

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

E17-90-483

1990

V.Lisy, A.V.Zatovsky*

KINETICS

OF ROTATIONAL-DEFORMATIONAL EXCITATIONS IN GLOBULAR MACROMOLECULES

*Department of Theoretical Physics, Odessa State University, Odessa, USSR

1. ВВЕДЕНИЕ

Одним из актуальных направлений исследований в физике высоких энергий является изучение адрон-ядерных взаимодействий. Для их описания используются различные модели $^{/1-9/}$. Одной из таких хорошо известных моделей является модель кварк-глюонных струн (МКГС) $^{/1,10,11/}$. Она успешно применяется для описания характеристик множественного образования вторичных частиц в адрон-адронных и адрон-ядерных взаимодействиях, в основном, в πp -, pp-, πA -, pA-взаимодействиях, при высоких энергиях $^{/1,4,12-14/}$. В то же время пока остается открытым вопрос о пределах применимости этой модели в зависимости как от энергии налетающего адрона, так и от изучаемого процесса.

В основном эту модель применяли при энергиях свыше 100 ГэВ. Однако имеются примеры ее использования и при существенно меньших энергиях. Так, в работе $^{/14/}$ удалось удовлетворительно описать инвариантное сечение $F(x_y)$ для процесса

pp→ K°X

(1)

при энергии 12,4 ГэВ, а в работе ^{/21/} с помощью данной модели сделана попытка описать дифференциальные сечения рождения Л-и Л-гиперонов в pp- и pp-взаимодействиях при энергиях 12 и 32 ГэВ.

В настоящей работе представлены результаты описания в рамках МКГС детальных экспериментальных данных о реакциях

$$K^+ + A \rightarrow K^\circ + X \tag{2}$$

(A = Be, Cu, Pb) при энергии начальных K⁺-мезонов E $_0$ =11,2 ГэВ, полученных недавно с помощью спектрометра ГИПЕРОН /15/. Кроме того, выполнен анализ данных реакции

$$K^{+}p \rightarrow K^{0}X \tag{3}$$

при энергии $E_0 = 16 \Gamma 3B$, приведенных в^{/16/}.

Для описания этих данных использованы две различные модификации МКГС. Одна из них реализована в виде программы аналитического расчета ^{/17/} (модель 1), другая — в виде монте-карловской программы^{/3/} (модель 2). Благодаря учету поперечных импульсов кварков и дикварков в этих модификациях МКГС имеется возможность рассчитывать дважды дифференциальные сечения $d^2\sigma/dx_F dP_T^2$ изучаемых процессов. Ранее же, как правило, исследовались только инвариантные спектры, проинтегрированные по поперечному импульсу P_T , либо при среднем значении P_T .

Процессы (2) и (3) мало изучены в рамках МКГС. Ранее анализировалось только инвариантное сечение $F(x_{\rm F})$ для реакции (3) при энергии 70 ГэВ^{/4/}. Кроме того, недавно данные по $F(x_{\rm F})$ для реакции (2) при 11,2 ГэВ были описаны в рамках модели, учитывающей время формирования и цветовую прозрачность ядер^{/26/}.

2. ОПИСАНИЕ МОДЕЛЕЙ

В основе МКГС лежит представление о том, что для мягких взаимодействий адронов при высокой энергии доминирующую роль играют диаграммы цилиндрического типа. Каждый "цилиндр" соответствует обмену одним помероном. Однако при энергиях ≤ 100 ГэВ необходимо учитывать и вклад планарных диаграмм, отвечающих обмену вторичными реджеонами ⁽¹⁸⁾. Ингредиентами модели являются функции распределения кварков в сталкивающихся адронах и функции фрагментации кварков и дикварков во вторичные адроны.

2.1. Модель 1

Инвариантное дифференциальное сечение для процесса (3) определяется суммой вкладов планарной ($F_0(x_F, P_T)$) и цилиндрических диаграмм

$$E \frac{d\sigma}{d^3 P} = F(x_F, P_T) = F_0(x_F, P_T) + \sum_{n=0}^{\infty} \sigma_n \phi_n(x_F, P_T), \qquad (4)$$

где σ_n — сечение рождения n-померонных цепочек (2n-кварк-глюонных струн), $\phi_n(x_F, P_T)$ — распределение адронов, рожденных от фрагментации этих струн по x_F и P_T . Явный вид функций $\phi_n(x_F, P_T)$ приведен в^{/17/}.

