

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

C 844

1

P2-88-626

В.Н.Стрельцов

ФУНДАМЕНТАЛЬНАЯ ДЛИНА И РЕЛЯТИВИСТСКАЯ ДЛИНА

1988

1. Проблема фундаментальной (или элементарной) длины обсуждается в разных формах уже много лет (см., например, $^{/1,2}$ /, а также $^{/3}$ /). Наиболее часто элементарную длину вводили в связи с проблемой "расходимостей" в теории поля. Существует ряд моделей теории, содержащих фундаментальную длину (единая теория элементарных частиц, нелокальная квантовая теория поля, особенно один из наиболее разработанных вариантов — теория квантованного или дискретного пространства-времени, и др.). С проблемой фундаментальной длины тесно связан вопрос о возможных нарушениях причинности в микромире (нарушение микропричинности). Если фундаментальная длина (ℓ_f) действительно существует, то естественно полагать, что она должна играть большую роль в физике элементарных частиц. Высказывается мнение, что присоединение ℓ_f к двум фундаментальным константам с и ћ составило бы полный базис, через который можно выразить физическую величину любой известной нам размерности.

Хотя аргументы в пользу существования фундаментальной длины и не носят характера строгих утверждений, тем не менее необходимость пересмотра наших представлений в области малых масштабов пространства-времени кажется весьма вероятной. По современным оценкам, $\ell_{\rm f} < 10^{-17} - 10^{-16}$ см, правда, например, в теориях "великого объединения" работают с длинами порядка $10^{-30} - 10^{-29}$ см и вплоть до гравитационной (планковской) длины $\ell_{\rm g} = \sqrt{\hbar G/c^3} \simeq 10^{-33}$ см (G – ньютоновская постоянная тяготения).

В то же время кардинальный вопрос о границах применимости геометрии (т.е., по существу, макроскопических, или классических, представлений) остается без ответа и до сих пор.

2. Таким образом, введение фундаментальной длины означает введение некоторой минимальной длины (минимального масштаба) $\ell_0^{/4/}$. Но этот шаг находится в определенном противоречии с общепринятыми представлениями о поведении релятивистски движущихся масштабов. Действительно, обычно считают, что в результате движения должно происходить сокращение продольных размеров. А это означает неограниченное уменьшение ℓ_0 по мере возрастания скорости, а следовательно, в конечном счете, и невозможность введения элементарной длины. Вместе с тем, очевидно, что подобной трудности мы не имеем в аналогичном случае введения минимального временного интервала.

По мнению автора настоящей работы, последовательное решение указанного противоречия возможно единственно на основе концепции релятивистской длины (КРД) ^{/5} /. Как известно, следствием КРД является релятивистская "формула удлинения":

$$\ell = \ell_0 \left(1 - v^2 / c^2 \right)^{-1/2}, \tag{1}$$

где ℓ_0 и ℓ — длины в покое и движении, v — скорость движения. Согласно (1), в результате движения продольные размеры должны возрастать. Поэтому в рамках КРД при введении минимального пространственного размера трудностей, подобных отмеченной, вообще не возникает. С учетом сказанного, соображения в пользу существования фундаментальной длины могут уже рассматриваться как еще один косвенный аргумент в пользу КРД.

Напомним, что ранее привлечение КРД позволило объяснить поведение быстродвижущейся струны (простейшего протяженного релятивистского объекта), рост длины формирования с увеличением энергии, устранить известную трудность гидродинамической теории множественного рождения, заключающуюся в противоречии с квантовым принципом неопределенности, и др. Рассмотренную выше проблему можно в определенном смысле считать родственной последнему случаю.

ЛИТЕРАТУРА

- 1. Блохинцев Д.И. Пространство и время в микромире. М.: Наука, 1982, с.239, 256.
- 2. Гинзбург В.Л. О физике и астрофизике. М.: Наука, 1985, с.84
- 3. Вяльцев А.Н. Дискретное пространство-время. М.: Наука, 1965.
- 4. Liboff R.L. Am. J. Phys., 1987, v. 55, p. 1041.

5. Стрельцов В.Н. ОИЯИ, Р2-87-817, Дубна, 1987; ОИЯИ, Р2-87-877, Дубна, 1987.

Рукопись поступила в издательский отдел 12 августа 1988 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1	
· · · · · · · · · · · · · · · · · · ·	
2.	
ر بر ل	
ч. Е	Теоретическал физика пизких эпертии
5.	
0. 7	
7. 8	
0. 9	
ر 10	
10.	данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика