

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

B 676

P2-89-419

М.К.Волков, Ю.П.Иванов, А.А.Осипов РАСПАД τ⁻→ν_τπ⁻ρ° В КВАРКОВОЙ МОДЕЛИ СВЕРХПРОВОДЯЩЕГО ТИПА

Введение

Псевдовекторный $a_i(1260)$ -мезон играет существенную роль при описании распадов, вызываемых слабым аксиальным током. С его помощью, например, можно объяснить, почему векторный и аксиальный формфакторы процесса $\pi^- + e^-\nu_r$ не равны друг другу [1]. Распады τ -лептона: $\tau^- + a_i^-\nu_\tau$, $\tau^- + \nu_\tau \pi^- \omega$, $\tau^- + \nu_\tau \pi^- \rho^0$, $\tau^- + \nu_\tau \pi^- r$, $\tau^- + \nu_\tau \pi^- n \pi$ по своей структуре во многом похожи на радиационный распад заряженного пиона. А последние три из них идут за счёт аксиального тока. В настоящей работе, используя кварковую модель сверхпроводящего типа [2], мы рассмотрим процессы $\tau^- + a_i^-\nu_\tau$ и $\tau^- + \nu_\tau \pi^- \rho^0$. Распады $\tau^- + \nu_\tau \pi^- \omega$, $\tau^- + \nu_\tau \pi^- r$, $\tau^- + \nu_\tau \pi^- \pi$ будут обсуждаться отдельно.

Распад $\tau^- + \nu_{\tau} a_{1}^-$ кратко описан в работе [1]. Здесь мы рассмотрим этот процесс с точки зрения аксиал-векторной доминантности в слабых взаимодействиях мезонов [3]. Такой подход уменьшает число рассматриваемых диаграмм и является эффективным при переходе к расчётам более сложных процессов, например $\tau^- + \nu_{\tau} \pi^- \rho^0$, $\tau^- + \nu_{\tau} \pi^- \gamma$, $\tau^- + \nu_{\tau} \pi^- \pi$.

Для описания распада $\tau^- + \nu_{\tau} \pi^- \rho^0$, нам потребуется амплитуда перехода $a_1^- + \pi^- \rho^0$. Мы будем использовать уже апробированное в работе [1] выражение. Наши расчёты показывают, что оно и в данной, значительно более высокой области энергий работает хорошо.

BOW AND WILL KHCTETYT MANNAIX HECTEROBAUES **ENSINOTEKA**

Аксиал-векторная доминантность

В работе [3] уже рассматривался механизм возникновения векторной и аксиальной доминантности в электрослабых взаимодействиях мезонов в модели сверхпроводящего типа. Здесь мы обсудим только ту его часть, которая необходима для изучения процессов $\tau \rightarrow \nu_{\tau} a_{1}$ и $\tau \rightarrow \nu_{\tau} \rho^{-}$. Вершина $\tau \rightarrow \nu_{\tau} a_{1}$ будет в дальнейшем использоваться при описании распада $\tau \rightarrow \nu_{\tau} a_{1}^{-}$ будет в дальнейшем в секторе векторных и аксиально-векторных мезонов, получающийся после включения слабых взаимодействий, имеет вид

$$L = \frac{\varkappa}{2\sqrt{2}} \left\{ \overline{\nu}_{\tau} W^{+}_{\mu} (1+\gamma_{s})\tau + c.c. + \overline{q} \left[W^{+}_{\mu} (1+\gamma_{s})\tau_{+} + c.c. \right] q \right\} + \frac{g_{\rho}}{\sqrt{2}} \overline{q} \left[\tau_{+} (\hat{\rho}^{+} + \hat{a}^{+}_{1}\gamma_{s}) + c.c. \right] q + \frac{1}{2} \left[M^{2} W^{2}_{\mu} + m^{2}_{\rho} \rho^{2}_{\mu} + m^{2}_{a_{1}} a^{2}_{a_{1}\mu} \right] - (1) - \frac{1}{4} \left[\rho^{2}_{\mu\nu} + a^{2}_{1\mu\nu} + W^{2}_{\mu\nu} \right] - \frac{\varkappa}{4g_{\rho}} \left[W^{+}_{\mu\nu} (\rho^{-}_{\mu\nu} + a^{-}_{1\mu\nu}) - 12m^{2}_{u} W^{+}_{\mu} a^{-}_{1\mu} + c.c. \right]$$

