

K 926

P2-88-874

1988

А.В.Купцов, А.С.Пак¹, С.Б.Саакян²

СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ УЛЬТРАРЕЛЯТИВИСТСКИХ АТОМОВ ВОДОРОДА И ПОЗИТРОНИЯ С АТОМАМИ ВОДОРОДА, УГЛЕРОДА, АЗОТА И АРГОНА

Направлено в журнал "Ядерная физика"

¹Институт физики высоких энергий АН КазССР, Алма-Ата

² Ереванский государственный университет

1. ВВЕДЕНИЕ

В работе^{/1/} сообщалось о регистрации позитрониев (A_{2e}) от распада π° -мезонов: $\pi^{\circ} \rightarrow A_{2e} + \gamma$. Позднее было измерено полное сечение взаимодействия атомов A_{2e} с углеродом^{/2/}. Позитронии имели γ -факторы в интервале от 800 до 2000.

Изучение взаимодействия элементарных атомов с веществом при больших У-факторах позволяет наблюдать новые особенности атомных соударений. При больших У-факторах время t прохождения атома между двумя последовательными неупругими соударениями может стать много меньше характерного атомного времени в лабораторной системе $r = y r_0$. В этом случае вероятность прохождения атома через слой вещества оказывается больше, чем это следует из экспоненциальной зависимости. Такое явление было названо сверхпроницаемостью^{/3/}. В случае позитрония $r_0 = 4,8\cdot10^{-17}$ с, длина свободного пробега в углероде $\lambda \approx \approx 0,1$ мкм и, следовательно, t << yr_0 уже при $y \approx 100$.

В работе /4/ в эйкональном приближении /ЭП/ показано, что при условии t << у r_{0} вероятность обнаружения A_{26} в связанном состоянии на глубине L >> λ пропорциональна L⁻¹. Количественный расчет, проведенный также в ЭП/^{5/}, показал, что уже при L = 2,5 λ отклонение от экспоненциального закона достигает 100%. В работе /6/, в которой рассматривалось прохождение A_{26} через вещество без использования ЭП, показано, что вероятность прохождения A_{26} для толщины мишеней меньше некоторой критической L $_{\rm Kp}$ описывается ЭП, дающим зависимость L⁻¹, а при L \approx $L_{\rm Kp}$ происходит резкая смена зависимости на L⁻⁴.

Обсуждаемый эффект имеет в своей основе более общее явление неупругого экранирования, которое проявляется также в адрон-ядерных взаимодействиях⁷⁷. Эксперименты с ультрарелятивистскими атомами в принципе позволяют исследовать меха-'низм неупругого экранирования в процессах, которые определяются наиболее изученным электромагнитным взаимодействием,

Экспериментальное изучение сверхпроницаемости в настоящее время возможно только на пучках A_{2e} , так как в случае более тяжелых атомов условие $t << \gamma \tau_0$ выполняется при очень больших γ -факторах или энергиях. Так, для $\pi\mu$ -атомов ($A_{\pi\mu}$), которые экспериментально наблюдались в распаде $K_L^o \to A_{\pi\mu} + \nu^{/8/}$, условие $t << \gamma \tau_0$ выполняется в углероде при $\gamma > 10^7$.

ø	THE REPORT OF THE PARTY OF THE	The subscription of the su
1	DODC25HCSW1	זינהידיי (
	MACHINELIX	L

1

ų.

В эксперименте^{/2/} определялся коэффициент пропускания К позитрониев через углеродную пленку толщиной L \approx 0,1 мкм. Неэкспоненциальность поглощения учитывалась параметризацией К = = f(L/\lambda) exp(-L/\lambda) . Функция f(L/\lambda) рассчитана в^{/5/}. Величина λ получена из полного сечения σ_{tot}^{th} , вычисленного в настоящей работе.

Вычисление сечений взаимодействия релятивистских элементарных атомов ранее проводилось $^{9\div12/}$. Критический обзор этих работ дан в $^{13/}$. Наиболее полное рассмотрение взаимодействия элементарных атомов с атомами выполнено в работах $^{13\div15/}$. Расчеты проводились в первом борновском приближении. Использовалось, как правило, нерелятивистское приближение. В работе $^{14/}$ рассматриваются релятивистские аспекты проблемы. Экранирование поля ядра атома мишени учитывалось введением формфактора. Из-за экранирования сечение атом-атомных взаимодействий при больших У-факторах оказывается постоянным.

