-242

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P2-91-242

1991

В.С.Барашенков, А.Н.Соснин, П.И.Тараненко*, С.Н.Федотов*

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НАВЕДЕННОГО _Y -ИЗЛУЧЕНИЯ В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ КОСМИЧЕСКИХ АППАРАТОВ. ВРЕМЕННАЯ ЗАВИСИМОСТЬ

*Московский инженерно-физический институт

Барашенков В.С. и др.

Математическое моделирование наведенного у-излучения в конструкционных материалах космических аппаратов. Временная зависимость

На основе модели межъядерных каскадов и программы расчета уизлучения наведенной активности проанализирована временная зависимость интенсивности у-фона, наведенного космическими лучами в конструкционных материалах AI, Ti, Fe, Cu, W, Pb и в одном из сплавов при различных длительностях пребывания на околоземной орбите (от суток до нескольких лет). Рассмотрено влияние радиационных поясов Земли. Приводится таблица у-излучателей, дающих существенный вклад при малых и больших длительностях полета.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод Е.И. Хижняк

Barashenkov V.S. et al. Mathematical Simulation of the Induced γ -radiation in Structural Materials of Spaceships. Time Dependence

Basing on an internuclear cascade model and a computer programme for induced γ -radiation activity calculation, the time-dependence of the γ -background intensitity, induced by cosmic radiation in structural materials AI, Ti, Fe, Cu, W, Pb and in one of the alloys at different periods of flight on a closeto-earth orbit (from 1 day to several years) is analysed. The influence of radiation belts of the Earth is considered. A table of γ -emitters, making the main contribution at short and long durations of the flight is presented.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1991

P2-91-242

P2-91-242

В нашей работе^{/I/} приведены рассчитанные методом Монте-Карло на основе модели межъядерных каскадов спектры у-излучения, инициированного в различных конструкционных материалах первичным космическим излучением (ПКИ), протонами Кжно-Атлантической аномалии (ЮАА) и нейтронами альбедо Земли. В продолжение этих исследований в настоящей работе приводятся данные по временной зависимости активационного

γ-фона в различных энергетических интервалах в диапазоне от 0,03 до IO MэB.

Метод расчета и все приближения те же, что и в работе/1/.

Зависимость от времени полета

Понятно, что при увеличении времени полета интенсивность наведенной *у*-активности должна возрастать с постепенным выходом ее на плато. Представление о том, как изменяется характер *у*-спектра при переходе от очень коротких к длинным экспозициям, можно получить из данных рис.5 работы^{/I/}. Более детальную информацию дает моделирование временной зависимости интенсивности *у*-издучения в отдельных энергетических интервалах.

Мы рассмотрели 5 таких интервалов: $\Delta E_{\chi}^{(n)} = 0,03-0,I; 0,I-03;$ 0,3-I; I-3; 3-IO MaB (n = I,2,...5). На рис.I-4 приведены суммарные интенсивности наведенной χ -активности для каждого из этих интервалов (возле каждой кривой указан соответствующий номер n) и полная интенсивность для интервала $\Delta E_{\chi} = 0,03-I0$ MaB (на рисунках ей соответствует номер 6). Все данные относятся к моменту времени "A" (см. рис.I в работе^{/I/}).

Из рисунков видно, что нарастание интенсивности \S - излучения во времени более заметно для мишеней среднего атомного веса - ті, Fe, Cu и их.сплава.В легком алюминии и тяжелых мишенях из вольфрама и свинца накопление наведенной активности происходит не столь динамично. Интенсивность возрастает в них, в основном, только в течение нескольких первых декад полета.

Такое различие динамики обусловлено различием радионуклидного состава продуктов активации. Последнее хорошо видно из таблицы,где приведены У-излучатели, дающие определяющий вклад в рассматриваемых интервалах $\Delta E_{\chi}^{(n)}$ для времен пребывания на орбите $\Delta t = I,30,365$ су-

Объслененный институт ческених иссленованая **GM5**MMOTEKA

ток. Указаны периоды полураспада нуклидов-излучателей, а их порядок в таблице соответствует весовому вкладу в χ -излучение для данного Δt и $\Delta E_{f}^{(n)}$. При этом величина этого вклада определяется нерассеянной компонентой излучения в энергетическом интервале $\Delta E_{f}^{(n)}$. Например, для алюминиевой мишени на рис. I χ -излучение в интервале $\Delta E_{f}^{(5)}$ определяется в основном нуклидами 16 N, 15 C и 22 F с периодами полураспада 7,2, 2,4 и 4,2 с. Понятно, что уже после нескольких минут полета активности этих нуклидов достигают насыщения, и далее уже не изменяются на протяжении 2000-суточного полета *).