Здесь используются стандартные обозначения: W^{\pm}_{μ} -поля заряженных векторных бозонов; q-SU(2) дублет кварковых полей; τ_+ -характерная комбинация из матриц Паули; $\hat{W}_{\mu} = W_{\mu} \cdot r^{\mu}$, $W_{\mu\nu} = \partial_{\mu}W_{\nu} - \partial_{\nu}W_{\mu}$, m_{u} -масса и-кварка; М-масса W-бозона; $*^2/8M^2 = G_{u}/\sqrt{2}$, где G_{u} -константа Ферми; g_{ρ} -константа распада $\rho \rightarrow \pi\pi$ ($g_{\rho}^2/4\pi \simeq 3$).

Переопределим векторные и аксиально-векторные поля

$$p_{\mu}^{\pm} = \tilde{\rho}_{\mu}^{\pm} - \frac{\varkappa}{2g_{\rho}} W_{\mu}^{\pm} , \quad a_{1\mu}^{\pm} = \tilde{a}_{1\mu}^{\pm} - \frac{\varkappa}{2g_{\rho}} W_{\mu}^{\pm} .$$
 (2)

В результате такой замены часть лагранжиана, описывающая переходы $W^{\pm}_{\mu} + \rho^{\pm}_{\mu}$ и $W^{\pm}_{\mu} + a^{\pm}_{1\mu}$, преобразуется к удобной форме, не содержащей производных^{*}):

Данный лагранжиан совпадёт с соответствующей частью лагранжиана, полученного в работе [3], если воспользоваться соотношением $m_{a_1}^2 = m_{\rho}^2 + 6m_u^2$. В наших расчётах будем использовать физические значения для масс мезонов.

$$L = -\frac{\varkappa}{2g_{\rho}} \left[m_{\rho}^{2} (W_{\mu}^{\dagger} \rho_{\mu}^{-} + W_{\mu}^{-} \rho_{\mu}^{+}) + \frac{1}{2} m_{a_{1}}^{2} (W_{\mu}^{\dagger} a_{1\mu}^{-} + W_{\mu}^{-} a_{1\mu}^{+}) \right], \quad (3)$$

где Z= $(1-6m_u^2/m_{a_i}^2)^{-1}$.

y.

Из лагранжиана (3) получается следующее выражение для амплитуды распада $\tau^- + \nu_{\tau} a_{1}^-$

$$T_{\tau \to \nu a_{1}} = m_{a_{1}}^{2} \frac{1}{2g} \rho_{\rho}^{\mu} a_{1}^{\mu} l_{\mu}^{\dagger} , \qquad (4)$$

где $\ell_{\mu}^{+} = G_{\mu} \cos \vartheta \, \overline{\nu}_{\tau} r^{\mu} (1 - r_{5}) \tau$ -лептонный ток, $\vartheta = 13^{\circ}$ -угол Кабиббо, $\varepsilon_{a_{1}}^{\mu}$ -поляризация a_{1} -мезона. Масса m_{u} в нашей модели однозначно выражается через массу $m_{a_{1}}$ [2].

$$m_{u}^{2} = \frac{1}{12} \left[1 - \sqrt{1 - (2g_{\rho}F_{\pi} / m_{a_{i}})^{2}} \right] m_{a_{i}}^{2}, \quad (F_{\pi} = 93M\Im B)$$
 (5)

Используя (5), величину Z можно выразить только через наблюдаемые величины.

$$Z^{-1} = \frac{1}{2} \left[1 + \sqrt{1 - (2g_{\rho}F_{\pi}/m_{a_{1}})^{2}} \right].$$
(6)