Распределения кварков в адроне по продольному и поперечному импульсам были представлены в факторизованном виде:

$$q(x, k_{T}) = q_{1}(x) \cdot q_{2}(k_{T}),$$
 (5)

где х — доля продольного импульса кварка от импульса налетающего К⁺-мезона, k_T — поперечный импульс кварка. Функция q (x) бралась в виде ⁽¹⁷⁾, а

$$q_2(k_T) = \frac{B^2}{2\pi} exp(-Bk_T),$$
 (6)

где $B = 2/\langle k_T \rangle$, $\langle k_T \rangle$ — средний поперечный импульс данного кварка. Сечения σ_n испускания n померонных ливней вычислялись по формулам ⁽¹⁰⁾:

$$\sigma_{n} = \frac{\sigma_{p}}{nz} \left(1 - e^{-z} \sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right), \quad n \ge 1,$$

$$z = \frac{2C_{p} \gamma_{p}}{R_{p}^{2} + \alpha_{p}' \ln(s/s_{0})} e^{\ln \frac{s}{s_{0}} \Delta}.$$

$$\sigma_{p} = 8\pi\gamma_{p} \left(\frac{s}{s_{0}}\right)^{\Delta},$$
(7)

где $\sigma_{\rm p}$ — вклад померона в полное сечение, $\Delta = a_{\rm p}(0) - 1$ — превышение интерсепта померона над 1. При вычислении сечений $\sigma_{\rm n}$ использовались следующие значения параметров:

$$\gamma_{\rm p} = 1,174 \ \Gamma \Im B^{-2}, \qquad R_{\rm p}^2 = 2,18 \ \Gamma \Im B^{-2}, \qquad (8)$$

 $\alpha'_{\rm p} = 0,21 \ \Gamma \Im B^{-2}, \qquad \Delta = 0,139, \qquad s_0 = 1 \ \Gamma \Im B^2, \qquad C_{\rm p} = 1,8.$

Функции фрагментации u- и \bar{s} -кварков в К[°]-мезон в зависимости от z (доли продольного импульса адрона от импульса кварка) и поперечного импульса к представлялись тоже в факторизованном виде $^{/17/}$:

$$\tilde{D}_{\tau \to h}(z, k_T, P_T) = D_{\tau \to h}(z, \tilde{k}_T) g(\tilde{k}_T),$$

где τ означает аромат кварков (и или \bar{s}), $\tilde{k}_T = P_T - z \cdot k_T;$

$$D_{\mathbf{v} \mapsto \mathbf{K}^{\mathbf{o}}}\left(z, \tilde{\mathbf{k}}_{\mathrm{T}}\right) = \frac{\mathbf{a}_{\mathrm{k}}}{z}\left(1-z\right) \qquad \mathbf{g}(\mathbf{k}_{\mathrm{T}}).$$
(9)

Функция фрагментации лидирующего \overline{s} -кварка в К°-мезон бралась из работы $^{/12/}$:

$$D_{\overline{s} \to K^{\circ}}(z, \overline{k}_{T}) = D_{1}(z, \overline{k}_{T}) + D_{2}(z, \overline{k}_{T}), \qquad (10)$$

где

$$D_{1} = \frac{b_{k}}{z} z^{1-\alpha} \phi^{(0)} (1-z) - \alpha_{R}^{(0)+\lambda} (1-0.7z) (6.8-5.2z) g(\tilde{k}_{T}),$$

$$D_{2} = \frac{a_{k}}{z} (1-z) \cdot g(\vec{k}_{T}),$$

$$\lambda = 2 \alpha'_{R}(0) \cdot \tilde{k}^{2}_{T}, \quad \alpha_{R}(0) = 0.5, \quad \alpha_{\phi}(0) \simeq 0$$

 ${a_k} = {0,05}^{/\,14/}$. Значение параметра ${~b_k} = {~0,19}$ определено из условия сохранения странности

$$2\int_{z_{\min}}^{1} D_{1}(Z, k_{T}) dz d^{2}k_{T} = 1.$$
 (11)

Функция $g_{r \rightarrow h}(\tilde{k}_{T})$ выбрана в виде

$$g(\tilde{k}_{T}) = \frac{B^2}{2\pi} e^{-Bk}T.$$

Вклад планарной диаграммы определялся по формуле /11/:

 $g(k_T) = \frac{\beta}{\pi} e^{-\beta k_T}$ выбранная P_T -зависимость планарного графика, а и β – параметры.