['] В работах $^{/9 \div 15'}$ рассматривалось лишь когерентное сечение $\sigma_{\rm coh}$, то есть сечение, в котором атомы мишени остаются в основном состоянии. Некогерентное взаимодействие (inc), связанное с возбуждением или ионизацией атомов мишени, не учитывалось.

В работах ^{/16,17/} вычислены полное сечение σ_{tot} , сечения возбуждения σ_{ex} и ионизации σ_{ion} релятивистских A_{2e} при взаимодействии с атомами с учетом некогерентной части. Исследовалась также зависимость отношения $\sigma_{ine}/\sigma_{coh}$ как для полного сечения, так и для сечения возбуждения от заряда ядра атома мишени. Оказалось, что учет возбуждения и ионизации атомов мишени существенно увеличивает сечение, в особенности для легких атомов.

В работах $^{/9 \div 17/}$ для описания атомов мишени использовались атомные формфакторы F(q) /q-переданный импульс/, полученные в модели Томаса - Ферми - Мольер /ТФМ/. Функция некогерентного рассеяния S_{inc}(q) в $^{/16,17/}$ вычислялась в предположении о некоррелированном распределении электронов в атоме мишени. Модель ТФМ, как известно, описывает приемлемо лишь атомы с достаточно большими Z. По этой причине результаты расчетов $^{/9 \div 17/}$ носят по существу качественный характер. В настоящей работе для описания атомов использовались более точные F(q) и S_{inc}(q), вычисления которых основаны на методе самосогласованного поля Хартри - Фока /ХФ/.

Аналогичная задача вычисления сечения взаимодействия етомов с атомами имеется в нерелятивистском случае. В последние годы для решения этой задачи применяется подход $^{/18,19/}$, очень близкий к тому, который использовался в $^{/16,17/}$. Важно то, что сечения ионизации $\sigma_{\rm tot}^{\rm th}$, полученные в $^{/18,19/}$, можно сравнить с имеющимися экспериментальными сечениями ионизации $\sigma_{\rm ion}^{\rm th}$ атомов водорода при взаимодействии с атомами в интервале энергий от 10 до 200 MэВ^{/20÷23/}, где борновское приближение хорошо работает. Экспериментальные ошибки составляют примерно +10%. Теоретические расчеты ^{/18,19/}в пределах этих ошибок хорошо согласуются с экспериментальными сечениями.

Атом водорода описывается точно, поэтому вся неопределенность может быть связана с описанием атомов мишени. Поскольку атом позитрония также описывается точно, то и сечение взаимодействия A_{2e} с атомами может быть вычислено с точностью не хуже 10%.

Основная цель настоящей работы состоит в получении количественных результатов по сечению взаимодействия A_{2e} с атомами. Чтобы оценить точность получаемых результатов, вычислены также сечения ионизации атома водорода при столкновении с атомами H, C, N и Ar. Полученные σ_{ion}^{th} для водорода сравниваются с теоретическими сечениями из работ /18,19/и с экспериментальными сечениями /20÷28/

2. ОСНОВНЫЕ ФОРМУЛЫ

В настоящей работе мы следуем расчетным схемам, изложенным в $^{/16 \div 19/}$. Рассмотрим столкновение двух нейтральных атомов А и В, находящихся в основном состоянии. Амплитуда взаимодействия в борновском приближении имеет вид

$$f_{mn}(q) = \frac{2}{q^2} \frac{\alpha}{\beta} F_m(q) F_n(q),$$
 /1/

где **q** - переданный импульс, α - постоянная тонкой структуры, β - относительная скорость атомов в единицах скорости света, m и n - квантовые числа атомов A и B после столкновения используются для обозначения как дискретных состояний, так и состояний непрерывного спектра, m = n = 0 для основного состояния, $F_m(q)$ и $F_n(q)$ - упругие и неупругие /переходные/ формфакторы атомов. Будем использовать также обозначения: $F_m(q, Z)$, Z - заряд ядра атома.

Упругий формфактор имеет вид

$$F_{0}(q) = \langle 0 | Z - \sum_{\ell=1}^{n} \exp(i \vec{q} \cdot \vec{r}_{\ell}) | 0 \rangle, \qquad (2/2)$$

где Z - заряд ядра, \vec{r}_{ℓ} - координаты электронов в атоме, <0|...|0> - ожидаемая величина основного состояния.

Упругий формфактор выражается через атомный формфактор F(q):

$$F_{o}(q) = Z - F(q).$$
 (3)

Переходные формфакторы - это матричные элементы:

$$\mathbf{F}_{\mathbf{m}\neq\mathbf{o}}(\mathbf{q}) = \langle \mathbf{m} \mid \mathbf{Z} - \sum_{\ell=1}^{Z} \exp(\mathbf{i} \, \vec{\mathbf{q}} \cdot \vec{\mathbf{r}}_{\ell}) \mid 0 \rangle.$$
 (4/

В /4/ Z можно не писать, так как вклад от заряда ядра в $F_{m \neq o}(q)$ из-за ортогональности волновых функций начального и конечного состояний равен нулю.