В настоящее время для массы a_i -мезона существует несколько экспериментальных оценок. Анализ адронных реакций $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$ [4] и $\pi^- p \rightarrow \pi^- \pi^+ \pi^0 n$ [5] приводит к средней величине $m_{a_i} = 1260$ МэВ (см. [6]), что соответствует значениям $m_u = 276$ МэВ и $Z^{-1} = 0.71$. В этом случае ширина распада $\tau^- + \nu_{\tau} a_i^-$ равна $m_{\tau} \int_{-\infty}^{\infty} m_{\tau} m_{a_i} -z Z^{-1} \int_{-\infty}^{\infty} z_{i} z_{i}^{-1} z_{i}^{-1$

$$\Gamma_{\tau + \nu \mathbf{a}_{\mathbf{i}}} = \frac{\tau}{8\pi} \left[\cos \vartheta \ \frac{1}{2} \frac{\mathbf{a}}{\mathbf{g}_{\rho}} \ \mathbf{m}_{\mathbf{p}}^{-2} \right] \left[1 - \mathbf{m}_{\mathbf{a}_{\mathbf{i}}}^{*} / \mathbf{m}_{\tau}^{*} \right] \left[1 + 2\mathbf{m}_{\mathbf{a}_{\mathbf{i}}}^{*} / \mathbf{m}_{\tau}^{*} \right] \cdot 10^{-10} = -3 \cdot 10^{-10} \text{ MaB}$$
(7)

где m_т= 1784 МэВ -масса т-лептона, а m_р-масса нуклона.

Из распада т-лептона на три заряженных пиона получают более низкие оценки на массу m_a (см., например, данные коллабораций MAC, MARK II, DELCO и ARGUS [7-10]). Данные последних двух групп лежат даже ниже нижней допустимой границы для массы m_a, которая возникает в нашей модели как следствие формул (5) и (6).

- 2

$$m_{a}^{\text{Teop.}} \ge 2g_{\rho}F_{\pi} = 1140 \text{ M} \ni B$$
.

Это значение соответствует массе m_u =330МэВ. Если взять значение m_a =1166МэВ из работы [7] (что соответствует m_u =300МэВ), то для ширины распада $\tau^- + \nu_{\tau} a_{\perp}^-$ получаем *)

 $\Gamma_{\tau \to \nu a} = 2.2 \cdot 10^{-10} \text{ M}_{3}\text{B}$, (7')

(8)

что очень хорошо согласуется с экспериментальным значением [4]

$$\Gamma_{\tau+\nu a_{1}}^{\Im KC\Pi} = (2.3\pm0.7) \cdot 10^{-10} \text{ M}_{\Im}B .$$
 (9)

Распад $\tau \rightarrow \nu_{\tau} \pi^{-} \rho^{\circ}$

Перейдем теперь к описанию распада $\tau + \nu_{\tau} \pi^{-\rho} \phi^{\circ}$. Диаграмма, дающая основной вклад в амплитуду этого процесса, изображена на рис.1а. Диаграммы с промежуточными π и $\pi(1300)$ -мезонами (рис.1б) менее существенны. Мы их обсудим в конце этого раздела.

Амплитуду, соответствующую диаграмме 1а, можно получить, если воспользоваться формулой (4) и выражением для амплитуды а, те, которое в данной модели имеет вид [1]

$$T_{a_{1} \to n\rho} = ig_{\rho}^{2} F_{\pi} Z \epsilon_{\mu}(q) \epsilon_{\nu}(p_{3}) \left\{ g^{\mu\nu} + \frac{1}{m_{a_{1}}^{2}} \left[(p_{3}^{2} - q^{2})g^{\mu\nu} + q^{\mu}q^{\nu} \right] + \frac{1}{8\pi^{2} F_{\pi}^{2} Z} \left[(p_{2}^{2} + p_{3}^{2} - p_{2}p_{3})g^{\mu\nu} + q^{\nu}p_{3}^{\mu} + 2q^{\mu}q^{\nu} \right] \right\}.$$
(10)