Иная ситуация в интервале $\Delta E_3^{(4)} = I-3$ МэВ, где в течение первых десяти дней полета рост интенсивности обусловлен излучением ²⁴Na , а при дальнейшем увеличении времени полета все большую роль играет γ -излучение ²²Na , величина "фактора насыщения" (1-e^{- λ t}) у которого после 2000-суточного полета составляет еще только 0,77. В интервале $\Delta E_3^{(n)}$, n = I,2,3, ситуация аналогична $\Delta E_3^{(5)}$, однако эффект несколько "смазан" из-за вклада расселнного излучения долголивущих нуклидов ²²Na и ²⁴Na , что и обуславливает не- значительный рост интенсивности во времени.

В целом можно сказать, что в первых интервалах $\Delta E_r^{(n)}$ повеление кривых временной зависимости для всех материалов определяется соотношением рассеянных и нерассеянных компонентов и периодами полу-У-излучение которых дает в них вклад. Поведение распада изотопов, кривых в высокознергетических $\Delta E_{\chi}^{(4)}$ и ДЕ(5) определяется преимущественно нерассеянным издучением. Это иллюстрируют данные для железа и меди на рис.2. В интервалах $\Delta E_{\chi}^{(4)}$ и ДЕ(5) интенсивность у-излучения во время всего полета обусловлена, в основном, нерассеянными / -лучами таких долгоживущих радионуклидов, как ²⁴Mn ⁶⁵Zn, ⁵⁶Co, ⁵⁸Co, ⁴⁸V и др. Рассеянная компонента этих излучателей, в основном определяет динамику роста интенсивности в интервале $\Delta E_{\chi}^{(1)}$

Влияние аномалии на интенсивность наведенного ў-фона обусловлено, главным образом, более интенсивным (по сравнению с ПКИ) накоплением в облучаемом материале средне- и долгоживущих радионуклидов.

*) При прохождении зоны КАА, где интенсивность протонной компоненты возрастает на несколько порядков, скорости образования нуклидов, а следовательно, и их активности также увеличиваются. В момент времени "А" мишени в течение 305 минут после выхода из аномалии подвергаются воздействию только протонов ПКИ. В этом случае ЮАА на поведение короткоживущих нуклидов не влияет.

Рис.3. То же, что на рис. І. Материал - сплав Аl, Ті, Fe, Cu .

Таблица

Мате-	۸t.	ΔE ⁽ⁿ⁾ , MэB										
риал	сут			······································	•							
		0.03-0.1	0.1-0.3	0.3-1.0	1.0-3.0	>3.0						
		²² Mg 3.84c	¹⁹ 0 27.0c	^{26m} Al 6.36c	²⁴ Na 15.04	¹⁶ N 7.2c						
	1	²⁵ Ne 0.6c	²⁷ мд 9.4м	¹⁸ F 1.834 ²¹ F 4.3c	²⁰ F 10.98c ¹⁹ 0 27.0c	¹⁵ C 2.4c ²² F 4.2c						
Al	30	— n、—	n		²⁴ Na 15.04 ²⁰ F 10.98c ²² Na 2.60r	_ "_						
-	365	- " -	- " -		²⁴ Na 15.04 ²² Na 2.60r ²⁰ F 10.98c	_ "						
. ,		28	47	45	44 50 3 931	15 _C 2.4C						
	1	⁴⁴ ті 47.37r	46mSc 18.7 44mSc 2.44	$\begin{array}{c} 48 \\ 5 \\ 43 \\ K \\ 2.34 \end{array}$	$ \begin{array}{c} \text{SC } 3.934 \\ 48_{\text{SC}} 1.82g \\ 44m_{\text{SC}} 2.44g \end{array} $	³⁷ s 5.05м ^{30m} Al 1.2м						
			47	45	44							
Ti	30	- " -	4^{4m} sc 3.34g 4^{4m} sc 2.44 4^{8} sc 1.82	4^{46} SC 83.83g 4^{48} V 15:97g	⁴⁶ sc 83.83 ⁴⁸ sc 1.82	_ " _						
	365	⁴⁴ Ti 47.37 ²⁸ Mg 20.93	_ n _	⁴⁶ sc 83.83g ⁴⁵ Ti 3.084 ⁴⁸ V 15.97g	$\begin{array}{r} 46_{\rm Sc} 83.83_{\rm G} \\ 44_{\rm Sc} 3.93_{\rm G} \\ 48_{\rm V} 15.97_{\rm G} \end{array}$	_ " _						
Fe	1	⁵⁵ Co 17.54 ⁴⁹ Cr 42.1m ⁵⁶ Cr 5.94	⁵² Fe 8.2 ⁴⁷ Sc 3.3 ^{46m} Sc 18.	$7c^{55}CO 17.54$ 4 $c^{56}Mn 2.58$ 7 $c^{45}Ti 3.08$	⁵² Mn 5.59 5 ⁵ Co 17.54 ^{52m} Mn 21.1	¹⁶ N 7.2c 4 ⁵⁶ co 78.8g м ³⁷ S 5.05м						