Дифференциальное /по q/ сечение перехода атомов в состояния m и n равно

$$d\sigma_{mn} = 4\pi \frac{\alpha^2}{\beta^2} |F_m(q)|^2 |F_n(q)|^2 \frac{dq^2}{q^4}.$$
 (5/

Сечение перехода атомов в состояния m и n дается интегралом по переданному импульсу:

$$\sigma_{\rm mn} = 4 \pi \frac{a^2}{\beta^2} \int_{q_{\rm min}^2}^{q_{\rm max}^2} |F_{\rm m}(q)|^2 |F_{\rm n}(q)|^2 \frac{dq^2}{q^4} .$$
 /6/

Границы интегрирования определяются законами сохранения и зависят от энергий возбуждения E_m и $E_n^{/18,19/}$.

Полное сечение получается суммированием парциальных сечений по дискретным состояниям и интегрированием по непрерывному спектру:

$$\sigma_{tot} = 4 \pi \frac{a^2}{\beta^2} \sum_{m=n}^{\infty} \sum_{\substack{q^2 \\ q_{min}}} |F_m(q)|^2 |F_n(q)|^2 \frac{dq^2}{q^4} .$$
 /7/

При больших скоростях q_{min}^2 и q_{max}^2 стремятся к нулю и бесконечности. Вместе с известным поведением формфакторов при малых и больших q^2 это позволяет расширить область интегрирования до $(0,\infty)$ для всех возбуждений. Поэтому порядок интегрирования и суммирования можно поменять местами:

$$\sigma_{\text{tot}} = 4\pi \frac{\alpha^2}{\beta^2} \int_{0}^{\infty} \left[\sum_{m \neq 0} |F_m(q)|^2 + |F_0^A(q)|^2 \right] \left[\sum_{n \neq 0} |F_n(q)|^2 + |F_0^B(q)|^2 \right] \frac{dq^2}{q^4}.$$

Здесь выделены в явном виде квадраты упругих формфакторов.

Величина

$$S_{inc}(q) = \sum_{m \neq o} |F_m(q)|^2$$
(9)

известна как функция некогерентного рассеяния. Тогда

$$\sigma_{\text{tot}} = 4\pi \frac{\alpha^2}{\beta^2} \int_{0}^{\infty} [S_{\text{inc}}^{\text{A}}(q) + |F_{0}^{\text{A}}(q)|^2] [S_{\text{inc}}^{\text{B}}(q) + |F_{0}^{\text{B}}(q)|^2] \frac{dq^2}{q^4}.$$
 /10/

Можно избежать суммирования бесконечного числа слагаемых. С этой целью используется условие полноты собственных состояний:

$$\sum_{n=0}^{\infty} |m > < m| = 1,$$
 /11/

которое позволяет применить правило сумм, чтобы выразить сечение неупругих столкновений через свойства начального состояния атома:

$$S_{inc}(q) = \sum_{k=1}^{z} \sum_{\ell=1}^{z} < 0 |exp[i\vec{q}.(\vec{r}_{k} - \vec{r}_{\ell})]| 0 > - |F(q)|^{2}.$$
 /12/

Таким образом, чтобы получить сечение, нужно вычислить одномерный интеграл, зависящий от $S_{inc}(q)$ и F(q), которые определяются через волновые функции основного состояния атомов,

Как видно из /10/, σ_{tot} можно разделить на четыре парциальных сечения в зависимости от того, упруго или неупруго взаимодействуют налетающий атом А и атом мишени В. Сечения обозначим двумя индексами. Первый индекс относится к атому А: θ упругое, in - неупругое рассеяние; второй к атому В: coh упругое, inc - неупругое рассеяние. Таким образом,

 $\sigma_{\text{tot}} = \sigma_{\text{el,coh}} + \sigma_{\text{in,coh}} + \sigma_{\text{el,inc}} + \sigma_{\text{in,inc}}$

Рассматриваются только два класса конечных состояний атома мишени. Для налетающего атома будем также вычислять сечения возбуждения $\sigma_{\rm ex}$ и ионизации $\sigma_{\rm ion}$. Если один из двух индексов опускается, то по нему подразумевается суммирование.

