

P2-90-433

C

Ю.А.Кульчицкий

ИССЛЕДОВАНИЕ АДРОНИЗАЦИИ ЛИДИРУЮЩЕГО 5 - КВАРКА В ПРОЦЕССАХ ИНКЛЮЗИВНОГО ОБРАЗОВАНИЯ К *°(892)-И К°-МЕЗОНОВ НА ЯДРАХ

Направлено в журнал "Ядерная физика"

1990

1. ВВЕДЕНИЕ

Одним из актуальных направлений исследований в физике высоких энергий является изучение адрон-ядерных взаимодействий. В этих реакциях можно проверить имеющиеся представления /1/ о пространственно-временной картине процесса экранирования цветовых зарядов, т.е. адронизации, которые приводят к нетривиальному ядерному экранированию периферических взаимодействий в области фрагментации пучка.

В настоящей работе для описания процессов

 $K^{+} + A \rightarrow K^{*\circ}(892) + X$.

/1/ /2/

 $K^+ + A \rightarrow K^0 + X$

используется модель/1,2/, разработанная Б.З.Копелиовичем, в которой при адронизации лидирующего кварка, в нашем случае s-кварка, учитываются эффекты экранирования цветовых зарядов, длина формирования адрона и взаимодействие еще не сформировавшихся адронных состояний с ядром.

Экспериментальные данные об инвариантных сечениях процессов /1/ и /2/ были получены на спектрометре ИФВЭ-ОИЯИ "ГИПЕРОН" /3,4/в экспозиции с пучком с энергией 11,2 ГЭВ ускорителя ИФВЭ, в области фрагментации пучка ($x_{\rm F} \ge 0,4$, $p_{\perp} \le 0,5$ ГЭВ/с) на ядерных мишенях (A = Be,Cu,Pb).

В процессах /1/ и /2/ К^{*°} - и К[°]-мезоны образуются как в результате прямого рождения, так и вследствие распада резонансов или дифракционных систем. Мезоны, образовавшиеся непосредственно в процессе столкновения, будем в дальнейшем называть "прямыми" мезонами, а появившиеся вследствие процессов распада - "распадными".

Используемая модель позволяет рассчитать сечение прямых К*°_ и К°-мезонов. При этом учитываются вклады цилиндрических /рис.16/ и планарных /рис.26/ диаграмм. В трехреджеонном пределе реджевской феноменологии вклад цилиндрических диаграмм в сечение отвечает RRP-графику /рис.1а/, а планарных диаграмм - RRR -графику /рис.2а/. В дальнейшем для краткости цилиндрические диаграммы будем обозначать RRP, а планарные -RRR. При энергии ~10 ГэВ существенны оба эти графика и их от-

Рис.1. Цилиндрическая диаграмма и соответствующий трехреджеонный график RRP.

носительный вклад не известен. Определение сечений цилиндрических и планарных диаграмм дано во втором разделе статьи.

Для реакции /1/ учитываются вклады дифракционного процесса

$$K^+ + A \rightarrow K^{*\circ}(892) \pi^+ + A$$
 /3/

и реакций с образованием К*(1430)-мезонов

$$K^+$$
 + A → K*(1430) + X, K*(1430) → K*°(892) π, /4/

Для реакции /2/ учитызается образование распадных К°-мезонов в результате распада К*° -мезонов /1/ и К*⁺-мезонов:

Рис. 2. Планарная диаграмма и соответствующий трехреджеонный график RRR,

 $K^+ + A \rightarrow K^{*+}(892) + X$, $K^{*+}(892) \rightarrow K^0 \pi^+$.

Определение вклада в сечения реакций /1/ и /2/ процессов /3/-/5/ будет проведено в третьем разделе. В последнем разделе результаты расчетов сопоставлены с экспериментальными данными. Показано, что сечение планарных диаграмм превышает сечение цилиндрических диаграмм.

