

A - 874

P2-88-19

Г.Х.Архестов, Х.М.Бештоев*

МОДЕЛИРОВАНИЕ УЗКИХ АТМОСФЕРНЫХ ЛИВНЕЙ

Институт ядерных исследований АН СССР, Москва

1988

В настоящее время появились новые экспериментальные данные^{/1/} по изучению структуры широких атмосферных ливней (ШАЛ) на малых расстояниях от оси ливня. В этой связи большой интерес представляет расчет трехмерных ядерно-электромагнитных ливней с учетом характеристик установки для анализа экспериментальных данных.

В предлагаемой работе в качестве модели расчета характеристик электромагнитных ливней использовалась монте-карловская программа^{/2/} трехмерного розыгрыша ядерно-электромагнитных ливней в атмосфере, основанная на экстраполяции ускорительных данных на сверхвысокие энергии.

В ^{/3/} произведены расчеты распределений центральных плотностей при интегрировании по радиусу R ~ 0,4 м и R ~ 0,8 м и спектра по полному числу частиц. Настоящая работа, продолжая ^{/3/}, посвящена расчету распределения доли полного числа частиц в одном (максимальном) детекторе для порога N_c \geq 170 и N_c \geq 625 релятивистских частиц (k = ρ_{max}/ρ_{tot}).

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОДЕЛИ

Первичный протон влетает в стандартную атмосферу ^{/4/}, в которой происходит взаимодействие по обычному экспоненциальному закону. Зависимость средней множественности заряженных частиц от энергии бралась в логарифмическом виде ^{/5/}, а множественность распределена по формуле Кобы-Нельсена ^{/6/}. В каждом акте взаимодействия требовалось сохранение энергии и импульса. Считалось, что частицы рождаются в двух областях: фрагментационной и пионизационной. Средние множественности в этих областях брались из ^{/5/} и ^{/7/}. Энергетический спектр вторичных частиц выбирался согласно работе ^{78/}, а распределение поперечных импульсов было экспоненциальным для $P_{\perp} \leq 1$ ГэВ/с. При $P_{\perp} > 1$ ГэВ/с учитывался рост поперечного импульса ^{/9/}.

Интегральный энергетический спектр первичных протонов имел вид $I(E_0) = 0.856 E_0^{-1}, 7 (cm^{-2} c^{-1} cp^{-1}).$

Детальная схема розыгрыша ливней с учетом характеристик детекторов содержится в работе ^{/9/}.

Obsension and statisty Repairs a classicity EMEMORY OFF

1

2. РЕЗУЛЬТАТЫ РОЗЫГРЫША

По методике, описанной в^{/3/}, произведен розыгрыш ядерноэлектромагнитных каскадов в атмосфере. Находились распределения центральных плотностей для одного детектора с порогами N_o ≥ 170 и N_c ≥ 625 релятивистских частиц и полное число частиц в ливнях.

На рис.1 и 2 приведены (нормированные на единицу) распределения доли полного числа частиц в одном детекторе для порогов N₀ ≥ 170 и N_c ≥ 625 редятивистских частиц (точки — экспериментальные данные из работы¹¹⁷, ошибки статистические, гистограмма — наш расчет, расчет и эксперимент статистически обеспечены примерно одинаково). Как видно из рис.1 и 2, расчет находится в качественном согласии с экспериментальными данными. Для порогов N_c ≥ 170, 625 средние значения характеристик ливней (возраста, высоты в радиационных

тивистских частиц. Точки — данные работы /1/, гистограмма — наш расчет.

Рис.1. Распределение доли полного числа частиц в одном детекторе для порога N_> > 170 релятивистских частиц. Точки — данные работы /1/, гистограмма – наш расчет.

0 01 02 03 04 05 06 07 08 09 10 4

единицах, энергии) следующие ($k \ge 0.6$):

	S	Ĥ	Е (ГэВ)
$N_{c} \ge 170$	0,6	4,9	$1,7 \cdot 10^{3}$
$N_{c} \ge 625$	0,83	10,1	$4,3 \cdot 10^{\circ}$

Полная картина, получающаяся на установке, представляет собой суперпозицию большого числа ливней, и поэтому картина, возникающая от усредненного ливня, будет довольно заметно отличаться от суперпозиционной.

Авторы выражают глубокую благодарность Г.Т.Зацепину и А.Е.Чудакову за обсуждение программы, по которой производились расчеты, Е.Н.Алексееву, В.С.Барашенкову, Д.Д.Джаппуеву, В.А.Тизенгаузену за обсуждение работы.

ЛИТЕРАТУРА

- 1. Chernyaev A.B. et al. In: XXth ICCR, Moscow, 1987, v.5, p.448.
- 2. Архестов Г.Х., Бештоев Х.М. Препринт ИЯИ АН СССР, П-507, Москва, 1986.
- 3. Архестов Г.Х., Бештоев Х.М. Препринт ОИЯИ Р2-87-504, Дубна, 1987.
- 4. Мурзин В.С. Физика космических лучей. М.: МГУ, 1970; Справочник. Таблицы физических величин. М.: Атомиздат, 1971.
- 5. Гришин В.Г. **ЭЧ**АЯ, 1976, 7, с.595; Анисович В.В. и др. – УФН, 1984, 144, с.553.
- 6. Koba Z., Nielsen H.B., Olesen P. Nucl. Phys., 1972, B40, p.317; Slattary P. - Phys. Rev., 1973, D7, p.2073.
- 7. Ugar E. Phys. Rev., 1978, D17, p.2483;
- Läsmä J.W. et al. Phys. Rev., 1978, D18, p.3933.
- 8. Kellet B.H. et al. Nuovo Cim., 1977, 41A, p.331,359;
- 1978. 47A. p.281.

9. Hansen K.H.-In: XIX Int.Conf.on High Energy Phys., Tokyo, 1978, p.117.

Рукопись поступила в издательский отдел 11 января 1988 года.