Для вычисления σ_{ex} и σ_{ion} вводятся функции возбуждения $S_{ex}(q)$ и ионизации $S_{ion}(q)$:

5

$$S_{inc}(q) = S_{ex}(q) + S_{ion}(q),$$
 /13/

$$S_{ex}(q) = \sum_{m=1}^{\infty} |F_m(q)|^2$$
, /14/

$$S_{ion}(q) = \int_{E_{min}}^{\infty} |F_E(q)|^2 dE, \qquad (15)$$

где суммирование проводится только по возбужденным дискретным состояниям, а интегрирование по непрерывным, E_{\min} - минимальная энергия, необходимая для ионизации атома.

Для $S_{ex}(q)$ правила сумм не существуют. Зная $S_{ex}(q)$, можно. вычислить σ_{ex} . Тогда σ_{ion} находится из соотношения

$$\sigma_{\rm ion} = \sigma_{\rm tot} - \sigma_{\rm el} - \sigma_{\rm ex}$$
 (16/

В литературе имеются таблицы F(q) и $S_{inc}(q)$ для большинства элементов, которые рассчитаны с помощью волновых функций, полученных методом Хартри - Фока. Мы использовали таблицы /24,25/.

Для проведения численных расчетов табличные значения аппроксимировались функциями:

$$F(q) = \sum_{i=1}^{4} A_{i} \exp(-B_{i} x^{2}) + C, \qquad (17)$$

$$S_{inc}(q) = [Z - \frac{F^2(q)}{Z}] \sum_{i=1}^{3} D_i \exp(-E_i x),$$
 /18/

где x - общепринятая переменная, через которую переданный импульс выражается следующим образом:

 $q = 4\pi x (Å^{-1})$. /19/

Коэффициенты A_i , B_i , C, D_i , E_i для атомов C, N и Ar приведены в табл. 1.

Коэффициенты A_i , B_i , C для N и Ar взяты из^{/24/}; A_i , B_i , C для C и D_i , E_i для C, N и Ar получены нами при аппроксима-. ции таблиц F(q) и S_{inc}(q), приведенных в ^{/25/}. Таблица 1

Коэффициенты A_i, B_i, C, D_i, E_i для параметризации F(q) и S_{inc} (q) атомов C, N и Ar

	.C	N	Ar	Ι	С	N	Âr
A,	2,56960	12,2126	7,48450	D,	0,6065	0,60654	0,4819
В	14,3590	0,00570	0,90720	E	2,1250	1,990	0,8117
A ₂	1,17700	3,13220	6,77230	D ₂	- 0,2466	- 0,357	- 0,1353
^B 2	0,73756	9,89330	14,8407	E2	5,6250	5,550	1,050
A ₃	0,65243	2,01250	0,65390	D		0,04284	
B ³	0,19450	28,9975	43,8983	E		17,125	
A ₄	1,58850	1,16630	1,64420				
B ₄	39,5610	0,58260	33,3929				
C	0,01129	-11,5290	1,44510				

4. ВЫЧИСЛЕНИЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ Н С Н, С, N И Ar

Для оценки точности расчетов сначала вычислим сечения H с H, C, N и Ar, так как вычисленные сечения можно сравнить с расчетами $^{/18,19/}$, а $\sigma_{\rm ion}$, кроме того, с экспериментальными данными $^{/20\,\div\,23/}$.

Атомный формфактор водорода в основном состоянии выражается аналитически:

$$F(q,1) = \left[1 + \left(\frac{a_0 q}{2}\right)^2\right]^{-2}, \qquad /20/$$

где а_о - боровский радиус. Упругий формфактор

$$F_{0}(q,1) = 1 - F(q,1).$$
 /21/

функция некогерентного рассеяния

$$S_{inc}(q,1) = 1 - |F(q,1)|^2$$
. /22/

Переходные формфакторы для вычисления $S_{ex}(q,1)$ могут быть также выражены в аналитической форме, однако они имеют более сложный вид $^{/17,18}$ и здесь не приводятся.

移行

Сечение возбуждения вычислялось как сумма по ℓ сечений переходов в состояния с определенным значением ℓ , просуммированных по n. При этом для малых n использовались точные выражения для переходных формфакторов, а для больших n - их асимптотические выражения $^{/17/}$.

Верхний предел интегрирования был равен q $^2_{max}$ = 250 Å $^{-2}$, что соответствует x = 1,26 Å $^{-1}$ или 31,2 кэВ/с, или 8,4 боровским импульсам. Результаты интегрирования выдавались через Δq =5Å $^{-2}$, чтобы можно было установить, как насыщаются сечения: $\sigma_{\rm inc}$ насыщается быстрее, чем $\sigma_{\rm coh}$.

