90-311

Объединенный институт ядерных исследований дубна

5-953

P2-90-311

Б.В.Быковский, В.А.Мещеряков, Д.В.Мещеряков*

УКАЗАНИЕ НА СУЩЕСТВОВАНИЕ СВЯЗАННОГО СОСТОЯНИЯ В рр-СИСТЕМЕ

Направлено в журнал "Ядерная физика"

*Московский государственный университет им.М.В.Ломоносова

1990

Введение

Эксперименты с антипротонами низких энергий, проведенные в ЦЕРНЕ на установке LEAR, дали богатый экспериментальный материал по рр -взаимодействию. Он включает данные по дифференциальным сечениям упругого рассеяния, полным сечениям и отношению действительной и мнимой частей амплитуды упругого вперед ρ=Re F_{DD}/Im F_{DD}. Теоретический анализ рассеяния этих С помощью потенциальных моделей. данных проводился приближения эффективного радиуса, а также дисперсионных соотношений (ДС). Несмотря на большой объем проведенной работы не существует согласованного ответа на вопрос 0 существовании квазиядерных связанных состояний в рр-системе. Дисперсионный анализ указывал на необходимость таких Мэв /1,2/ состояний полной энергией порядка 1700-1880 С обнаружение осцилляторного характера Однако ρ при p_L<600M3B/c^{/18},19/ эти предсказания делает мало убедительными. Ниже мы приведем новый анализ данных по р и энергиях с р₁≤1ГэВ/с, используя аналитические σ_{tat} при свойства амплитуды упругого рассеяния вперед. В отличие от упомянутых выше работ по ДС мы не будем вычислять Re F - по Im F_{pp}, а построим модель амплитуды F - , явным данным о образом учитывающую ее аналитические свойства.

1. Формулировка модели

Амплитуда упругого рассеяния вперед F_{pp}(s) как функция комплексной переменной обладает следующими свойствами:

1.F₋₋(s) является аналитической функцией в плоскости

комплексной переменной s с разрезами (рис.1); (1) 2. $F_{pp}^{*}(s) = F_{pp}(s^{*});$ (2) 3.Im $F_{pp}(s) = \frac{p}{4\pi} \sigma_{tot}(s), s \ge 4m^{2},$ (3)

где m- масса протона.

Здесь перечислены наиболее важные, с точки зрения нашей модели, аналитические свойства амплитуды рассеяния F_{pp} (s). При рассмотрении свойства (1) необходимо отметить наличие на разрезе $s \ge 4\mu^2$ (где μ -масса пиона) точки ветвления корневого типа $s=4m_n^2$ за счет процесса ррэпп. Влияние этого процесса на амплитуду изучалось в работах^{/4,5/}. В работе^{/4/} приводятся физические причины, по которым учет этой точки может оказаться важным, однако не ясно, каким образом ее

выстеренный киститут (ABCHERCENCESSE XMERCER 6H5/HOTEKA

влияние проявляется в моделях связанных каналов и граничных условий, рассмотренных в ней. В работе^{/5/} указывается, что эффект от nn-порога оказывается малым; в дальнейшем, следуя последнему утверждению, будем пренебрегать этой точкой ветвления. На интервале $4m^2 \le < 4M^2$ (M соответствует значению $p_L \simeq 1\Gamma$ ЭВ/с -параметру шкалы низкоэнергетических взаимодействий) существуют точки ветвления за счет многопионных процессов, но ими мы также пренебрегаем на том основании, что в этом интервале в поведении полного сечения σ_{tot} не наблюдается каких-либо нерегулярностей^{/6/}.

Ниже точки s<4m² расположена нефизическая часть разреза 4µ²≤s процесса рр→рр. В ДС подходе она вычисляется на основе аналитического продолжения условия унитарности. Этот способ детально описан в работе/1/. Для нас будет существенно, что вклады в Im F₋(s) различных групп мезонов, например (ε,δ,s[^]...), $(\delta, \eta, \eta'...),$ (ρ,ω,φ...), аппроксимируются полюсными членами с вычетами разных знаков, в результате чего имеет место их взаимная компенсация. Этот механизм повышает роль состояний с большими значениями s при вычислении Re F _ (s) в интересующей нас области. Строго говоря, любой из вышеперечисленных мезонов представляется полюсами на нефизических поверхности листах римановой $F_{pp}(s)$. Нерезонансная часть взаимодействия дает плавно изменяющийся вклад в амплитуду F₋(s). Такую нерезонансную часть можно учесть, вводя эффективную точку ветвления s=a, где 4µ²<a<4m², что было продемонстрировано в работе^{///}. Таким образом, нефизическая часть разреза рр-рр будет смоделирована нами корневой точкой ветвления з=а и полюсами на нефизических листах римановой поверхности F_-(s).