Инвариантное дважды дифференциальное сечение образования К°мезонов в процессе (2) бралось в виде^{/17/}

$$F_{A}(x_{F}, P_{T}) = \sum_{\nu=1}^{A} N_{\nu} \phi_{\nu}(x_{F}, P_{T}), \qquad (12)$$

где

$$N_{\nu} = \frac{1}{\nu!} \int (\sigma_{in} T(b))^{\nu} \exp(-\sigma_{in} T(b)) d^{2}b, \qquad (13)$$

$$\sigma_{in} = \frac{14 \text{ мб} - \text{сечение неупругого K + p-взаимодействия,}}{+\infty}$$

$$T(b) = \int (\sigma(b, z) dz \qquad (14)$$

$$T(b) = \int \rho(b, z) dz.$$
(14)

Для плотности ядерной материи в случае ядра ^{*}Ве использовалось гауссово распределение

$$\rho(\mathbf{r}) = \rho_0 \exp(-\frac{\mathbf{r}^2}{\mathbf{R}^2}), \quad \mathbf{R} = 2 \,\phi \mathbf{M}. \tag{15}$$

Для более тяжелых ядер использовалась ядерная плотность в форме Вудса-Саксона:

$$\rho(\mathbf{r}) = \rho_0 \left(1 + \exp\left(\frac{\mathbf{r} - \mathbf{R}}{\mathbf{b}}\right)\right)^{-1}$$
(16)

с параметрами b = 0,545 фм и $R = r_0 A^{1/3}$, где $r_0 = 1,07$ фм, ρ_0 — нормировочная постоянная.

Свободными параметрами модели являются: В — параметр наклона в формуле (6) (Р_Т-зависимость цилиндрических диаграмм), а — параметр нормировки планарной диаграммы, β — параметр наклона в Р_Тзависимости планарной диаграммы. Величины этих параметров определялись, исходя из наилучшего описания дважды дифференциальных сечений $d^2\sigma/dx_{\rm F}dP_{\rm T}^2$ процесса (3)^{/16/}, оказались равными: $\alpha = 2$ мб, $\beta = 7$ (ГэВ/с)⁻¹, В = 6,5 (ГэВ/с)⁻¹.Эти значения параметров использовались при описании экспериментальных данных процессов (2) при 11,2 ГэВ.

Расчеты по этой модели для процессов (2) были произведены в двух вариантах — без учета и с учетом поглощения вторичных К[°]-мезонов ядерной средой. В последнем случае инвариантные сечения корректировались на множитель $\delta(x_r)$, равный

$$\delta(\mathbf{x}_{\mathbf{F}}) = \mathbf{A}^{\mathbf{D}\mathbf{D}\mathbf{D}}(\mathbf{x}_{\mathbf{F}}) / \mathbf{A}_{\mathbf{x}},$$

где

$$A^{\mathbf{\partial}\phi\phi}(\mathbf{x}_{\mathbf{F}}) = \int_{0}^{\infty} d^{2} \mathbf{b} \int_{-\infty}^{+\infty} d\mathbf{z}\rho(\mathbf{b}, \mathbf{z}) \exp(-\sigma_{\mathrm{in}}[\mathbf{T}(\mathbf{b}) - \int_{\mathbf{z}} \rho(\mathbf{b}, \mathbf{z}') d\mathbf{z}']),$$

$$A_{\infty} = \int_{0}^{\infty} \frac{d^{2}}{dz} \int_{-\infty}^{+\infty} \frac{d^{2}}{dz} \rho(b, z) \exp\left(-\sigma_{in} \int_{z}^{\infty} \rho(b, z') dz'\right),$$

Здесь ℓ_1 — длина формирования вторичного адрона, которая согласно^{23,24/} имеет вид

$$\ell_{\rm f} = \frac{\rm E_0}{\kappa} \left(1 - {\rm x}_{\rm F}\right) \,,$$

 $\kappa = 3 \ \Gamma \Rightarrow B/\phi M$ — коэффициент натяжения струны^{25/}. Рассчитанные по формуле (17) величины $\delta(\mathbf{x}_{\mathbf{F}})$ для ядер Ве, Си, Рb приведены в таблице.

Таблица

Ax _F	0,55	0,65	0,75	0,85	0,95
Be	0,92	0,88	0,84	0,82	0.79
Cu	0,63	0,56	0,53	0,50	0.47
Pb	0,38	0,33	0,31	0,29	0,28

2.2. Модель 2

Эта модель реализована в виде программы-генератора COLLI ^{/3/} и использовалась ранее для описания экспериментальных данных характеристик протон-ядерных и ядро-ядерных взаимодействий при начальной энергии 200 ГэВ/нуклон ^{/19/}.