В табл. 2 приведены результаты вычислений асимптотических сечений ($\beta = 1$) для водорода при взаимодействии с водородом, углеродом, азотом и аргоном. Индексы для сечений el, ex, ion, in, tot по горизонтали относятся к налетающему атому водорода.

Таблица 2 Результаты вычислений асимптотических сечений взаимодействия H с H, C, N и Ar и их сравнение с данными работ^{/18,19/}. Сечения приведены в единицах 10⁻¹⁹ см²/атом. Пояснения в тексте

		ơ _{el}	۵σ _{e1} %	ø _{ex}	۵ø _{e×} ٪	ơ _{i on}	∆ <i>o</i> ion	o _{tot}	∆o _{tot} %
н	σ _{cah}	0,042	4,8	0,007	-	0,067	5,4	0,116	5,1
	σ _{inc}	0,075	4,0	0,063	-	0,172	0,9*	0,310	1,6
	tot	0,117	4,3	Q , 070	-	0,239	1,9*	0,426	2,1
С	σ _{coh}	0,912	9,0	0,154		1,481	5, i [*]	2,550	6,5
	ơ in⊂	0,291	5,2	0,194	-	0,616	1,5	1,101	2,5
-	ortot	1,203	8,1	0,351	-	2,097	3,9*	3,651	5,3
Ν	σ_{coh}	1,134	8,4	0,150	-2,7	1,744	4,5	3,028	5,6
	σ_{inc}	0,325	-0,3	0,227	-41,9	0,668	-3,4	1,220	-8,0
	σ_{tot}	1,459	6,5	0,377	-23,2	2,412	2,4	4,248	1,9
Ar	σ _{coh}	5,019	12,8	0,638	- 1,3	7,621	7,5	13,278	9,1
	σ _{inc}	0,622	94,7	0,364	23,8	1,260	-12,2	2,246	17,0
	otot	5,641	21,8	1,002	8,4	8,881	5,2	15,524	10,4

Звездочками помечены величины $\Delta \sigma_{in}$ %.

индексы coh, inc ,tot по вертикали относятся к атому мишени. Приведены также величины $\Delta \sigma = 100(\sigma^{\rm G}/\sigma - 1)$, где $\sigma^{\rm G}$ - теоретические сечения из^{/18,19/}, σ - сечения, вычисленные в настоящей работе. Для мишеней Н и С данные взяты из работы ^{/19/} - в этой работе $\sigma_{\rm ex}$ и $\sigma_{\rm ion}$ не вычислялись, для N и Ar данные взяты из ^{/18/}, где вычислены $\sigma_{\rm ex}$ и $\sigma_{\rm ion}$. В^{/18,19/} приведены только значения безразмерных интегралов. Чтобы получить сечения, значения интегралов умножались на величину $8\pi a_0^2 a^2 = 3,75\cdot 10^{-20}$ см².

Из таблицы видно, что наши результаты и результаты ^{/18,19/} отличаются в большинстве случаев не более чем на 10%. Исключение составляют $\sigma_{\rm ex}$ - наши $\sigma_{\rm ex}$ значительно больше, чем в ^{/18/}. Подходы при вычислении $\sigma_{\rm ex}$ у нас и в ^{/18/} несколько отличались. В работе ^{/18/} $\sigma_{\rm ex}$ вычислялись как сумма сечений переходов в состояния с главным квантовым числом n', при этом выражения для квадратов переходных формфакторов включали суммирование по ℓ в конечном состоянии. Однако $\sigma_{\rm ex}$ составляет небольшую часть от $\sigma_{\rm in}$ /23%, 14%, 13% и 10% для мишеней H, C, N и Ar соответственно/. Наши значения $\sigma_{\rm ion}$, которые можно сравнить с экспериментом, в пределах нескольких процентов совпадают с $\sigma_{\rm ion}$ из ^{/18/}.

В случае H-H столкновений все сечения должны вычисляться точно, однако и в этом случае наши данные и данные^{/19/} различаются в пределах до 5%. Результаты вычислений в работах одних и тех же авторов^{/18/} и ^{/19/} также различаются на несколько процентов, а величины $\sigma_{\rm el,inc}$ для Ar в этих двух работах отличаются почти в два раза /см. табл. 3/.