точка s=0 -корневая точка ветвления, возникающая за счет перекрестного процесса pp→pp. Влияние данного процесса на амплитуду F_p(s) будет представлено плавной функцией.

Таким образом, мы приходим к модели, в которой амплитуда процесса F_{pp}(s) обладает тремя точками ветвления корневого типа при s=0, a, 4m² и представляется мероморфной функцией на своей римановой поверхности.

2. Униформизирующая переменная и формулы для амплитуды F_{рр} Переменная, в которой амплитуда F_{рр} является мероморфной функцией, называется униформизирующей. Она может быть построена как суперпозиция шести конформных преобразований (корневого и дробно-линейного типа). Окончательное выражение имеет вид

$$z = \sqrt{\frac{4}{4-a}} \sqrt{\frac{s-a}{s}} - \sqrt{\frac{a}{4-a}} \sqrt{\frac{s-4}{s}}$$
 (4)

Здесь выбрана та ветвь четырехлистной римановой поверхности, у которой $\sqrt{s}>0$ и $\sqrt{s-4}>0$ на верхнем берегу разреза при s>4(здесь и везде в дальнейшем используются нормированные на массу протона m значения s, μ и a). Параметр a=1.44, что соответствует наличию эффективного порога при энергии порядка 1ГэВ. Физический лист переходит в нижнюю половину единичного круга (рис. 2). Точки ветвления s-плоскости соответствуют точкам аналитичности мероморфной функции в плоскости z (0,a,4) $\longleftrightarrow (0,-i,1)_{z}.$

Рис.1. Расположение разрезов F pp (s) на комплексной плоскости s. Бесконечно удаленная точка физического листа плоскости s переходит в точки $\pm 1/2$ плоскости z. Строго говоря, точки $\pm 1/2$ следует рассматривать как логарифмические точки ветвления: в них соединяются между собой бесконечное число листов римановой поверхности функции F₋(z), соответствующих порогам многочастичных процессов при высоких энергиях^{/8/}. Важный вопрос состоит в способе представления стабильных частиц,

3

резонансных И связанных состояний В амплитуде F_p(z)=F_[s(z)]. Будем считать, что в первом приближении все они стабильны, т.е. их вклады в F_{-(s)} имеют вид

$$\mathbf{F}_{pp}(\mathbf{s}) \simeq \frac{g^2}{\mathbf{s} - \mathbf{s}_u}, \qquad (5)$$

где s_н-квадрат массы адронного состояния н. ясно, что вне зависимости от величины s_н каждый адрон представлен на плоскости z четырьмя полюсами -корнями уравнения

(ρ): a<s_ρ<4 (8)

$$(x): 4 < s_{-\infty}$$
 (9)

не составляет труда представить, как расположены полюса классов (р) и (х), когда они описывают резонансные состояния конечной ширины и сдвигаются с единичной окружности и действительной оси z так, чтобы не попадать в область $\{|z| \le 1, \text{ Im } z < 0\}.$

С учетом сказанного выше свойства амплитуды F - как функции z могут быть записаны в следующей форме:

1. F-(z) аналитична в области, описанной выше и изображенной на рис.2.

2. $F_{pp}^{*}(iz) = F_{pp}(-iz^{*})$.

3. Im $F_{pp}(z) = \frac{p(z)}{4\pi} \sigma_{tot}(s(z)), z \in [1/2, 1].$

Используем свойство 1, предположив, что в интересующем нас интервале отрезка [1/2,1] нет резонансов класса (x). Тогда в соответствующем этому интервалу кольце единичного круга амплитуда F₋(z) разлагается в ряд Лорана

$$F_{pp}(z) = \sum_{-\infty}^{\infty} A_n z^n .$$
 (10)

Свойство 2 приводит к условиям на коэффициенты ряда Лорана:

 $A_{2n}^{*} = A_{2n}, \quad A_{2n+1}^{*} = -A_{2n+1},$ (11)

т.е. действительная и мнимая части амплитуды разделяются на два независимых ряда:

Re
$$F_{pp}(z) = \sum_{-\infty}^{\infty} A_{2n} z^{2n}$$
, Im $F_{pp}(z) = i \sum_{-\infty}^{\infty} A_{2n+1} z^{2n+1}$. (12)

Главная часть ряда Лорана описывает логарифмическую особенность в точках z=±1/2 и резонансы класса (x). Регулярная часть ряда описывает резонансы класса ho и нерезонансный фон амплитуды. Поскольку мы не будем стремиться описать логарифмические особенности, главной частью ряда можно пренебречь. Обрывая регулярную часть ряда Лорана на достаточно высоких значениях N, можно описать амплитуду F_-(s) с любой заданной точностью. При этом возникает связь между N_{ве} и N_{те}- верхними пределами в аппроксимирующих рядах действительной и мнимой частей соответственно. Справедливо равенство:

N_{Re}-N_{Im}=±1. (13) Сами числа N_{Re} и N_{Im} могут быть достаточно велики, однако вклад, относящийся к резонансам класса р, будет небольшим, так как призван описывать нерезонансный фон. Окончательно вместо формулы (10) получим новое представление амплитуды:

$$F_{pp}(z) = \sum_{n=0}^{N} A_{n} z^{n} + \sum_{\rho} \left(\frac{c_{\rho}}{z - z_{\rho}} - \frac{c_{\rho}^{*}}{z - z_{\rho}^{*}} \right), \quad (14)$$

 $N=max(N_{Re}, N_{Im}).$

Формула (14) справедлива в кольце с неточно известными радиусами, содержащем единичную окружность. Наша цель состоит в описании амплитуды F₋(s) при малых s-4 и выяснении вопроса о существовании в классе р полюса вблизи точки z=1. В силу того, что вычеты с для известных мезонов из класса р имеют можно сузить область справедливости разные знаки, представления до окрестности точки z=1, разложив правую часть (14) в ряд по (1-z) за исключением только двух полюсов, соответствующих квазиядерному состоянию в системе рр. Такая процедура не изменит величины N и мы получим

$$F_{pp}(z) = \sum_{n=0}^{N} \tilde{A}_{n}(1-z)^{n} + \frac{(c_{\rho})_{1}}{z-(z_{\rho})_{1}} - \frac{(c_{\rho})_{2}}{z-(z_{\rho})_{2}}, \quad (15)$$

здесь Ã_n - комплексные коэффициенты.

В формуле (15) полюса $(z_{\rho})_1$ и $(z_{\rho})_2$ относятся к одному квазиядерному состоянию. Вторая пара расположена окрестности точки z=-1. Чтобы правильно представить взаимное расположение $(z_{\rho})_1$ и $(z_{\rho})_2$, разложим z по малым p:

$$z = (1 + \frac{3}{4}p + \frac{1}{2} - (\frac{3}{4}p)^2).$$
(16)

Импульс квазиядерного состояния равен^{z_p} $p_{qn} = \pm i \delta \bar{\tau} \varepsilon$, $\varepsilon, \delta > 0$, p/m«1, а значит, $(z_{\rho})_1$, $(z_{\rho})_2 = 1 - \frac{3}{4} (\pm i \delta \bar{\tau} \varepsilon)$. (17)

Продолжим анализ полюсных слагаемых, возникающих за счет квазиядерного состояния, положив $(c_p)_j = \alpha_j + i\beta_j$. Забегая вперед, отметим, что существующие экспериментальные данные не дают возможности определить все неизвестные параметры $\alpha_j, \beta_j, \delta, \varepsilon$. Если пренебречь величинами δ и ε , то становится ясно, что и Re $F_{pp}(z)$ и Im $F_{pp}(z)$ будут содержать полюса первой степени по (1-z). Достоверное их обнаружение в Re $F_{pp}(z)$ и Im $F_{pp}(z)$ явилось бы доказательством существования квазиядерного состояния. Следующий шаг анализа состоит в определении величин δ и ε , для чего следует привлечь экспериментальный материал из работы^{/5/}.

Особого обсуждения заслуживает формула (17). В силу положительности є полюс $(z_{\rho})_2$ расположен так, что Re $(z_{\rho})_2 \in [1/2, 1]$. Такое расположение $(z_{\rho})_2$ может привести к образованию резонансной структуры в σ_{tot} в окрестности z=1, то есть при малых s/4-1. Таким образом, появление резонансной структуры в σ_{tot} при $p_L \le 180$ МэВ/с согласно развиваемой модели должно рассматриваться как доказательство существования квазиядерного состояния. Вывод следует из четырехлистной модели римановой поверхности функции $F_{pp}(z)$, то есть является топологическим фактом.