151

2. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ ОБРАЗОВАНИЯ ПРЯМЫХ КАОНОВ

Как следует из КХД, адроны, состоящие из цветных объектов, сами являются бесцветными. Их взаимодействие напоминает взаимодействие нейтральных систем в КЭД, т.к. цвет внутри адронов пространственно распределен и взаимодействие имеет дипольный характер.

Сечение взаимодействия адрона с нуклоном берется в параметризации, предложенной в работе $^{2/}$. Предполагается, что цветное поле в адроне локализовано внутри трубки с валентными кварками на концах, поперечные размеры которой гораздо меньше продольных. При неупругом взаимодействии адронов их трубки пересекаются в плоскости прицельных параметров и, обмениваясь после взаимодействия кварками, перестраиваются. С точки зрения топологической классификации это отвечает цилиндрическому графику. Вероятность пересечения трубок пропорциональна их длине (r), если $r > r_0$, где r_0 - поперечный размер трубки. Для сжатой адронной конфигурации, когда $r < r_0$, $\sigma(r) \sim r^2$. Поэтому параметризация имеет вид

$$\sigma(\tau) = \begin{cases} C \tau^2, & \tau \le \tau_0, \\ C \tau_0 \tau, & \tau > \tau_0, \end{cases}$$
 /6/

где _{го} = 0,2 фм, что согласуется с оценками КХД на решетке, а параметр С находится из условия нормировки

$$\sigma_{in}^{hN} = \int_{-\infty}^{\infty} d^2 r \left| \psi_{h}(r) \right|^2 \sigma(r) . \qquad (7)$$

Волновая функция адрона $\psi_{\downarrow}(r)$ берется в гауссовой форме

$$|\psi_{h}(r)|^{2} = \frac{1}{\pi < r^{2} > h} \exp(-r^{2}/\langle r^{2} > h),$$
 /8/

где <² >, - среднеквадратичное расстояние между кварками в адроне, связанное с зарядовым радиусом адрона соотношением

$$\langle r^2 \rangle_{h} = \frac{8}{3} \langle r^2 \rangle_{h}.$$
 /9/

Для K⁺-мезонов <r²>_K+= 0,28 фм $^{/5,6/}$. Если энергия адрона достаточно велика, E >> μ^2 R $/\mu^2$ -массовый параметр, R - радиус ядра/, то кварки налетающего адрона можно считать "замороженными" во время прохождения через ядро. Это условие при энергии ~10 ГэВ выполняется лишь приблизительно, поэтому могут быть значительные поправки, которые в данном расчете не учитываются.

Собственными состояниями взаимодействия считаются конфигурации кварков с данным поперечным размером т. Весовым коэффициентом при усреднении по т является квадрат волновой функции адрона /8/. Усреднение по т ведется отдельно для начального и конечного адронов, так как считается, что поперечные размеры налетающего и рожденного адронов не коррелированы. Это связано с тем, что при разрывах струны, предшествующих образованию лидирующего адрона, кварковые пары возникают из вакуума с разными значениями прицельного параметра в пределах поперечного размера струны и информация о размере налетающего адрона теряется.

Вероятность адрону пройти в ядре без взаимодействия от точки z до точки z' равна

W(z,z') =
$$\int_{-\infty}^{\infty} d^2 r |\psi_h(r)|^2 e^{-\sigma(r) T(b,z,z')} \equiv \langle \exp[-\sigma(r)T(b,z,z')] \rangle, /10/2$$

где Т - функция профиля ядра

$$T(b,z,z') = \int_{-\infty}^{z} dz'' \rho(b,z'') . \qquad (11/$$

Функция плотности нуклонов в ядре $\rho(b,z)$ берется в параметризации Вудса-Саксона

$$\rho(\mathbf{b}, \mathbf{z}) = \rho_0 / \{\mathbf{1} + \exp[(\sqrt{\mathbf{b}^2 + \mathbf{z}^2} - \mathbf{R}) / \mathbf{a}]\}, \qquad (12)$$

$$\rho_0 = \frac{3A}{4\pi R^3 \left(\frac{\pi^2 a^2}{R^2} + 1\right)}$$
 (13/

где b - прицельный параметр, R - радиус ядра, a = 0,52 фм, А - атомный номер ядра.

