

-236

Объединенный институт ядерных исследований дубна

P2-93-236

В.С.Барашенков, Л.Г.Левчук, А.Н.Соснин, С.Ю.Шмаков

ХАРАКТЕРИСТИКИ ЭЛЕКТРОЯДЕРНЫХ МИШЕНЕЙ, СОДЕРЖАЩИХ ВОДУ

Направлено в журнал «Атомная энергия»

введение

В [2] был рассмотрен вариант мишени электроядерной установки, содержащей воду в качестве теплоносителя, однако ряд эффектов (химическая связь атомов водорода в молекуле воды, тепловое движение атомов, энергетическая зависимость сечения в тепловой области) не были учтены.

Целью настоящей работы является выяснение влияния этих эффектов на характеристики электроядерного бридинга.

Тепловое движение атомов и молекул среды учитывалось в соответствии с распределением Максвелла — Больцмана.

Эффекты химической связи были учтены путем введения эффективной температуры $k\tilde{T} = 0,117$ эВ [1]. Это грубое приближение, но поскольку доля тепловых нейтронов в спектре сравнительно невелика (см. рис.1), то для расчета интегральных характеристик электроядерного бридинга нет необходимости в более точном рассмотрении, что подтверждается сравнением результатов расчета с [2].

Считалось, что сечения взаимодействия нейтронов с ядрами изменяются в тепловой области по закону 1/v. Исключение составляют сечения взаимодействия нейтронов с ядрами Pu²³⁹, имеющие резонансный характер в этом энергетическом интервале. Данные по сечениям для Pu²³⁹ взяты из библиотеки ENDL [3] и аппроксимированы полиномами.

Для удобства сравнения расчеты произведены для той же геометрии мишени, что и в работе [2]. Концентрации топлива и конструкционных материалов также соответствуют использованным в работе [2], однако в настоящей работе рассмотрено три варианта мишеней, отличающихся обогащением горючего (0,3% U²³⁵, 0,5% Pu²³⁹, 1,0% Pu²³⁹).

В численных расчетах использовались те же программы, что и в работе [2], при этом были внесены изменения, касающиеся вышеупомянутых эффектов взаимодействия низкоэнергетических нейтронов с ядрами мишени.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Результаты расчетов приведены в табл. 1, на рис.1—4. Видно, что наблюдается сильный рост числа захватов и делений, выхода нейтронов и теп-

Рис.1. Спектры нейтронов ($\tau \le 10,5$ МэВ) в мишени электроядерной установки с водяным теплоносителем и в мишени с натриевым теплоносителем и обогащением топлива 0,3% U^{235} [4]

ловыделения в мишени с увеличением обогащения мишени делящимися изотопами. Причиной этого является относительно мягкий спектр нейтронов (см. рис.1) в мишени, приводящий к интенсивному делению ядер U²³⁵

Рис.2. Тепловыделение в мишени, содержащей водяной теплоноситель в зависимости от обогащения топлива в мишени (α , %). Приводится тепловыделение за счет ионизации Q_{ion} , деления при энергии нейтронов $\tau \le 10,5$ МэВ Q_{LF} , деления при энергии нейтронов $\tau > 10,5$ МэВ Q_{HF} и полное тепловыделение Q. Данные приведены в пересчете на один первичный протон

(или Pu^{239}) вследствие значительного роста нейтронных сечений с уменьшением энергии. Так, полный выход нейтронов с увеличением обогащения от 0,3% U^{235} до 1,0% Pu^{239} возрастает примерно в 6 раз. При этом число

Рис. 3. Зависимость средних интегральных величин в мишени, содержащей водяной теплоноситель, от обогащения топлива в мишени U^{235} или $Pu^{239}(\alpha, \%)$. Данные приведены в пересчете на один первичный протон. n_{c6} — число захватов на ядрах U^{238} , n_{ff} — число делений на ядрах U^{235} (Pu^{239}), n_{cf} — число захватов на ядрах U^{235} (Pu^{239}), n_9 — чистый выход ядер Pu^{239} , $n_9 = n_{c6} - n_{cf} - n_{ff}$

Рис. 4. Спектр нейтронов с энергией $\tau \le 10,5$ МэВ, образуемых на каскадно-испарительной стадии. На один первичный протон приходится в среднем $\beta = 55,5$ таких нейтронов

Таблица 1. Характеристики б	ланкетов электроядерных установок,
содержащих воду	в качестве теплоносителя,