В этой модели ядро представляется как совокупность нуклонов с пространственным распределением в виде (4) или (5). Вероятность неупругого столкновения К⁺-мезона с нуклоном, приводящего к образованию n пар кварк-глюонных струн, определяется по модели "квазиэйконала", / 3./

Продольный импульс Р конституентов в адроне определялся с помощью плотности вероятности найти конституент с долей х = Р.:/Ро (Р₀ – импульс налетающего адрона)

$$u(x_{1}, x_{2}, ..., x_{2n}) = \dot{u}_{0}\delta(1 - \sum_{i=1}^{2n} x_{i}) f_{v_{1}}(x_{1}) f_{s}(x_{2}) ... f_{v_{2}}(x_{n}), \qquad (18)$$

где u₀ — нормировочная постоянная.

Функции распределения для валентных кварков (антикварков) f (x) и морских кварков f (x) имеют вид $^{/10/}$:

$$f(x) = x^{-1/2}.$$
 (19)

Распределение кварков (антикварков) в адронах по поперечному импульсу было выбрано в виде:

$$f_{q}(P_{T}) \sim e^{-BP_{T}}$$
(20)

Величина наклона В подбиралась из лучшего согласия с эксперимен-

тальными данными и оказалась равной 5 ГэВ⁻¹. Продольные импульсы P^h_z и энергии Е^h адронов при фрагментации конституентов с импульсами P^q и энергиями E^q определялись через переменные $z=(P_z^{\ h}+E^{\ h})/(P_z^{\ q}+E^{\ q})$, которые генерировались распрепелением вила

$$D_{q}^{h}(z) = (1 + \alpha_{q}^{h}(P_{T})) (1 - z)$$
(21)

Показатель $a_{q}^{h}(P_{T})$ зависит от аромата фрагментирующего конституента и типа адрона, в который он фрагментирует, а также от поперечного импульса адрона P_T . Значения $a_q^h(P_T)$ брались из работы /20/. Когда масса струны-остатка становилась меньше, чем $M_{R^+} \Delta M$, где

М_в — масса резонанса с тем же, что и струна, кварковым составом, а $\Delta M = 0.5 \Gamma_{3}B$ (для странных адронов), то происходил последний распад струны на два адрона. Поперечные и продольные импульсы адронов — продуктов распада струны — в этом случае определялись уже не функциями (20)-(21), а кинематикой изотропного распада.

Величины параметров модели, такие как степень подавления странных морских кварков, отношения вероятностей при образовании стабильных частиц и резонансов, граничные массы струн, брались, как и в работе ^{/3/}.

В модели 2 были учтено поглощение вторичных $K^{\circ}(K^*)$ -мезонов следующим способом. Если по направлению движения вторичного К-мезона, начиная от точки взаимодействия падающего K^+ -мезона с нуклоном ядра, в пределах круга с радиусом $R = (\sigma_{in} / \pi)^{1/2}$ встретится какой-либо нуклон ядра, считается, что произошло неупругое взаимодействие, и такое событие отбрасывается.

Кроме математической реализации (аналитический и монте-карловский расчеты), применяемые модификации МКГС имеют ряд различий, которые могут привести к весьма существенным расхождениям в описании экспериментальных данных:

1) Точный учет законов сохранения в модели 2 и приближенный, выполняющийся в асимптотике, в модели 1.

2) Прямой учет рождения и распада резонансов в модели 2 и косвенный учет (в параметрах функции фрагментации) в модели 1.

3) Адроны в модели 1 образуются единообразно путем разрыва струн с заданной функцией фрагментации. В модели 2, если масса струны становится меньше определенной величины, адроны образуются путем двухчастичного распада.

4) В модели 1 предполагается, что вторичные адроны формируются вне ядра, в модели 2 вторичные адроны формируются в точке образования и учитывается их поглощение в ядре.