Здесь p_2 , p_3 -ИМПУЛЬСЫ ПИОНА И ρ -мезона, $q = p_2 + p_3$, $\varepsilon_{\mu}(q)$ и $\varepsilon_{\nu}(p_3)$ -векторы поляризации a_1 и ρ -мезонов. Мы сохраняем последние $\overline{*)}$

Если воспользоваться лагранжианом работы [3], то получим заниженное значение $\Gamma_{\tau \to \nu a}^{[3]} = (2m_{\rho}^2/m_a^2)^2 \Gamma_{\tau \to \nu a} = 0,53 \Gamma_{\tau \to \nu a}$.

слагаемые в обеих квадратных скобках, так как a_i -мезон в данном случае находится вне массовой поверхности. Рассматриваемая амплитуда удовлетворительно описывает распад $a_i + n\rho$. При этом основной вклад приходится на q^2 -члены (вторая строчка формулы (10)). Кроме этого, q^2 -члены целиком определяют ширину радиационного распада $a_i + n\gamma$ и приводят к правильной величине отношения векторного и аксиального формфакторов процесса $n + e\nu\gamma$.

В результате получаем следующее выражение:

$$T_{\tau+\nu\pi\rho} = ig_{\rho}F_{\pi} \varepsilon_{\mu}^{\rho}(p_{3})\ell_{\nu}^{+} \left\{ g^{\mu\nu} + (g^{\mu\nu} - q^{\mu}q^{\nu}/m_{a_{1}}^{2}) \frac{p_{3}^{2}}{m_{a_{1}}^{2} - q^{2} - \ell m_{a_{1}}\Gamma_{a_{1}}} + \frac{1}{8\pi^{2}F_{\pi}^{2}Z} \left[m_{a_{1}}^{2} \frac{p_{2}^{\mu}p_{3}^{\nu} - p_{2}p_{3}g^{\mu\nu} + (p_{2}^{2} + p_{3}^{2})g^{\mu\nu}}{m_{a_{1}}^{2} - q^{2} - \ell m_{a_{1}}\Gamma_{a_{1}}} - \frac{(p_{2}^{2} + 2p_{3}^{2})q^{\mu}q^{\nu}}{m_{a_{1}}^{2} - q^{2} - \ell m_{a_{1}}\Gamma_{a_{1}}} + 2q^{\mu}q^{\nu} \right] \right\}.$$

Здесь Γ_{a_1} -ширина a_1 -резонанса. Сделаем несколько замечаний относительно дальнейшего использования формулы (11). Масса пиона $m_{\pi}^2 \ll m_{\rho}^2$, m_{τ}^2 , поэтому будем считать, что $p_2^2 = m_{\pi}^2 = 0$. Последнее слагаемое в квадратной скобке сократится соответствующим членом, получающимся от q^2 -разложения вершины $\rho + \pi\pi$ диаграммы 16. Кроме этого, отметим, что, ввиду существования перехода $\rho^0 + \gamma$, возникает вопрос, каким образом амплитуда (11) приведёт к градиентно-инвариантному выражению для процесса $\tau - \nu_{\pi}\pi^{-}\gamma$, т.к. в неё входит "нежелательное" в этом смысле первое слагаемое. Ответ на этот вопрос мы дадим в отдельной работе, посвящённой распаду $\tau - \nu_{\pi}\pi^{-}\gamma$.

Перейдём к обсуждению амплитуды, отвечающей диаграммам 16. Вершины диаграммы с обменом *п* -мезоном хорошо известны, поэтому мы сразу приведём матричный элемент, соответствующий данному процессу

$$T_{\tau+\nu n\rho} = ig_{\rho}F_{\pi} c_{\mu}^{\rho}(p_{g})\ell_{\nu}^{+} \frac{2 q^{\mu}q^{\nu}}{m_{\pi}^{2} - q^{2}} \left[1 + \frac{q^{2} - m_{\pi}^{2}}{8\pi^{2}F_{\pi}^{2}Z}\right].$$
(12)

Выражение в квадратных скобках - формфактор, отвечающий вершине $\rho \rightarrow n\pi$, уже апробированный нами при расчётах длин $n\pi$ -рассеяния [11].