	0,3% U ²³⁵	0,5% Pu ²³⁹	1,0% Pu ²³⁹
Число захватов на ядрах U ²³⁸ , n _{c8}	$33,5 \pm 1,7$	77,0 ± 10,0	234,0 ± 75,0
Число захватов на ядрах U ²³⁵ (Pu ²³⁹), <i>n_{cf}</i>	$2,0 \pm 0,1$	$16,0 \pm 2,0$	$54,0 \pm 17,0$
Число делений ядер U ²³⁵ (Pu ²³⁹), <i>n_{ff}</i>	$8,5 \pm 0,6$	36,0 ± 7,0	108.0 ± 35.0
Чистый выход ядер Pu ²³⁹ , $n_9 = n_{c8} - n_{cf} (Pu^{239}) - n_{ff} (Pu^{239})$	$35,5 \pm 1,7$	25,0 ± 19,0	
Полное число захватов, n	49,6 ± 2,4	$110,0 \pm 14,0$	314,0 ± 100,0
Полное число делений, п	11,2 ± 0,7	42,0 ± 7,0	$155,0 \pm 50,0$
Число вылетевших нейтронов, n _{out}	$\textbf{2,3} \pm \textbf{0,2}$	$3,6 \pm 0,6$	19,0 ± 6,0
Полный выход нейтронов, $n = n_c + n_{out}$	52,0 ± 3,0	114,0 ± 15,0	333,0 ± 110,0
Тепловыделение, ГэВ/протон:			
Ионизация, Q _{ion}	$0,58 \pm 0,06$	$0,59\pm0,06$	$0,59\pm0,06$
Деление при т > 10,5 МэВ, Q _{HF}	$0,29\pm0,03$	$0,29 \pm 0,03$	0,29 ± 0,06
Деление при т < 10,5 МэВ, <i>Q_{LF}</i>	$1,90 \pm 0,13$	7,10 ± 1,30	26,0 ± 8,60
Полное тепловыделение. О	2.77 ± 0.22	8.0 ± 1.4	27.0 ± 9.0

при различных концентрациях делящихся изотопов (U²³⁵ или Pu²³⁹). Данные приводятся в пересчете на один первичный протон

Таблица 2. Сравнение двух вариантов расчета характеристик электроядерной мишени,

содержащей водяной теплоноситель (обогащение топлива 0,3% U ²	:35)
с учетом (I) и без учета (II) химической связи атомов	
в молекулах воды (данные взяты из [2]).	
Данные приведены в пересчете на один первичный протон	

· · ·	I	11
Число делений ядер U ²³⁵	8,5 ± 0,6	8,3 ± 1,0
Чистый выход Рu ²³⁹	$35,5 \pm 1,7$	$33,5 \pm 2,7$
Полный выход нейтронов, <i>п</i>	$52,0 \pm 5,0$	$46,2 \pm 3,7$
Тепловыделение за счет деления при т ≤ 10,5 МэВ, ГэВ	$1,90 \pm 0,13$	$1,90 \pm 0,24$
Полное тепловыделение, ГэВ	2,77 ± 0,22	$2,80 \pm 0,36$

захватов на делящихся ядрах $U^{235}(Pu^{239})$ увеличивается примерно в 20— 30, а на ядрах U^{235} — в 5—8 раз. Это приводит, в частности, к тому, что чистый выход ядер Pu^{239} с ростом обогащения несколько спадает.

На рис.4 приведен спектр нейтронов с $\tau < 10,5$ МэВ, образующихся на каскадно-испарительной стадии.

К сожалению, из-за больших статистических ошибок и их роста по мере увеличения концентрации ядер Pu²³⁹ оценить предельное накопление оказывается невозможным (см. рис.3 и габл.1).

Основной вклад в тепловыделение в мишени дает деление ядер при энергии нейтронов $\tau < 10,5$ МэВ. Общее же тепловыделение в расчете на один протон с энергией 1 ГэВ составляет от 3 ГэВ в случае обогащения 0,3% U²³⁵ до 27 ГэВ при обогащении 1,0% Pu²³⁹. Вклад от потерь энергии заряженными частицами в электромагнитных взаимодействиях и от высоко-энергетических делений в последнем случае оказывается пренебрежимо малым (см. табл.1 и рис.2).

Выше уже отмечалось, что в рассматриваемом случае учет химической связи атомов в молекулах воды достаточно производить лишь оценочно изза малой величины эффекта. Это демонстрирует табл. 2, где приводятся некоторые результаты расчета без учета химической связи [2]. Различие между результатами настоящего расчета и [2] оказывается незначительным.

ЗАКЛЮЧЕНИЕ

В настоящей работе при исследовании характеристик электроядерной мишени с водой в качестве замедлителя нейтронов учтены такие эффекты, как влияние химической связи атомов в молекулах воды, зависимость нейтронных сечений от энергии в тепловой области. Суммарный вклад этих эффектов в результаты расчета оказывается небольшим. Рассмотрены варианты с различным обогащением топлива делящимся изотопом.

Пользуемся случаем поблагодарить П.Л.Кириллова за обсуждения, в результате которых возникла тема данной работы.

Литература

- Спанье Дж., Гельбард Э. Метод Монте-Карло и задачи переноса нейтронов. М.: Атомиздат, 1972, с.212.
- 2. Соснин А.Н., Шмаков С.Ю., Левчук Л.Г. Электроядерная мишень с водой в качестве теплоносителя. Препринт ОИЯИ Р2-93-235, Дубна, 1993.

- 3. ENDF. Data Format and Procedures. BNL-NCS-50496, 1975.
- 4. Барашенков В.С., Соснин А.Н., Шмаков С.Ю. Зависимость характеристик электроядерного бридинга от примеси Pu²³⁹ и U²³⁵. Препринт ОИЯИ P2-91-422, Дубна, 1991.

Рукопись поступила в издательский отдел 25 июня 1993 года.