3. СРАВНЕНИЕ РЕЗУЛЬТАТОВ РАСЧЕТА ПО МКГС С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

На рис.1 приведены рассчитанные по модели 2 дифференциальные сечения $d\sigma/dx_F$ для процессора (3) при E₀ = 16 ГэВ/с и соответствующие экспериментальные данные ^{/16/}. Этот рисунок демонстрирует чувствительность рассчитанных сечений $d\sigma/dx_F$ к выбору функций импульсного распределения валентных u-и \tilde{s} -кварков в K⁺-мезоне:

$$f_{u} = x^{-1/2} (1 - x)^{\beta},$$

$$f_{\overline{s}} = (1 - x)^{-1/2} x^{\beta}.$$
(22)

Наилучшее согласие с экспериментом, как и ожидалось $^{/11/}$, достигается при величине β , равной 0. Рис.1. Сравнение рассчитанных по модели 2 дифференциальных сечений $d\sigma/dx_F$ при различных значениях параметров β в формуле (22) с экспериментальными данными для реакций $K^+p \rightarrow K^{\circ}X$ при 16 ГэВ/с. Сплошная гистограмма соответствует значению $\beta = 3$, пунктирная — $\beta = 0$, штрихпунктирная — $\beta \Rightarrow 0.5$.

На рис.2 и 3 представлены расчеты дважды дифференциальных инвариантных сечений $F(x_F, P_T)$ в зависимости от x_F для различных величин P_T , инвариантные сечения $F(x_F)$ при $P_T \le 0.3$ ГэВ/с в зависимости от x_F (рис.3а), дифференциальные сечения от P_T^2 (рис.3б) и соответствующие реакций (2) при $E_0 = 11.2$ ГэВ^{/3/} и

(рис.3а), дифференциальные сечения $d\sigma/dP_T^2$ при $x_F \ge 0.7$ в зависимости от P_T^2 (рис.3б) и соответствующие экспериментальные данные для реакций (2) при $E_0 = 11.2$ ГэВ^{/3/} и реакции (3) при $E_0 = 16$ ГэВ^{/16/}. Сплошной линией показаны расчеты по модели 1 без учета поглощения вторичных К°-мезонов, штриховой — с учетом поглощения. Расчеты по модели 2, выполненные методом Монте-Карло на ограниченной статистике, показаны, как и экспериментальные данные, со статистическими погрешностями.

Расчеты по модели 2 в основном согласуются с экспериментальными данными в рамках их систематических погрешностей $(\pm 25\%)^{/15'}$. Отметим несколько более крутое падение рассчитанных по модели 2 сечений $F(x_F, P_T)$ и $F(x_F)$ при увеличении x_F^{*} чем наблюдаемое на эксперименте. Что касается модели 1, то здесь наблюдается согласие с экспериментом для К ⁺р- и К⁺Ве-взаимодействий и существенное расхождение для К⁺Рывзаимодействий. Расчеты по модели 1 с учетом поглощения К[°]-мезонов согласуются с этими экспериментальными данными.

На рис.4 приведены отношения сечений

$$R_{A}(x_{F}) = \frac{\frac{d\sigma}{dx_{F}}(K^{+}A \rightarrow K^{\circ}X)}{\frac{d\sigma}{dx_{F}}(K^{+}Be \rightarrow K^{\circ}X)} , \qquad R_{A}(P_{T}^{2}) = \frac{\frac{d\sigma}{dP_{T}^{2}}(K^{+}A \rightarrow K^{\circ}X)}{\frac{d\sigma}{dP_{T}^{2}}(K^{+}Be \rightarrow K^{\circ}X)} ,$$
rge
$$A = Cu, Pb.$$

9

Рис.2. Дважды дифференциальные инвариантные сечения $F(x_F, P_T)$ для процессов (2) и (3). Символами ($\nabla - p$, о — Ве, $\Delta - Cu$, $\Box - Pb$) представлены экспериментальные данные, символами $\nabla, \bullet, \blacktriangle, \blacksquare$ — расчет по модели 1 без учета поглощения вторичных К[°]-мезонов. Нижняя кривая на этом рисунке и на рис.3а — вклад планарной диаграммы в реакции (3).

Результаты расчетов по моделям 1 и 2 совпадают с экспериментом для R_{Cu} . В случае R_{Pb} модель 1 без учета поглощения К -мезонов дает существенно завышенные значения.

На рис.4в и 4г представлены коэффициенты α в параметризации экспериментальных и расчетных (по модели 2) дифференциальных сечений $d\sigma/dx_F$ и $d\sigma/dP_T^2$ зависимостью

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{x}_{\mathrm{F}}} = \mathrm{C}\mathrm{A}^{\alpha(\mathrm{x}_{\mathrm{F}})}$

Наблюдается хорошее согласие с экспериментальными данными.