		•									And a second second second			· · · ·
Fe	30	_ " _	⁵² Fe 8.274 ⁴⁷ Sc 3.34g ⁵⁷ Co 271.8g	⁵² Mn 5.59g ⁵⁶ Co 78.89 ⁵⁵ Co 17.544	⁵² Mn 5.59g ⁵⁶ Co 78.8g ⁴⁸ V 15.97g	⁵⁶ co 78.8g ¹⁶ N 7.2c ³⁷ S 5.05 <i>r</i>	7	С П Л В	`365	- " -	⁴⁷ sc 3.34 ⁵⁷ co 271.8g ⁶¹ Cu 3.414	⁵⁶ Co 78.89 ⁵⁴ Mn 312.59 ⁴⁶ Sc 83.839	²⁴ Na 15.04 ⁵⁶ Co 78.8g ⁴⁶ Sc 83.83	- " -
	365	⁵⁵ Co 17.544 ⁵⁵ Fe 2.744 ⁴⁹ Cr 42.1m	"	⁵⁶ Co 78.8g ⁵⁴ Mn 312.5g ⁵² Mn 5.59g	⁵⁶ co 78.80g ⁵² Mn 5.59g ⁴⁸ V 15.97g	_ " _			1	¹⁷⁴ Ta 72.0m ¹⁸³ Re 70.0g ¹⁷² Ta 36.8m	^{182m} Re 12.74 ¹⁷⁷ W 2.254 ¹⁷⁴ Ta 72.07 182m	¹⁸¹ Re 20.04 177 _W 2.254 ¹⁸⁰ Re 2.34m	¹⁷⁶ Ta 8.084 ^{182m} Re 12,74 ¹⁷⁷ W 2.254	¹⁷⁰ Lu 2.0g 1 ⁷⁸ Re 13.2m 162 _{Tm} 21.7m
	1	⁶¹ Cu 3.414 ⁶¹ Co 1.654 ⁶² 77 0.26	61_{Cu} 3.414 62_{Zn} 9.264 52_{To} 8.270	64_{Cu} 12.714 62_{Cu} 9.74 61_{Cu} 3.41	⁶¹ Cu 3.414 ⁵⁷ Ni 1.50g	³⁷ s 5.05м ²⁴ Al 2.1с ⁵⁶ са 78 86		W	30	¹⁷⁸ Ta 9.31 _M ¹⁷⁴ Ta 72.0r	Re 12.74 ¹⁷³ Hf 24.04 ¹⁷⁷ W 2.544	Re 20.04 ¹⁸⁴ Re 38.0g ¹⁷¹ Lu 8.22g	Re 2.67 ₃ 176 _{Ta} 8.084 177 _W 2.254	
Cu		_ " _	⁶¹ Cu 3.414 ⁵⁷ Co 271.89	⁶⁴ Cu 12.714 ⁶² Cu 9.74m	61 _{Cu} 3.414 57 _{Ni} 1.509	³⁷ s 5.05м ⁵⁶ со 78.89			365	- " <u>-</u>	^{182m} Re 12.74 ¹⁷³ Hf 24.04 ¹⁸³ Re 70.0g	¹⁸¹ Re 20.04 ¹⁸⁴ Re 38.0g ¹⁷⁵ Hf 70.0g	¹⁸² Re 2.67g ¹⁷⁶ Ta 8.084 ^{182m} Re 12.7	
	365	-, " -,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	¹⁹⁷ нд 2.67д ¹⁶⁵ ҮЬ 9.9м ¹⁷⁴ та 72.0м	²⁰³ РЬ 2.17g ¹⁹⁸ РЬ 2.44 ²⁰⁰ РЬ 21.54	²⁰⁴ Вј 11.24 ²⁰² Ві 1.794 ²⁰¹ РЬ 9.44	²⁰³ Ві 11.764 ^{207m} РЬ 0.8с ²⁰⁰ ТІ 26.1ч	¹⁷⁸ Re 13.2 <i>M</i> ¹⁶² Tm 21.7 <i>M</i> 170 _{Lu} 2.0 _g			
-		⁶¹ Cu 3.414	⁵⁶ Ni 6.10g ⁶¹ Cu 3.414	⁶² Cu 9.74m ⁴⁵ Ti 3.084	⁵⁷ Ni 1.50g 24 Na 15.04	²⁴ Al 2.1c		Pb	30	¹⁹⁷ нд 2.67у ¹⁶⁵ хь 9.9м ¹⁸³ Re 70.0g	- 19	²⁰⁴ Bi 11.244 ²⁰⁶ Bi 6.24g ²⁰² Bi 1.794	²⁰⁵ Bi 15.31g ²⁰⁶ Bi 6.24g ²⁰⁰ Tl 26.14	¹⁷⁰ Lu 2.0g ¹⁷⁸ Re 13.2m ¹⁶² Tm 21.7m
С П Л В	1	⁶² Zn 9.264	⁴⁷ SC 3.34g ¹⁹ O 27.0c	64 _{Cu} 12.714	24 Sc 3.934 20 F 10.98c 24 N2 15 0	13 C 2.4c 37 s 5.05c 56 CO 78 8			365	¹⁹⁷ Hg 2.67g ¹⁸³ Re 70.0g 165 _{Wb} 0.0	²⁰³ рь 2.17g ¹⁹⁸ рь 2.4ч 206р. с.24		- " -	_ n _
	30	- " -	⁶¹ Cu 3.414 ^{44m} sc 2.449	⁴⁵ Ti 3.08 ⁵² Mn 5.59	$52_{Mn} 5.59_{g}$	^{16}N 7.2c ^{15}C 2.4c		 	 •	10 9.9M	DI 0.24g			

