91-241

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P2-91-241

1991

В.С.Барашенков, А.Н.Соснин, П.И.Тараненко\*, С.Н.Федотов\*

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НАВЕДЕННОГО у -ИЗЛУЧЕНИЯ В КОНСТРУКЦИОННЫХ МАТЕРИАЛАХ КОСМИЧЕСКИХ АППАРАТОВ

\*Московский инженерно-физический институт

Барашенков В.С. и др.

Математическое моделирование наведенного у-излучения в конструкционных материалах космических аппаратов

Монте-Карловская модель межъядерных каскадов, дополненная программой расчета спектров у-излучения возбужденных послекаскадных ядер, используется для исследования характеристик наведенной уактивности в конструкционных материалах AI, Ti, Fe, Cu, W, Pb и в одном из сплавов, подвергающихся на околоземных орбитах воздействию космических частиц и альбедных нейтронов. Учтено влияние Южно-Атлантической аномалии. Рассчитаны спектральные распределения активационного у-излучения. Показано, что наведенная радиоактивность сравнима, а в ряде энергетических диапазонов превышает фоновое у-излучение на орбите.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1991

Перевод Е.И.Хижняк

Barashenkov V.S. et al. Mathematical Simulation of the Indiced  $\gamma$ -Radiation in Structural Materials of Spaceships

A Monte-Carlo model of internuclear cascades, supplemented with a programme calculating the  $\gamma$ -radiation spectra, emitted by excited aftercascade nuclei is used to investigate characteristics of induced  $\gamma$ -activity in structural materials AI, Ti, Fe, Cu, W, Pb and in one of the alloys exposed to the influence of cosmic particles and albedo neutrons on close-to-earth orbits. The influence of the South-Atlantic anomaly is considered. Spectral distributions of activational  $\gamma$ -radiation are calculated. It is shown that the induced radioactivity is comparable and in some of the energy intervals even exceeds the background  $\gamma$ -radiation on the orbit.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1991

P2-91-241

P2-91-241

Космические аппараты на околоземной орбите и установленная на них научная аппаратура непрерывно подвергаются воздействию внешнего космического излучения. При проведении на околоземных орбитах спектрометрических исследований в области энергий у-квантов до IO МэВ наряду с диффузным космическим фоном и атмосферными альбедными у-квантами необходимо учитывать также фон, создаваемый у-излучением активированных ядер, образующихся при взаимодействии с деталями спектрометров и конструктивными материалами самих космических аппаратов высокоэнергетических частиц, протонов и многозарядных ионов первичного космического излучения (ПКИ), излучения Южно-Атлантической аномалии (ЮАА) и нейтронов альбедо Земли. Этот фон существенно ограничивает чувствительность у-спектрометров, определяет радиационную обстановку на борту космического аппарата, поэтому его прогнозирование и поиски путей его уменьшения являются весьма актуальной задачей.

Одним из возможных путей снижения нежелательного фонового  $\gamma$  – излучения является соответствующий подбор конструкционных материалов спектрометров и космических аппаратов, которые обладали он низким уровнем наведенной радиационной  $\gamma$  – активности в интересующем исследователя диапазоне  $\gamma$  –излучения. Такой подход требует подробных сведений о характеристиках активационного  $\gamma$  –фона в широком энергетическом диапазоне и об их зависимостях от параметров орбити и времени пребывания на ней.

Прогнозирование наведенной радиоактивноюти в различного рода де текторах достаточно детально обсуждалось в литературе (см.работи/1-6/ где можно найти дальнейшую библиографию). Хуже обстоит дело с конструкционными материалами космических аппаратов и спектрометрических приборов. Наибольшего внимания здесь заслуживает работа , в которой приведены результаты расчетов активации протонами ПКИ и излучением радиационных поясов Земли конструкционных материалов на основе сплава А1, , а также рассмотрен Х -фон космических кораблей много-Ti д Fe и кораблей типа Space Shuttle. целевого назначения MMS Проблеме прогнозирования наведенного , у фона в коллиматорах на основе свинца. и вольфрама посвящена работа<sup>/6/</sup>. Некоторне данные об активации конст-рукционных материалов опубликованы в работах<sup>/9,10/</sup>, а также в работе , где рассчитываются дозовые характеристики на околоземных орбитах, в том числе и от материалов космических аппаратов. Однако этих

> Озьсявненцый институт влерямх исследованой Быблиотена

данных недостаточно для решения широкого круга возникающих на практике задач, связанных с обнаружением и регистрацией у-источников низкой интенсивности в условиях высокого фона.