Длина формирования адрона определяется по формуле

$$\ell_{f} = \frac{p_{0}}{\kappa} (x_{q} - x_{f}),$$
 (14/

где p_0 - импульс начального адрона, к - коэффициент натяжения струны, $x_q = k/p_0$, k - продольный импульс кварка, $x_F = p_{||}/p_0$, $p_{||}$ - продольный импульс конечного адрона.

"За время формирования адрона промежуточный объект /струна/ взаимодействует с ядром. Это приводит к эффективной функции фрагментации /⁷/:

$$G_{eff}(\mathbf{x}) = G(\mathbf{x}) \exp\left[-\sigma_{s} \mathbf{T}(\mathbf{b}, z, z + \ell_{f})\right] + z + \ell_{f}$$

$$+ \sigma_{s} \int_{z} dz' \rho(\mathbf{b}, z') \exp\left[-\sigma_{s} \mathbf{T}(\mathbf{b}, z', z + \ell_{f})\right] G(\mathbf{x}'),$$
(15)

где $x = x_F / x_q$ - отношение продольного импульса конечного адрона к импульсу кварка, σ_g - сечение взаимодействия струны, которое предполагается равным σ_{in}^{KN} ,

$$\mathbf{x}' = \mathbf{x}\mathbf{k}/(\mathbf{k} - \mathbf{\kappa}\Delta \mathbf{z}), \qquad /16/$$

где $\Delta z = z' - z$, z - координата взаимодействия первичного адрона, z' - координата последнего перерассеяния струны. Функция фрагментации $G_a^{K^o}(x)$ имеет вид $^{/8/}$

$$G_{s}^{K^{0}}(x) = b_{k}x^{1-\alpha}\phi^{(0)} (1-x)^{-\alpha}R^{(0)+\lambda} + \frac{-\alpha}{2}\phi^{(0)+\lambda+2[1-\alpha}R^{*}(0)]}{r_{k}a_{k}(1-x)}, (17/2)$$

$$r_{k}a_{k}(1-x)^{-\alpha}\phi^{(0)+\lambda+2[1-\alpha}R^{*}(0)] = 0.5, a_{k}^{*}(0) = 0.3, b_{k}^{*} = 0.5, a_{k}^{*} = 0.05, \lambda = 2\alpha_{k}^{*}\bar{p}_{\perp}^{2}, \alpha_{k}^{*} = 0.9 \ \Gamma_{2}B^{-2}, \ \bar{p}_{\perp}^{2} = 0.23 \ \Gamma_{2}B^{2}.$$

Диаграмме RRP на рис.1а отвечает цилиндрическая диаграмма на рис.16. В результате взаимодействия налетающего адрона с нуклоном валентные кварки адрона образуют с кварками нуклона две струны, которые фрагментируют затем в адроны. В случае взаимодействия с ядром сечение для цилиндрической диаграммы определяется формулой

$$\mathbf{F}^{\mathbf{RRP}}(\mathbf{x}_{\mathbf{F}}) = \int_{-\infty}^{\infty} d^2 \mathbf{b} \int_{-\infty}^{\infty} dz \,\rho(\mathbf{b}, z) < \sigma(\mathbf{r}) \exp[-\sigma(\mathbf{r}) \mathbf{T}(\mathbf{b}, -\infty, z)] > \mathbf{b}_1$$

$$\cdot \int_{\mathbf{x}_{\mathbf{F}}}^{1} d\mathbf{x}_{\mathbf{q}} \tilde{\mathbf{f}}(\mathbf{x}_{\mathbf{q}}) \mathbf{G}_{\text{eff}} \left(\frac{\mathbf{x}_{\mathbf{F}}}{\mathbf{x}_{\mathbf{q}}}\right) < \exp[-\sigma(r) \mathbf{T}(\mathbf{b}, \mathbf{z} + \ell_{\mathbf{f}}, \infty)] > h_{2}.$$
 (18/

Вероятность налетающему адрону h₁ дойти до точки ² вычисляется с учетом цветовой прозрачности ядра, т.е. неупругих поправок.