Таблица З

Сравнение сечений H-N и H-Ar взаимодействий, вычисленных в работах $^{/18/}$ и $^{'19'}$. $\Delta\sigma\% = 100 \cdot (\sigma^{/19}/\sigma'^{18/} - 1)$

		۵σ _{e1} (%)	Δσ _{in} (%)	Δσ tot ^(%)
N	$\sigma_{\rm coh}$	0,9	1,3	1,2
	Ø _{inc}	6,2	10,3	9,1
	б _{нон}	2,0	3,9	3,2
Ar	o _{coh} .	1,3	1,6	1,5
	σ_{inc}	- 46,0	15,6	- 12,8
	σ_{tot}	- 7,0	3,2	0,9

Это можно объяснить тем, что целью работы $^{/19/}$ было вычисление сечений для большого набора атом-атомных столкновений на единообразной основе. Это определило выбор таблиц F(q)и S₁₀₀ (q), которые отличаются от использованных в $^{/18/}$.

и S_{inc} (q), которые отличаются от использованных в^{/18/}. Нами вычислены также $\sigma_{\rm coh}$ и $\sigma_{\rm inc}$ H-C соударений для случая, когда F(q,6) брался в модели ТФМ, а S_{inc} (q,6) – в модели независимых частиц:

$$S_{inc}(q) = Z - \frac{|F(q)|^2}{Z}$$
. /23/

Было получено: $\sigma_{\rm coh} = 2,80\cdot10^{-19}\,{\rm cm}^2$, $\sigma_{\rm inc} = 1,94\cdot10^{-19}\,{\rm cm}^2$. В модели XФ эти сечения равны /см. табл.2/: $\sigma_{\rm coh} = 2,55\cdot10^{-19}\,{\rm cm}^2$, $\sigma_{\rm inc} = 1,10\cdot10^{-19}\,{\rm cm}^2$. Сечения $\sigma_{\rm coh}$ отличаются на 10%, а $\sigma_{\rm inc}$ на 70%, то есть в приближении независимых частиц S_{inc}(q) описывается неудовлетворительно. В модели ТФМ и в приближении независимых частиц для S_{inc}(q) ранее /16,17/вычислялось сечение взаимодействия A_{2e} с атомами.

Таблица 4 Сравнение теоретических и экспериментальных сечений ионизации атомов водорода при столкновении с H, C, N и Ar. В нечетных строках приведены σ_{ion}^{exp} в единицах 10^{-19} см²/атом, в четных – отношение $\sigma_{ion}^{exp}/\sigma_{ion}^{th}$ с экспериментальными ошибками

E(H) MəB	γ−1 ×10 ²	β ⁻²	н-н	H-C	H-N	H-Ar
10	1,07	47,66	11 <u>+</u> 1.1 0,96±0,10		100 <u>+</u> 10 0,87±0,09	360 <u>+</u> 36 0,85±0,09
14,6	1,56	32,90			71,4±8,8 0,90±0,11	238±33 0,82±0,11
22,0	2,34	22,09	5,2±0,5 0,78±0,07	52,6±6,1 1,13±0,13	53,5±5 0,99±0,09	183±18 0,93±0,09
30,2	3,22	16,30	3,8±0,4 0,97±0,10	38,4±4,7 1,12±0,14	40±4 1,02±0,10	138±14 0,95±0,10
38,2	4,07	13,04	3,1±0,3 0,99±0,10	31,8±3,8 1,16±0,14	32,3±3 1,02±0,10	114±11 0,98±0,09
44,5	4,72	11,30	2,6 ±,26 0,96±0,10	27,8±3,0 1,17±0,12	28±2,8 1,03±0,10	98±10 0,98±0,10
200	21,3	3,12	and the state and the state of the state of the	6,5 0,99		
$\sigma_{\rm ion}^{\rm th}$	/th ion				1,016	1,052

Далее мы провели сравнение полученных σ_{ion}^{th} с имеющимися в литературе $^{/20 \div 23'}$ экспериментальными сечениями ионизации атомов водорода при столкновении с H, C, N и Ar, измеренными в интервале энергии 10 ÷ 200 МэВ. Результаты сравнения приведены в табл.4. В таблицу не включены σ_{ion}^{exp} для H-H столкновений при энергиях 14,6 и 17,9 МэВ $^{/21/}$, которые меньше σ_{ion}^{th} почти в два раза и, по-видимому, ошибочны, как это отмечается и другими авторами. В табл.4 приведены: энергия атомов водорода E(H), соответствующие этой энергии величины y^{-1} , β^{-2} , σ_{ion}^{exp} с ошибками и отношение $\sigma_{ion}^{exp}/\sigma_{ion}^{th}$ с экспериментальными ошибками. В последней строке таблицы приведено отношение $\sigma_{ion}^{th/18}/\sigma_{ion}^{th}$ для N и Ar.