Поскольку непосредственное экспериментальное исследование широкого круга материалов представляет определенные трудности, основным подходом к этой проблеме в настоящее время является математическое моделирование межъядерных каскадов, инициируемых в материалах космическим и альбедным излучением, с последующим расчетом у -излучения от большого числа образующихся при этом возбужденных ядер, претерпевающих серию «-,  $\beta^{\pm}$  -распадов и реакций захвата электрона.

Целью нашей работы является исследование таким методом характеристик у -излучения наведенной активности для наиболее часто используемых материалов Al, Ti, Fe, Cu, W, Pb , а также для сплава, содержащего 79% Al , 8% Ti , IO% Fe и 3% Cu .

## Модель и метод расчета

法的 医髂上足死的

Расчети выполнены с помощью программного комплекса "Каскад" и "Спектр", описанного в наших работах/12-14/. Его возможности и точность уже иллюстрировались в работах/14-15/ на примере сопоставления результатов моделирования и эксперимента по исследованию  $\gamma$ -активационного излучения конструкционных материалов под действием высокоэнергетических протонов. На основе данных о распределении радионуклидов по глубине мишени и ее геометрии учтено поглощение и рассеяние активационного  $\gamma$ -излучения, выходящего из мишени в полный телесный угол  $2\pi$ .

Рассматривались дискообразные мишени с толщиной от 2 до 30 мм и диаметром 100 см. Такая геометрия позволяла достаточно точно рассчитать удельное *У*-излучение наведенной активности (т.е. излучение, испускаемое с единици площади мишени), поскольку вклад краевых эффектов при этом составляет всего лишь от I до 4% общего числа взаимодействий. При расчетах предполагалось, что все рассматриваемые материалы имеют естественный (природный) изотопный состав.

Предполагалось, что мишень бомбардируется изотропным потоком космических частиц из верхней полусферы (относительно нормали к ее поверхности). Вообще говоря, это неправомерно для протонов в области ЮАА, однако за время прохождения спутника через зону аномалии, особенно если он имеет собственное вращение, угловое распределение протонов успевает размыться и стать весьма близким к изотропному.

Моделирование спектра протонов ШКИ и ЮАА с учетом параметров орбити выполнялось так же, как в наших предыдущих работах<sup>78,167</sup>. При моделировании спектрального состава нейтронов альбедо Земли использовались полуэмпирические зависимости, полученные авторами работы<sup>77</sup>. Что касается *~* -частиц и других многозарядных ионов IKИ, то предварительные расчеты показали, что их вкладом в активационный *γ* -µон можно пренебречь.

Расчеты ў -фона активационной природы проводились для круговой орбиты с высотой ~350 км и наклонением 51°. Находясь на этой орбите, космический корабль четырежды в течение суток пересекает зону захваченной радиации КАА, где интенсивность протонного потока возрастает на несколько порядков, хотя спектр протонов в этой области по сравнению со спектром протонов ПКИ заметно мягче. Предполагалось, что время прохождения зоны КАА занимает 20 минут, остальные 70 минут полета по орбите до следующего вхождения в ЮАА на космический аппарат действуют только протоны ПКИ. Временная диаграмма (циклограмма) нахождения спутника в зонах ПЕМ и ЮАА показана на рис.І. Нейтроны альбедо воздействуют на конструкционные материалы на протяжении всего полета.

В процессе моделирования разыгрывались тип и вектор импульса бомбардирующей частицы, координаты точки **в**е входа в мишень. В качестве радиационных характеристик рассчитывались спектральные составы активационного  $\int$ -излучения на поверхности облучаемых мишеней для времен пребывания их на орбите от суток до года.

## Спектон наведенной Х-активности

Расчетные спектры для годичной экспозиции на орбите показаны на рис.2-5. В случае тяжелых (вольфрамовой и свинцовой)мишеней приведены также спектры для односуточной экспозиции. Все спектры рассчитаны на момент времени "А" (рис.I), когда космический аппарат после очередного выхода из аномалии в течение 305 минут подвергается воздействию протонов ПКИ. (Напомним, что нейтроны альбедо воздействуют на мишени на протяжении всего времени полета). Стрелками отмечены наиболее интенсивные  $\chi$ -излучатели.

Из рисунков видно, что наиболее интенсивние ў -линии в среднем в несколько раз превышают уровень диффузного ў -фона. Этот эфрект возрастает при переходе к более тяжелым мишеням. В случае вольфрама и свинца интенсивность рассеянной компоненты ў -излучения сравнима с интенсивностью диффузного фона в широком энергетическом интервале, а число ў -линий, превышающих в несколько раз его уровень, достигает нескольких десятков. Это проявляется даже при очень коротких, суточных экспозициях.