Так как сечение взаимодействия может зависеть от импульсов партонов, то в качестве структурной функции используется эффективная структурная функция $\tilde{f}(x_a)$, искаженная взаимодействием с мишенью /2/. Если разложить волновую функцию налетающего адрона по фоковским компонентам с различным числом морских кварк-антикварковых пар, то разные компоненты обладают существенно различными импульсными распределениями кварков. В реджевской феноменологии их вклад в полное сечение соответствует графикам с различным числом разрезанных померонов. Веса этих графиков в полном сечении неупругого взаимодействия можно оценить в квазиэйкональном приближении /9/. Они складываются из веса w, соответствующей фоковской компоненты волновой функции адрона, не зависящей от мишени, и сечения взаимодействия этой компоненты с мишенью. Сечение взаимодействия адронной флуктуации определяется ее поперечными размерами, поэтому различные фоковские компоненты, имеющие близкие размеры, должны обладать близкими сечениями взаимодействия. Для простоты предполагается их равенство. Величина этого сечения входит в общий параметр нормировки при аппроксимации спектров. Эффективная структурная функция имеет вид

$$\vec{\mathbf{f}}(\mathbf{x}_q) = \sum_{n=1}^{\infty} w_n \mathbf{f}_n(\mathbf{x}_q) \,. \tag{19}$$

Структурная функция взята в форме/10/

$$\frac{\kappa^{+}}{s} f_{n}(x_{q}) = C_{n} x_{q}^{-a} \phi^{(0)} (1 - x_{q})^{-a_{R}(0) + n - 1}, \qquad (20)$$

где константы
$$C_n$$
 находятся из условия нормировки
1 $\int f_n(x_q) dx_q = 1$, /21/

а w_n определяется согласно работе /11/:

$$\mathbf{w}_{n} = \sigma_{n} / \sum_{n=1}^{\infty} \sigma_{n} , \qquad /22/$$

$$\sigma_{n} = \frac{\sigma_{p}}{nz} \left(1 - e^{-z} \sum_{k=0}^{n-1} \frac{z^{k}}{k!}\right), \qquad /23/$$

$$z = \frac{2C\gamma}{R^{2} + \alpha'_{p}\xi} e^{\Delta\xi}, \qquad /24/$$

$$\sigma_{p} = 8\pi\gamma e^{\Delta\xi}, \qquad /25/$$

где $\xi = \ln (s/s_0)$, $s_0 = 1$ ГэВ², параметры определены в работе^{/12/}, $\Delta = a_p (0) - 1 = 0,139$, $a'_p = 0,21$ ГэВ⁻², C = 1,8, $R^2 = 2,18$ ГэВ⁻², $\gamma = 0,964$ ГэВ⁻².

Диаграмме RRR на рис.2а отвечают планарные /твистовые/ графики, показанные на рис.2б и 2в. Процесс адронизации происходит следующим образом. Кварки налетающего адрона находятся в сильноасимметричной по импульсам конфигурации: один из кварков несет весь импульс. Вероятность такой конфигурации подавлена фактором $1/\sqrt{s}$. Фрагментация быстрого кварка полностью определяется его структурной функцией. Функция фрагментации в формуле /18/ заменяется на δ -функцию. Сечение адрон-ядерного взаимодействия для твистовой диаграммы определяется по формуле

$$\mathbf{F}^{\mathbf{RRR}}(\mathbf{x}_{\mathbf{F}}) = \sigma_{\mathbf{in}}^{\mathbf{KN}} \int_{-\infty}^{\infty} d^2 \mathbf{b} \int_{-\infty}^{\infty} d\mathbf{z}_{\mathbf{i}} \rho(\mathbf{b}, \mathbf{z}_{\mathbf{i}}) < \exp\left[-\sigma(\mathbf{r}) \mathbf{T}(\mathbf{b}, -\infty, \mathbf{z}_{\mathbf{i}})\right] > \mathbf{h}_{\mathbf{i}}.$$