Для вычисления вклада диаграммы с обменом *п*(1300) - мезоном воспользуемся феноменологическим лагранжианом, приведённым в работе [12].

 $L_{\pi\rho\pi} = ig_{\rho\pi\pi} (\pi^{\prime} \partial^{\mu}\pi^{\dagger}) \rho_{\mu}^{\circ} .$

 ρ_{μ}^{ν} .

(13)

Если здесь положить константу $g_{\rho n n} = g_{\rho}$, то получается вполне разумная оценка ширины распада $n' + n\rho$: $\Gamma_{n' + n\rho} = 340$ МэВ, при экспериментальном значении $\Gamma_{n' + n\rho}^{3 \text{КСП}} = 200-600$ МэВ. Для описания вершины $\tau + \nu n'$ воспользуемся лагранжианом $L_{\tau + \nu n}$, где сделаем замену поля n на n'. Тогда дополнительный вклад в амплитуду изучаемого процесса будет равен

 $T_{\tau \to \nu \pi \rho} = i g_{\rho} F_{\pi} \varepsilon^{\rho}_{\mu}(\mathbf{p}_{g}) \ell^{\dagger}_{\nu} \frac{q^{\mu} q^{\nu}}{\frac{q^{\mu} q^{\nu}}{\mathbf{p}_{\pi}^{2} - \mathbf{q}^{2}}}.$ (14)

Результаты численных оценок показывают, что основной вклад в ширину распада $\tau^- + \nu_{\tau} \pi^- \rho^0$ даёт диаграмма с промежуточным a_i -мезоном. На рис.2 изображена зависимость ширины распада $\tau^- + \nu_{\tau} \pi^- \rho^0$ от массы и ширины a_i -мезона, которая следует из амплитуды (11). Приведённые кривые в широком интервале значений для массы и ширины a_i -мезона согласуются с имеющимися экспериментальными данными [6]:

Наиболее предпочтительны следующие значения для массы и ширины а,-мезона:

 $m_{a_i} = 1150 \text{ M} \Im B$, $\Gamma_{a_i} = 370 \text{ M} \Im B$; $m_{a_i} = 1200 \text{ M} \Im B$, $\Gamma_{a_i} = 420 \text{ M} \Im B$; $m_{a_i} = 1250 \text{ M} \Im B$, $\Gamma_{a_i} = 450 \text{ M} \Im B$.

Вклады от каждой из диаграмм 16, по нашим оценкам, составляют порядка 10% основного, причём они имеют противоположные знаки. Например, для $m_{a_1} = 1200$ MэВ и $\Gamma_{a_1} = 420$ МэВ мы от диаграмм только с обменом a_1 -мезоном, суммы диаграмм с обменом a_1 -мезоном и пионом, и, наконец, полной суммы, включающей также обмен $\pi(1300)$ - мезоном с $\Gamma_{m} = 450$ МэВ, соответственно получаем