Рис. 3. Инвариантные сечения $F(x_F)$ при $P_T \leq 0.3$ ГэВ с и дифференциальные сечения $d\sigma/dP_T^2$ при $x_F \geq 0.7$; экспериментальные данные и расчеты по моделям 1 и 2. Штриховая линия — расчет по модели 1 с учетом поглощения вторичных К[°]-мезонов.

Рис. 4. Отношения дифференциальных сечений на ядрах Си и Рb к сечениям на ядре Ве: $d\sigma/dx_F$ (a), $d\sigma/dP_T^2$ (б) и зависимости коэффициентов $a(x_F)$ (в) и $a(P_T^2)$ (г) в параметризации (23).

4. ЗАКЛЮЧЕНИЕ

Проведенный анализ экспериментальных данных реакций $K^+p \rightarrow K^{\circ}X$ и $K^+A \rightarrow K^{\circ}X$ (A = Be, Cu,Pb) в области энергий налетающих K^+ -мезонов 11-16 ГэВ в рамках модели кварк-глюонных струн позволяет сделать вывод о том, что при учете поглощения вторичных K° -мезонов оба варианта модели удовлетворительно описывают рассмотренную совокупность экспериментальных данных. Авторы благодарны Ю.А.Будагову, А.Б.Кайдалову, Б.З.Копелиовичу, О.И.Пискуновой, Ю.М.Шабельскому за многочисленные полезные обсуждения, А.А.Богушу и Л.Г.Морозу за поддержку и интерес к работе.

ЛИТЕРАТУРА

- 1. Кайдалов А.Б., Тер-Мартиросян К.А. ЯФ, 1984, т.39, с.1545; т.40, с. 211.
- 2. Capella A. et al. Z.Phys., 1980, v.C3, p.329.
- Амелин Н.С., Гудима К.К., Тонеев В.Д. Препринт ОИЯИ, Р2-89-346, Дубна, 1989; ЯФ, 1990, т.51, с.512.
- 4. Шабельский Ю.М. ЯФ, 1989, т.49, с.1081.
- 5. Werner K. Preprint BNL-41500, Brookhaven, 1988.
- 6. Ranft J. Z.Phys.C., 1989, v.43, p.439.
- 7. Polanski A. et al. Z.Phys.C., 1989, v.43, p.587.
- 8. Andersson B. et al. Nucl. Phys., 1987, v. B281, p.289.
- Aurenche P., Boop F.W. Phys. Lett., 1982, v.114B, p.363: Z.Phys.C., 1982, v.13, p.205.
- 10. Kaidalov A.B., Ter-Martirosyan K.A. Phys.Lett., 1982, v.117B, p.247.
- 11. Кайдалов А.Б. ЯФ, 1981, т.33, с.1369; Phys.Lett., 1982, v.116B, p.459; Элементарные частицы. М.: Энергоатомиздат, 1983, вып.2, 3.
- 12. Шабельский Ю.М. ЯФ, 1986, т.44, с.186.
- Шабельский Ю.М. ЯФ, 1987, т.45, с.223.
- 14. Кайдалов А.Б., Пискунова О.И. ЯФ, 1985, т.41, с.1287.
- 15. Акименко С.А. и др. Препринт ИФВЭ, 90-10, Серпухов, 1990.
- Chliapnikov P.V. et al. Nucl.Phys., 1975, v.888, p.191;
 М. Де Биер и др. ЯФ, 1977, т.25, с.356.
- 17. Лыкасов Г.И., Славин Н.В. ЯФ, 1989, т.49, с.1446.
- 18. Волковицкий П.Э. ЯФ, 1986, т.44, с.729.
- 19. Амелин Н.С., Бравина Л.В. ОИЯИ, Р2-89-167, Дубна, 1989.
- 20. Кайдалов А.Б. ЯФ, 1987, т.45, с.1452.
- 21. Кайдалов А.Б. и др. ЯФ, 1989, т.49, с.781.
- 22. Kopeliovich B.Z. JINR, E2-90-175, Dubna, 1990.
- 23. Копелиович Б.З. В сб.: Материалы XIX зимней школы ЛИЯФ "Физика элементарных частиц", Л., 1984, с.169.
- 24. Копелиович Б.З. ЭЧАЯ, 1990, т.21, вып.1, с.117.
- 25. Kopeliovich B.Z. et al. JINR, E2-90-344, Dubna, 1990.
- 26. Кульчицкий Ю.А. ОИЯИ, Р10-90-433, Дубна, 1990.

Рукопись поступила в издательский отдел 29 октября 1990 года.