$$\cdot \langle \exp[-\sigma(r) \mathbf{T}(\mathbf{b}, \mathbf{z}_{1}, \infty)] \rangle_{\mathbf{h}_{2}} \widetilde{\mathbf{f}}(\mathbf{x}_{\mathbf{F}}) + \sigma_{\mathrm{in}}^{\mathrm{KN}} \sigma_{\mathbf{s}-\infty}^{\mathcal{S}} \widetilde{\mathbf{d}}^{2} \mathbf{b} \int_{-\infty}^{\infty} \mathbf{d}\mathbf{z}_{1} \rho(\mathbf{b}, \mathbf{z}_{1}) \cdot \frac{1}{26} / \frac{1}{26} \sqrt{\frac{1}{26}} \sqrt{\frac{1}$$

$$\cdot \int_{z_1-\ell_f}^{1} dz_2 \rho(\mathbf{b}, z_2) < \exp[-\sigma(\tau) \mathbf{T}(\mathbf{b}, -\infty, z_2)] > \mathbf{b}_1$$

$$\cdot < \exp\left[-\sigma(r) \mathbf{T}(\mathbf{b}, \mathbf{z}_1, \infty)\right] > h_2 \tilde{\mathbf{f}}(\mathbf{x}_F + \frac{\kappa}{p_0} \Delta \mathbf{z}) ,$$

где

Ζ.

$$\Delta z = z_1 - z_2$$
, $\ell_f = \frac{p_0}{\kappa} (1 - x_F)$.

3. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ ОБРАЗОВАНИЯ РАСПАДНЫХ КАОНОВ

Распадные ^{К*°}(892)-мезоны образуются в дифракционном процессе /3/ и в результате распада тензорных мезонов /4/. Сечение процессов дифракционного образования К *° (892) на ядрах /3/ неизвестно, поэтому использовались данные о дифракционном образовании К *°(892)-мезонов в реакции

$$K^{p} \rightarrow K^{*o}(892) \pi^{p}$$
, /27/

измеренные при энергии 10-16 ГэВ^{/12/}. Вклад сечения дифракционно образованных К*°-мезонов в сечение процесса /1/ в зависимости от фейнмановской переменной $x_{\rm F}$ определялся с использованием метода Монте-Карло. При этом разыгрывался процесс /27/ с распадом резонанса массой 1350 МэВ и шириной 300 МэВ по моде К*°π. Параметр наклона дифракционного пика брался равным 10 (ГэВ/с)⁻². При моделировании проводилось соответствующее экспериментальным данным обрезание по поперечному импульсу К*° ($p_{\perp} \leq 0,3$ ГэВ/с³. Взаимодействие с ядром учитывалось при помощи умножения сечения на протоне на эффективное атомное число А $_{\rm aff}^{\rm RP}$ при x_F -1, которое определялось по формуле

$$A_{eff}^{RRP}(x_F) = \frac{F^{RRP}(x_F)}{\sigma_{in}^{KN} \int_{x_F}^{1} dx_q \tilde{f}(x_q) G(\frac{x_F}{x_q})} .$$
 /28/

Вклад процесса /4//13/ в сечение реакции /1/ составляет ~10% от вклада дифракции. Его расчет проводился аналогичным образом, при этом учитывались вероятности распадов $K^*(1430) = K^{*\circ}$, а наклон сечения $d\sigma/dt$ брался равным 5 (ГэВ/с)⁻²/14/. Полный вклад распадных $K^{*\circ}$ приведен на рис.3 /пунктирная кривая/.