Приведем окончательные формулы, по которым будут анализироваться данные опыта:

$$F_{pp}(z) = \sum_{n=0}^{N} \widetilde{A}_{n} (1-z)^{n} + \frac{\alpha+i\beta}{1-z} ; |1-z| \approx 0.$$
 (18)

3. Анализ данных по полным сечениям

Учитывая результаты описания данных по полным сечениям на основе эмпирических формул^{10/}, положим в формуле (18) для $\operatorname{Im} F_{pp}(s)$ величину N=2, то есть

$$F_{pp}(z) = \sum_{n=0}^{2} \beta_{n} (1-z)^{n} + \frac{\beta}{1-z} ; |1-z| \approx 0.$$
 (19)

Будем использовать экспериментальные данные работ^{10,11/}. Общее число значений σ_{tot} составило 35. Результаты анализа приведены в таблице 1.

Таблица 1	L
-----------	---

	β _o	β ₁	β2.	β	χ^2/N
1	17.6±1.28	84.6±18.8	48.7±60	0	38.5/32
2	16.6±0.3	99.2±2.1	0	0	39.2/33
3	23.5±0.19	0	328±7	0	60.5/33
4	14.5±2.84	106±9.92	0	0.142±0.190	38.6/32

Из таблицы следует, что удовлетворительного описания полных сечений можно добиться с помощью двух параметров: β_0 и β. Введение третьего параметра β₂ не улучшает качество описания по χ^2 критерию и, кроме того, приводит к значительному увеличению ошибок и параметров корреляции. Учет полюсного члена, так же как и третьего параметра β_2 , не улучшает качества описания и весьма напоминает введение последнего. Отметим, что значения параметров β_0 и β_1 при двухпараметрической параметризации 2 и полюсной 4 хорошо согласуются между собой в пределах ошибок. Таким образом, использованные нами экспериментальные данные по полным сечениям хорошо описываются (рис.3) двухпараметрической параметризацией 2 и не противоречат предположению о наличии обзоре^{/9/} приводится В полюсного члена. следующая характеристика поведения полного сечения при малых р:

$$\frac{v}{c} \sigma_{\text{tot}} = 45 \text{mb} \qquad \frac{v}{c} \rightarrow 0$$

Вычисления по параметризации 4 дает

$$\frac{v}{c} \sigma_{\rm tot} = 38 \pm 8 \, {\rm mb} \qquad \frac{v}{c} \to 0 \, ,$$

что хорошо согласуется с приведенной выше оценкой.

4. Анализ данных по действительной части амплитуды упругого pp-рассеяния вперед

Данные по действительной части амплитуды $p\bar{p}$ – рассеяния взяты из работ^{/10,12,13/}и представлены в виде отношения $\rho(s) = \operatorname{Re} F_{p\bar{p}}(s) / \operatorname{Im} F_{p\bar{p}}(s)$. К этим данным добавлено значение $\rho(1)$, вычисленное по формуле дезера^{/11/} на основе данных, цитируемых в работе^{/5}, по сдвигу энергии и ширине 1s состояния антипротония

$\rho(1) = -1.6 \pm 0.5$,

Общее число анализированных экспериментальных значений равно 38. Аналогичные наборы данных анализировались в работах^{/4,5,13,14/}. Все авторы единодушны в заключении о том, что при $p_L < 200M$ эВ/с величина ρ имеет еще один ноль. Таким образом, даже визуальный анализ данных приводит к заключению о наличии по крайней мере трех нулей в интервале $0 < p_L < 1\Gamma$ эВ/с.

Известно, что нули ρ можно интерпретировать при определенных условиях как проявление резонансов. Однако в фазовый рассматриваемом случае анализ упругого ppрассеяния^{/16/} и результаты работы^{/6/} отвергают такую возможность. Эта точка зрения подкреплена анализом полного сечения в рассматриваемом интервале и результатами работы $^{17/}$. Полученные в $^{16/}$ s, p и d фазы имеют нерезонансное поведение и большую неупругость, d фазы малы. При таком фазовом `анализе нули ho являются, по-видимому, результатом компенсации действительных частей парциальных амплитуд. К аналогичным выводам пришли авторы работы/18/. Они рассмотрели потенциальную модель, в которой указанный механизм компенсации осуществляется за счет р-волн. Хотя им и удалось добиться согласия с экспериментальными значениями р при p=233,272МЭВ/с, однако это достигнуто за счет введения параметра л, характеризующего спиновую зависимость амплитуды. При указанных энергиях ее присутствие не было обнаружено экспериментально^{/19/}. Этот положительный пример описания р иллюстрирует общее утверждение о трудности получения зависимости р от энергии в современных версиях потенциальных моделей.