Данные табл. 4 в интервале $10 \div 44,5$ МэВ приведены также на рис.1. Наши $q_{\rm ion}^{\rm th}$ приняты за единицу и обозначены сплошными прямыми линиями. Данные $^{/18/}$ обозначены пунктирными линиями.

\$

Рис.1. Сравнение теоретических и экспериментальных сечений ионизации атомов водорода при столкновении с H, C, N и Ar в интервале энергий $10 \div \div 44,5$ МэВ. Сечения σ_{ion} , вычисленные в настоящей работе, приняты за единицу. Пунктиром обозначены теоретические сечения σ_{ion} из работ $^{/18,19/}$, точками – экспериментальные $\sigma_{ion}^{/20\div22/}$

Из табл.4 и рис.1 видно, что согласие σ_{ion}^{th} с σ_{ion}^{exp} в пределах экспериментальных ошибок хорошее и, следовательно, неопределенность в теоретических сечениях не превышает

величину экспериментальных ошибок, т.е. ±10%.

Можно утверждать, что и при вычислении сечения взаимодействия A_{2e} с атомами неопределенность также не будет превышать $\pm 10\%$, так как все приведенные выше формулы могут быть использованы для расчета сечений взаимодействия A_{2e} с атомами при небольшом изменении в F(q,1)и $S_{inc}\left(q,1\right)$ при переходе от Н к A_{2e} .

11

Таблица 5

5. ВЫЧИСЛЕНИЕ СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ А₂₀ С H, C, N И Ar

Переходный формфактор позитрония имеет вид

 $F_{m}(\vec{q}, A_{2e}) = \langle m | e^{-i \vec{q} \cdot \vec{r}/2} - e^{i \vec{q} \cdot \vec{r}/2} | 0 \rangle,$

где $\pm \vec{\mathfrak{l}}/2$ - координаты электрона и позитрона в A_{2e} .

Все формфакторы позитрония, как и в случае водорода, можно представить в аналитической форме. Атомный форфактор ${\rm A}_{2{\rm e}}$ имеет вид

$$F(q, A_{2e}) = [1 + (a_0 q)^2]^{-2}, \qquad (24)$$

где a₀ - боровский радиус атома водорода.

Функция некогерентного рассеяния А22:

 $S_{inc}(q, A_{2e}) = 2(1 - F(q, A_{2e})).$ (25/

Заметим, что в борновском приближении из-за сохранения зарядовой четности запрещены упругое рассеяние A_{2e} и его переходы в возбужденные S-состояния.

Мы рассчитали σ_{tot} для H, C, N и Ar; для C рассчитали, кроме того, σ_{ex} и σ_{ton} . Для сравнения проведены также расчеты, в которых F(q) для атомов мишени брались в модели TФM и $S_{inc}(q)$ в приближении независимых частиц. Результаты приведены в табл. 5.

Видно, что сечения σ_{tot} , полученные в модели ТФМ, примерно в 1,5 раза больше, чем в модели ХФ. Особенно велико различие σ_{inc} в двух моделях /примерно в два раза/.

В эксперименте^{/2/} было измерено сечение σ_{tot} взаимодействия A_{2_8} с углеродом при У-факторах A_{2_9} от 800 до 2000. Полученное экспериментальное сечение равно

$$\sigma_{\rm tot}^{\Theta \rm xp} = (16 + \frac{16}{-6}) \cdot 10^{-19} \, {\rm c} \, {\rm M}^2 \, .$$
 /26/

Вычисленное нами асимптотическое сечение σ_{tot}^{th} взаимодействия A_{2n} с углеродом равно:

$$\sigma_{tot}^{th} = 5.74 \cdot 10^{-19} \text{ cm}^2/\text{atom}.$$
 /27/

На рис.2 приведено сечение σ_{tot}^{th} в зависимости от кинетической энергии A_{2e} , выраженной в единицах массы покоя атома y - 1. Стрелкой отмечен интервал y < 1,2, в котором было измерено сечение ионизации σ_{ton} водорода при столкновении с угРезультаты вычислений асимптотических сечений взаимодействия A2_e с H, C, N и Ar. Сечения приведены в единицах 10⁻¹⁹ см²/атом

			an a		σ _{tot} (TΦM)
		σ ex	<i>o</i> r ion	σ _{tot} (XΦ)	otot (X+)
н	o cob	1 -		0,167	1,719
	$\sigma_{\rm inc}$			0,624	1,944
	$\sigma_{\rm tot}$			Ü,791	1,896
С	𝕶 _{coh}	0,454	3,185	3,639	1,230
	σ_{1nc}	0,652	1,452	2,104	2,038
	$\sigma_{\rm tot}$	1,106	4,637	5,743	1.526
N	σ _{coh}			4,131	1,363
	$\sigma_{\rm inc}$			2,322	2,048
	$\sigma_{\rm tot}$			6,453	1,609
Ar	or coh			17,97	1,244
	σ_{inc}	1		4,139	2,125
	σ _{tot}			22,11	1,409