$$\Gamma_{\tau + \nu \pi \rho} = 1.17 \cdot 10^{-10} \text{M} \Im \text{B},$$

$$\Gamma_{\tau + \nu \pi \rho} = 1.05 \cdot 10^{-10} \text{M} \Im \text{B},$$

$$\Gamma_{\tau + \nu \pi \rho} = 1.18 \cdot 10^{-10} \text{M} \Im \text{B}.$$

Заключение

Изучение характеристик а,-мезона в настоящее время осуществляется на основе анализа реакции $\tau \rightarrow \nu_{\tau} n^{-} n n$. При обработке экспериментальных данных предполагается, что процесс распада идёт по каналу $\tau \rightarrow \nu_{\tau} a_{i} \rightarrow \nu_{\tau} n \rho \rightarrow \nu_{\tau} 3 n$. Поэтому нам представляются важными как теоретический анализ отдельных звеньев указанной цепочки, так и рассмотрение иных возможных каналов для данного процесса. Настоящая работа является первым шагом на пути реализации этой задачи. Попытки подобного рода уже имеются в литературе [13,14]. Для такого анализа мы используем кварковую модель сверхпроводящего типа, которая хорошо зарекомендовала себя при описании мезонной физики. Как показано в настоящей работе, модель удовлетворительно описывает процесс $\tau \rightarrow \nu_{\tau} \pi^{-} \rho^{\circ}$. Наша оценка вклада в ширину этого процесса для канала с обменом π -мезоном согласуется с оценкой работы [13]. Что касается вклада π (1300) -мезона, то он в основном компенсируется вкладом π -мезона, и поэтому его роль незначительна.

ЛИТЕРАТУРА

- 1. A.I.Ivanov, M.Nagy and M.K.Volkov, Phys.Lett.B 200 (1988) 171.
- 2. М.К.Волков ЭЧАЯ 17 (1986) 433.
 - M.K.Volkov, Ann.Phys.157 (1984) 282.
- 3. D.Ebert and H.Reinhardt, Nucl. Phys. B 271 (1986) 188.
- 4. C.Daum et.al., Nucl.Phys.B 182 (1981) 269.
- 5. J.Dankowych et.al., Phys.Rev.Lett.46 (1981) 580.
- Particle Data Group, M.Aguilar-Benitez et.al.,
 Review of particle properties, Phys.Lett.B 204 (1988).
- 7. MAC Collab., H.R.Band et.al., Phys.Lett.B 198 (1988) 297.
- 8. DELCO Collab., W. Ruckstuhl et.al., Phys. Rev. Lett. 56 (1986) 2132.
- 9. ARGUS Collab., H. Albrecht et.al., Z. Phys. C 33 (1986) 7.
- 10. MARK II Collab., W.B. Schmidke et.al., Phys. Rev. Lett, 57(1986)527.
- 11. М.К.Волков, А.А.Осипов, ЯФ 39 (1984) 694.
- 12. A.B.Govorkov, Z.Phys.C 32 (1986) 405.
- 13. T.Berger, Z.Phys.C 37 (1987) 95.
- 14. N.Isgur, C.Morningstar and C.Reader, Phys.Rev.D 39 (1989) 1357.

Рукопись поступила в издательский отдел 22 июня 1989 года.

8

Волков М.К., Иванов Ю.П., Осипов А.А. Распад Г→у π⁻р° в кварковой модели сверхпроводящего типа

В кварковой модели сверхпроводящего типа вычислена ширина распада $r \rightarrow v_r$ π ρ° . Показано, что основной вклад приходится на диаграмму с обменом a₁ (1260)-мезоном. Рассмотрены также вклады диаграмм с обменом *п*-мезоном. и его радиально возбужденным состоянием *π* (1300). Вклады каждой из диаграмм составляют 10% от основного и имеют противоположные знаки. Численные оценки ширины распада сделаны при различных значениях массы и ширины а₁ (1260)-мезона.

P2-89-419

P2-89-419

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1989

Перевод М.И.Потапова.

Volkov M.K., Ivanov Yu.P., Osipov A.A. $r^- \rightarrow \nu_{\pi} \pi^- \rho^\circ$ Decay in the Superconducting Quark Model

The width of the decay $r \rightarrow \nu_r \pi^- \rho^\circ$ is calculated on the basis of the superconducting quark model. The main contribution is shown to be made by the a_1 (1260)-meson exchange diagram. Contributions of the diagrams with the π -meson exchange and with its radially excited state π (1300) exchange are also considered. The contribution of each diagram is 10% of the main one, and they have opposite signs. Numerical estimations of the decay width are made at different values of the a_1 (1260)-meson mass and width.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1989