Рассматриваемая нами модель не принадлежит к числу потенциальных. В ней важен выбор степени полинома N, описывающего фоновую часть амплитуды Re $F_{pp}(z)$. Согласно формуле (13) и результатам анализа Im $F_{pp}(z)$ существуют два варианта: $N_{Re}=1$ и $N_{Re}=3$. Очевидно, что приемлемым является только второй вариант: три нуля у функции $\rho(z)$. Попытка найти положение этих нулей с помощью процедуры минимизации χ^2 дает

отрицательный результат. Противоречие состоит в невозможности $\rho(p_1=0)=-1.6\pm0.5$ одновременного описания ρ(p, ≈350МэВ/с) ≈-0.2 полиномом третьей степени. Его можно избежать, если повысить степень полинома до 5. Возникающие дополнительные нули расположены в области р.>1ГэВ/с при р,≃5ГэВ/с и р,≃10ГэВ/с и должны быть отнесены к экрестности логарифмической точки ветвления z=1/2. Эти нули должны иметь другую природу по сравнению с нулями в области р.<1ГэВ/с. Подтверждением ЭТОГО служит факт невозможности доописания экспериментальной информации по F-(s) на биться всем изученном интервале значений s. Отвергнув способ повышения степени полинома, рассмотрим другую возможность. Предположим, что гипотетический ноль при р <180МэВ/с имеет не компенсационную природу, а связан с наличием полюса при z=1. чтобы исследовать эту возможность, отбросим значение ρ(0) и постараемся описать оставшиеся экспериментальные данные. полагая N_p=3. Положение нулей определяется с относительной точностью 4.9^{10⁻³}, 3.6^{10⁻³}, 0.22. Последний нуль расположен при р,>1ГэВ/с. Общий нормировочный множитель полинома

Re F_{pp}(z) определен с относительной точностью 0.6, а величина $\chi^2/37=30.3/37$. Большая величина относительной ошибки указывает на целесообразность понижения N_{Re} до двух, то есть N_{Re}=2. Анализ данных по Re F_{pp}(z) с N_{Re}=2 приводит к хорошим результатам: $\chi^2/38=33.1/38\approx1$.

Завершим анализ экспериментальной информации с помощью формулы

Re
$$F_{pp}(z) = \sum_{n=0}^{2} \alpha_{n} (1-z)^{n} + \frac{\rho(0)\beta}{1-z}$$
, (20)
$$\sum_{n=0}^{2} \alpha_{n} (1-z)^{n} = c(z-z_{1})(z-z_{2}).$$

Параметры имеют следующие значения:

c=1887±244, z₁=0.847±0.006, z₂=0.903±0.003, $\chi^2/38=33.6/38$.

Заключение

анализа протон-антипротонного взаимодействия были Для выбраны две величины: ρ и σ_{tot} . В качестве теоретической основы использованы аналитические свойства амплитуды упругого рассеяния вперед F_(s). Предыдущий опыт работы с NN-системой при низких энергиях был использован двумя способами. во-первых, были выбраны важные для описания процесса точки ветвления амплитуды F₋(s). Ими являются три точки: s=0(pp-порог), s=a(эффективный порог ненаблюдаемой области) и s=4m²(порог pp-процесса). точкам По ЭТИМ построена по которой функция униформизирующая переменная z, $F_{pp}(z) = F_{pp}[s(z)]$ является мероморфной. Ее полюса описывают как влияние резонансов в ненаблюдаемой области, так и возможные квазиядерные состояния в pp -системе. За счет получена формула (20), области сходимости сужения справедливая в окрестности рр точки ветвления. С помощью этой формулы проанализированы экспериментальные данные по ρ и σ_{tot} при р_L<1ГэВ/с. Во-вторых, выбор регулярной части формулы (14) проводился с учетом опыта построения потенциальных моделей.