Основным источником распадных К°-мезонов являются процессы /1/ и /5/. При расчете предполагалось сходное поведение сечений этих процессов в зависимости от продольного импульса, учитывались вероятности распадов К*° и К** в К°π и изотопические соотношения между процессами в области $x_F \sim 1$. Вклад процесса /1/ в сечение образования распадных К°-мезонов определялся методом Монте-Карло на основе сечений, измеренных в том же эксперименте /пунктирная кривая на рис.3/.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Инвариантные сечения процессов /1/ и /2/ описывались зависимостью

$$F(x_F) = \alpha \{F^{RRP}(x_F) + \frac{\beta}{\sqrt{s/s_0}} F^{RRR}(x_F)\}_{npAM.} + F(x_F)_{pacn.}, /29/$$

Рис.3. Дифференциальные сечения $F(x_F)$ процессов /1/ и /2/ и их описание. Точечные кривые – вклады планарных (RRR) и цилиндрических (RRP) диаграмм; штрихпунктирные кривые – суммарный вклад RRR- и RRP -графиков; пунктирные кривые – вклад процессов /3/, /4/ для $K^{*\circ}$ и /1/, /5/ для K° /кривые приведены для K^+ Be-взаимодействий/. Сплошные кривые – описание процессов /1/ и /2/.

где α , β - параметры. В результате аппроксимации всей совокупности экспериментальных данных получены следующие значения параметров: $\alpha_{K^{*0}} \approx 0,017\pm0,002$,

 $\alpha_{\mu^{\circ}} = 0,007\pm0,001, \beta = 1,1\pm0,2.$

Параметр β определяет относительный вклад планарных диаграмм. При расчете сечений использовалось значение коэффициента натяжения струны к, равное 3 ГэВ/фм.

На рис.3 представлены инвариантные сечения процессов /1/ и /2/ в зависимости от фейнмановской переменной х и их описание в рамках предложенной схемы /сплошные кривые/. Для реакции /1/ наблюдается хорошее согласие теоретического описания и экспериментальных данных на всех ядрах. Для реакции /2/ наблюдается хорошее согласие для ядер бериллия и меди. В случае К⁺ Рb -взаимодействий теоретическая кривая лежит на ≈20% выше экспериментальных точек. Пунктирные кривые на рис.3 определяют вклад распадных K *° - и K°-мезонов, а штрихпунктирные кривые - вклад прямых К*°- и К°-мезонов. Для реакции /1/ показаны вклады планарных и цилиндрических диаграмм /точечные кривые/. Отметим, что вклад планарных диаграмм при x _E > 0,4 больше вклада цилиндрических диаграмм, поэтому учет планарных диаграмм обязателен при описании реакций /1/-/2/ при энергии ~10 ГэВ.

На рис.4 представлены отношения сечений для одного и того же процесса на разных ядрах в зависимости от x_r :

Рис.5. Отношения сечений процесса /!/ к сечениям процесса /2/ на одинаковых ядрах в зависимости от х_F. Сплошная кривая - расчет в рамках модели; штриховая кривая - отношения сечений распадных каонов; штрихпунктирная кривая - отношения сечений прямых каонов /кривые приведены для K⁺ Be-взаимодействий/.

Рис.4. Отношения сечений на разных ядрах для процессов /1/ или /2/ в зависимости от х г. Сплошные кривые - результат расчета в рамках используемой модели, пунктирные кривые - расчет в приближении Глаубера - Ситенко.

$$R_{A}(x_{F}) = \frac{\frac{d\sigma}{dx_{F}}(K^{+}A \rightarrow K^{*\circ}, K^{\circ} + X)}{\frac{d\sigma}{dx_{F}}(K^{+}Be \rightarrow K^{*\circ}, K^{\circ} + X)} .$$
(30)

Для процессов /1/ модель /сплошные кривые/ хорошо описывает экспериментальные данные. Для реакции /2/ расчет согласуется с $R_{C_{21}}$ и превышает R_{Ph} при $x_{p} > 0,6$.