Рис.2. Зависимость полного сечения взаимодействия σ_{tot} атомов позитрония с углеродом от кинетической энергии, выраженной в единицах массы покоя налетающего атома ($\gamma - 1$): Сплошная линия – теоретическая зависимость; точка – сечение σ_{tot} , измеренное в работе^{/2/}. Стрелкой отмечена область (γ -1 < 0,2), исследованная в опытах по взаимодействию атомов водорода с углеродом^{/22,23/}. леродом^{/22,23/}. На этом же рисунке приведено экспериментальное сечение. Публикаций по измерению $\sigma_{\rm ion}$ водорода при $\gamma > 1,2$ нет и для других атомов мишени. Таким образом, авторы эксперимента^{/2/} продвинулись по величине γ -1 примерно на четыре порядка.

В работе^{/2/} на основании сопоставления теории и эксперимента сделан вывод, что измеренное полное сечение не противоречит вычисленному асимптотическому значению. Вместе с тем, отмечается в^{/2/}, результат не исключает других механизмов ионизации или возбуждения ультрарелятивистских атомов в среде, приводящих к существенному увеличению сечения.

Авторы благодарят Л.Л.Неменова и А.В.Тарасова за интерес к работе и обсуждения.

ЛИТЕРАТУРА

- 1. Алексеев Г.Д. и др. ЯФ, 1984, т.40, с.139.
- 2. Афанасьев Л.Г. и др. ОИЯИ, Р1-88-741, Дубна, 1988.
- 3. Неменов Л.Л. ЯФ, 1981, т. 34, с. 1306.
- 4. Любощиц В.Л., Подгорецкий М.И. ЖЭТФ, 1981, т.81, с.1556.
- 5. Пак А.С., Тарасов А.В. ЯФ, 1987, т.45, с.145.
- 6. Захаров Б.Г. ЯФ, 1987, т.46, c.148.
- 7. Грибов В.Н. ЖЭТФ, 1969, т.56, с.892.
- 8. Aronson S.H. et al. Phys.Rev., 1986, v.D33, p.3180.
- 9. Дульян Л.С., Коцинян А.М., Фаустов Р.Н. ЯФ, 1977, т.25, с.814.
- 10. Prazad M.K. Acta Phys. Pol., 1979, v.B10, p.635.
- 11. Коцинян А.М. Препринт ЕФИ, ЕФИ-400/7/-80, Ереван, 1980.
- 12. Дульян Л.С., Коцинян А.М. ЯФ, 1983, т.37, с.137.
- 13. Mrowczyński St. Phys. Rev., 1986, v. A33, p. 1549.
- 14. Mrówczyński St. Phys.Rev., 1987, v.D36, p.1520.
- 15. Denisenko K.G., Mrowczyński St. Phys.Rev., 1987, v.D36, p.1529.
- 16. Pak A.S., Tarasov A.V. JINR Preprint E2-85-882, Dubna, 1985.
- 17. Пак А.С., Тарасов А.В. Сообщение ОИЯИ Р2-85-903, Дубна, 1985.
- 18. Gillespie G.H. Phys.Rev., 1978, v.A18, p.1967.
- 19. Gillespie G.H., Inokuti M. Phys.Rev., 1980, v.A22, p.2430.
- 20. Berkner K.H., Kaplan S.N., Pyle R.V. Phys.Rev., 1964, v.A134, p.1461.
- 21. Smythe K., Toevs J.W. Phys.Rev., 1965, v.A139, p.15.

- 22. Acerbi E. et al. Lett. Nuovo Cim., 1974, v.10, p.598.
- 23: Webber R.C. Hojvat C. IEEE Trans. Nucl. Sci., 1979, v.NS-26, p.4012.
- 24. Cromer D.T., Waber J.T. Sec.2.2 of International Tables for X-Ray Crystallography, V. IV. Ibers and Hamilton, eds. /Kynoch Press, Birmingham, England, 1974/, p.71-147.
- 25. Hubbell J.H. et al. J.Phys.Chem.Ref.Data, 1975, v.4, No.3, p.471.

Рукопись поступила в издательский отдел 20 декабря 1988 года.

15