Удовлетворительного описания ρ и σ_{tot} в указанном интервале энергий удается достичь только в предположении о существовании квазиядерного состояния вблизи порога. Существующие экспериментальные данные не дают возможности определить его массу, которая близка к 2m. Отличительной чертой подхода является последовательный учет ненаблюдаемой области. Он приводит, в частности, к тому, что наличие квазиядерного состояния может проявляться не только как ноль у ρ при $p_L < 180 M
ightarrow B/c$, но и как наличие резонансной структуры у σ_{tot} в этом же интервале импульсов. Таким образом, проведенный нами анализ ρ и σ_{tot} указывает на наличие квазиядерного состояния $p\overline{p}$ -системы с массой, близкой к 2m, для определения которой необходимы дополнительные опыты по определению ρ и σ_{tot} при $p_L < 180 M
ightarrow B/c$.

литература

1.W.Grein, Nucl. Phys. B131(1977)255.

W.Grein, Proc.4th European Antiproton Symp.(Barr,1978),Vol.1 (Centre National de la Recherche Scientifique, Paris,

1979)p.35.

2. H.Iwasaki et al., Nucl. Phys. A433(1985)580.

- 3. C.Bourrely, J.Soffer and D.Wray, Nucl. Phys. B77(1974)386.
- 4.J.D.Dalkarov, K.V.Protasov, Lebedev Physical Institute preprint 34(1986).
- J.Mahalanabis, H.J.Pirner, T.-A.Shibata, preprint CERN-TH.4833/87(1988).

6. W.Bruckner et al., Phys. Lett. B197(1987)463.

- 7. S.Dudnicka, L.Martinovich, Lett. Nuovo Cimento, 44 (1985) 462.
- 8. V.P.Gerdt, V.I.Inozemtsev, V.A.Meshcheryakov,

Lett. Nuovo Cimento, 15(1976)321.

- 9. I.S.Shapiro, Phys. Rep. 35C(1978), Num.2, p.14.
- 10. K.K.Nakamura et al., Phys. Rev. D29(1984)349.
- 11. S.Deser et al., Phys. Rev. 96(1954)774.
- 12. P.Schiavon et. al., preprint CERN-EP/89-38(1989).
- 13. B.O.Kebrikov, Yu.A.Simonov preprint ITEP-38(1986).
- 14. A.E.Kudrjavtsev, V.E.Markushin preprint ITEP-179(1983).
- 15. W.Bruckner et al., Phys. Lett. 166(1986)133.

16. W.Bruckner et al., Phys. Lett. 197(1987)463.

10

- 17. J.J.de Swart, R.Timmermans and T.A.Rijken, Low energy nucleon-antinucleon scattering, preprint THEF-NYM-88.05.
- 18. W.Bruckner et al., Phys. Lett. 158(1985)180.
- 19. L.Linnsen et al., Nucl. Phys. A469(1987)726.

Быковский Б.В., Мещеряков В.А., Мещеряков Д.В. Указание на существование связанного состояния в рр-системе

Рассмотрены две характеристики протон-антипротонного взаимодействия: $\rho(s) = \operatorname{Re} F_{p\overline{p}}(s) / \operatorname{Im} F_{p\overline{p}}(s)$ и $\sigma_{tot}(s)$. В качестве теоретической основы использованы аналитические свойства амплитуды упругого рассеяния вперед $F_{p\overline{p}}(s)$. Были проанализированы экспериментальные данные по ρ и σ_{tot} при $p_L \leq 1$ ГэВ/с. Удовлетворительного описания ρ и σ_{tot} в указанном интервале энергий удается достичь только в предположении о существовании квазиядерного состояния pp-системы с массой, близкой к 2m.

P2-90-311

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1990

Перевод авторов

Bykovskii B.V., Meshcheryakov V.A., P2-90-311 Meshcheryakov D.V. Indication on the Existence of the Bound State in pp-System

Two characteristics of proton-antiproton interaction $\rho(s) = \operatorname{ReF}_{p\overline{p}}/\operatorname{ImF}_{p\overline{p}}$ and σ_{tot} (s) are considered. Theoretical consideration is based on the analytic properties of the forward scattering amplitude $\operatorname{F}_{p\overline{p}}(s)$. Experimental data on ρ and σ_{tot} at $p_{L} \leq 1$ GeV/c have been analysed, and satisfactory description of ρ and σ_{tot} has been achieved only when a quasi-nuclear state is assumed to exist in the $p\overline{p}$ system with a mass close to 2m.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Рукопись поступила в издательский отдел 4 мая 1990 года.