Пунктирные прямые на этом рисунке соответствуют расчету в приближении Глаубера – Ситенко /15,16/:

$$A_{eff} = \int_{-\infty}^{\infty} d^2 b T(b) \left[1 - \frac{\sigma_{in}^{KN}}{A} T(b)\right]^{A-1}.$$
 (31/

Видно описание R_{Cu}для обеих реакций. В случае R_{Pb} результат расчета по формуле /31/ лежит ниже данных для реакции /1/ и выше данных для реакции /2/. На рис.5 представлено отношение сечений процессов /1/ и /2/ На одинаковых ядерных мишенях в зависимости от X_m:

$$R(x_F) = \frac{\frac{d\sigma}{dx_F} (K^+ A \to K^{*\circ} X)}{\frac{d\sigma}{dx_F} (K^+ A \to K^{\circ} X)} .$$
 (32/

На опыте наблюдается независимость R от атомного номера ядра мишени и сильный рост при $x_F \rightarrow 1$. Отсутствие А-зависимости R объясняется одинаковой схемой учета ядерных эффектов для процессов /1/ и /2/. Полученное отношение сечений /сплошная кривая/ хорошо описывает экспериментальные данные. Отношение вкладов прямых $K^{*\circ}$ - и K° -мезонов дает постоянную величину /штрихпунктирная кривая/. Отношение сечений распадных каонов сильно растет при $x_F \rightarrow 1$ /пунктирная кривая/, что связано с резким падением вклада распадных $K^{*\circ}$ -мезонов в области $x_F > 0,7$.

ЗАКЛЮЧЕНИЕ

Для описания процессов инклюзивного образования К*°- и К°мезонов в каон-ядерных взаимодействиях при энергии 11 ГэВ проведен анализ вкладов прямых и распадных К*°- и К°-мезонов в эти процессы. Вклады распадных каонов определены для дифракционных процессов и процессов с образованием резонансов. Для описания сечений прямых нейтральных каонов использовалась модель ^{/1, 2/}, в которой учитываются эффекты экранирс≥ания цвета кварков в адроне, длина формирования адрона и взаимодействие промежуточного объекта. В этой модели проведен расчет сечений цилиндрических и планарных диаграмм.

В рамках предложенной схемы описаны экспериментальные дэнные по инвариантным сечениям инклюзивного образования К*°и К°-мезонов в зависимости от фейнмановской переменной. Показано, что вклад в сечение планарных диаграмм больше вклада цилиндрических диаграмм, а наблюдаемый на опыте рост отношения сечения образования К*°-мезона к сечению образования К°-мезона при $x_{\rm F} \rightarrow 1$ связан с резким уменьшением вклада распадных К°-мезонов и ростом вклада распадных К*°-мезонов при $x_{\rm p} \rightarrow 1$.

В заключение хочу выразить искреннюю благодарность Б.З.Копелиовичу за многочисленные полезные обсуждения. ЛИТЕРАТУРА

- 1. Копелиович Б.З. ЭЧАЯ, 1990, т.21, вып.1.
- 2. Kopeliovich B.Z. et al. JINR, E2-90-344, Dubna, 1990.
- 3. Акименко С.А. и др. ИФВЭ, 90-36, Серпухов, 1990.
- 4. Акименко С.А. и др. ИФВЭ, 90-10, Серпухов, 1990.
- 5. Dally E.B. et al. Phys. Rev. Lett., 1980, 45, p.232.
- 6. Водопьянов А.С., Цыганов Э.Н. ЭЧАЯ, 1984, т.15, вып.1.
- 7. Kopeliovich B.Z. JINR, E2-90-175, Dubna, 1990.
- 8. Кайдалов А.Б. ЯФ, т.45, вып.5, 1987.
- 9. Ter-Martirosyan K.A. Phys. Lett., 1973, 44B, p.377.
- 10. Пискунова О.И. Препринт ФИАН № 140, Москва, 1987.
- 11. Шабельский Ю.М. ЯФ, т.49, вып.4, 1989.
- 12. Otter G. et al. Nucl. Phys., 1975, 896, p.29.
- 13. Flaminio V. et al. CERN, 83-02, Geneva, 1983.
- 14. Deutsham V. et al. CERN/D Ph 11/Phys., 71-24, Geneva, 1971.
- 15. Glauber R.J. Lectures in theoret.Phys., No.4, Interscience, 1959, vol.1, p.315.
- 16. Ситенко О.Г. Украинский физ. журн., 1959, т.4, с.152-163.

Рукопись поступила в издательский отдел 15 июня 1990 года.