По нашим оценкам, вклад от нейтронов альбедо в *К*-активационное излучение конструкционных материалов составляет лишь несколько процентов от *К*-активности, наведенной протонами ШСИ и ЮАА. Об этом свидетельствует и тот факт, что спектры активационного *Г*-излучения свинца и вольфрама (рис.5) очень близки к спектральным распределениям, полученным в работе/8/,где не учитывалась *Г*-активационная составляющая нейтронов альбедо.

2

3



Рис. I. Циклограмма нахождения космического аппарата в зонах ПКИ и ЮАА. Цифры под зонами показывают время пребывания в них в минутах.





4



<u>Рис.5</u>. То же, что и на рис.2. Мишень из W и Pb. Левне рисунки относятся к односуточному, правые – к годичному пребыванию на орбите.

## Литература

| 1.    | Dyer C.S., Trombka J.I., Seltzer S.M., Evans L.G. Nucl.Instr.                                                                                                       |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | and Meth., 173(1980)585.                                                                                                                                            |
| 2.    | Dyer C.S., Truscott P.R., Comber C., Hammond N.D.A. IEEE Trans.                                                                                                     |
|       | Nucl. Sci, 1987, 34, N°6, 1530.                                                                                                                                     |
| 3.    | Charalambous P.M., et al. Nucl.Instr. and Meth, A238(1985)533.                                                                                                      |
| 4.    | Pyer C.S. "IEEE Trans.Nucl.Sci," 1984, Vol.NS-31, Nº6.1061                                                                                                          |
| - 5.  | Entwistle A.K. et al. J.Phys.E. 1989.22, N°8, 601                                                                                                                   |
| 6.    | Dunphy P.P. et al. High-Energy Radiat. Background in Space: Conf.                                                                                                   |
|       | Sanibel Island ,Fla,Nov. 3-5,1987. New.York, 1989,259                                                                                                               |
| 7.    | Fischbein W.L. et al. IEEE Trans. Nucl. Sci. 1979.NS-26.Nº6.5156.                                                                                                   |
| 8.    | Barashenkov V.S. et al. Nucl.Instr. and Neth., A284(1989) 509.                                                                                                      |
| 9.    | Silberberg R. et al. High-Energy Radiat.Background in Space:                                                                                                        |
|       | Conf., Sanibel Island, Fla, Nov. 3-5, 1987. New York, 1989, 146                                                                                                     |
| 10.   | Dyer C.S. et al. "High - Energy Radiat. Background in Space:                                                                                                        |
|       | Conf., Sanibel Island. Fla, Nov 3-5, 1987, New York, 1989, 278.                                                                                                     |
| 11.   | Jordan Thomas M., Stassinopoulos E.G. Adv. Space Res1989. 9.                                                                                                        |
|       | No.10, 261.                                                                                                                                                         |
| 12.   | Барашенков В.С. и др. ОМИ, Р2-85-173, Дубна, 1985.                                                                                                                  |
| 13.   | Морозова И.И., Тараненко П.И., Финогенов К.Г. Сборник научных                                                                                                       |
|       | трудов МИФИ, М.: Энергоиздат, 1982, 69.                                                                                                                             |
| 14.   | Barashenkov V.S. et al. Nucl. Instr. and Meth., A292 (1990) 169.                                                                                                    |
| .15.  | Barashenkov V.S. et al., JINR, E2-90-258, Dubna, 1990.                                                                                                              |
| 16.   | Барашенков В.С. и др. ОИЛИ, Р2-86-226, Дуона, 1986.                                                                                                                 |
| 17.   | Дубинский Ю. и др. Изв. All СССР, сер. физ., 1982, 46, 59,1680.                                                                                                     |
| · 18• | Diffuse background of Energetic X-rays, X-anol Gamma-Ray astro-                                                                                                     |
|       | nomy. Ral.Y Int. Astron. Union-Symp. Y55, 1973. p.279.                                                                                                              |
|       |                                                                                                                                                                     |
|       |                                                                                                                                                                     |
|       | an an an an an ann an Anna an Anna Anna                                                                                                                             |
|       | 가 있는 것이 가지 않는 것이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있다.<br>이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 같이 있다. 같이 있는 것이 같 |
|       |                                                                                                                                                                     |

Рукопись поступила в издательский отдел 29 мая 1991 года.

e konferencia en la coma da la com En esta da la coma da la