8

9

Влияние радиационных поясов земли

На рис. 5-8 показано изменение интенсивности навеленной / -активности при пересечении космическим аппаратом зоны ЮАА в течение пвух начальных суток полета. Данные приведены для пяти интервалов A E(n) и суммарно для $\Delta E_{\chi}^{(6)} = 0,03-I0$ МэВ.

Характер кривых обусловлен спецификой / -излучателей, образуюшихся под действием протонов ПКИ и ЮАА. В энергетических интервалах. где У-излучение определяется, в основном, короткоживущими нуклидами (см. табл.), имеет место резкое возрастание интенсивности при входе спутника в аномалию и столь же быстрый ее спал при его выхоле. как это видно на примере А1 Ti NDM n=5. В тех случаях. И Y-излучение определяют средне- и долгоживущие нуклиды, набкогла людаются ярко выраженные фоонты нарастания и спада интенсивности в моменты входа и выхода из аномалии.

Обращает на себя внимание плавный ход временной зависимости высокоэнергетического /-излучения (n = 5) в свинцовой мишени. Интенсивные протонные потоки ЮАА в этом случае не сказываются на Y-фоне. Это связано с тем, что у-лучи с Е > 3 МэВ в свинцовой мишени испускают лишь ядра 170 Lu . 178 Re и 162 Tm. которые образуются только под действием высокоэнергетических протонов спектра ШКИ. Унергии протонов ЮАА недостаточны для образования фрагментов и остаточных ядер с массами A=162-I78 и зарядами Z = 69 -75. Однако низкознергетическое излучение ЮАА рождает такие ядра в вольфрамовой мишени. и их ξ -излучение является определяющим в $\Delta E_{V}^{(5)}$.

Литература

I. Барашенков В.С. и др. СИЯИ, P2-91-241. Дубна, 1991.

Рукопись поступила в издательский отдел 29 мая 1991 года.