\beta}_{1n}\hat{\beta}_{2n}\hat{\Sigma}_{2n}\hat{\Sigma}_{-\rho}(\rho, \xi_{\mu_{1}}, \eta_{\mu_{2}})\}.$$
 /**b**.8/

/Б.8/

Литература

- 1. C.B.Chiu. Rev.Mod.Phys., 41, 640 /1969/.
- 2. J.D.Jackson. Rev.Mod.Phys., 42, 12 /1970/.
- 3. H.D.I.Abarbanel, G.Itzykson. Phys. Rev. Lett., 23. 53 /1969/.
- 4. Б. М. Барбашов, Д.И. Блохинцев, В.В. Нестеренко, В.Н.Первушин. ЭЧАЯ, 4, вып. 3, 623 /1973/; С.П.Кулешов, В.А.Матвеев, А.Н.Сисакян, М.А.Смондырев, А.Н. Тавхелидзе. ЭЧАЯ, 5, вып. 1. 1 /1974/.

- 5. M.Levy, J.Sucher. Phys. Rev., 186, 1656 /1962/.
- 6. F. Englert, P. Nicoletopoulos, R. Brout, G. Truffin. Nuovo Cimento, 64A, 561 /1969/.
- 7. S.J. Chang, S.Ma. Phys. Rev. Lett., 22, 1334 /1969/;
- Phys.Rev., 188, 1235 /1969/.
 8. H.Cheng, T.T.Wu. Phys.Rev.Lett., 22, 666, 1405 /1969/; Phys.Rev., 182, 1852, 1868, 1873, 1899 /1969/; Phys.Rev., 186, 1611 /1969/. 9. T.D.Lee, C.N.Yang. Phys.Rev., 128, 899 /1962/. 10. S.Okubo. Progr.Theor.Phys., 11, 80 /1954/.

- 11. M.K. Volkov. Ann. of Phys., 49, 202 /1968/.
- 12. А.Т.Филиппов. Сб. "Нелокальные, нелинейные и неренормируемые теории поля", стр. 133-155. ОИЯИ. Д2-7161, Дубна, 1973.
- 13. Нгуен Суан Хан, В.Н.Первушин. Препринт ОИЯИ. Р2-9355, Дубна, 1975.
- 14. В.Н.Первушин. ТМФ, 4, 28 /1970/; ТМФ, 9, 264 /1971/.
- 15. R.Feynman. Phys. Rev., 84, 108 /1951/.

Рукопись поступила в издательский отдел 2 декабря 1975 года.