ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

22/12.75

P2 - 8776

В.Л.Любошиц

.......

1-934

3494/2-45coothowenne yhutaphoctu и ρ° - ω -смешивание

.....

P2 - 8776

В.Л.Любошиц

соотношение унитарности

и ho° - ω -смешивание

Направлено в ЯФ

1. Как известно, полюсной вклад двух перекрываюшихся резонансов ρ° и ω в амплитуды различных процессов описывается матричным пропагатором P(m) == $(\hat{M} - m)^{-1}$, где M - массовая матрица $^{/1,2/}$. Ввиду изотропности пространства массовая матрица диагональна по проекциям спина ρ° - и ω -мезонов на произвольную ось. В соответствии с этим элементы \hat{M} имеют структуру

$$\langle t\lambda | \hat{M} | t'\lambda' \rangle = M_{tt'} \delta_{\lambda\lambda'}$$
, (1)

где t и t' – изотопические спины базисных состояний (t,t' = 0, 1), λ и λ ' – проекции обычного спина (λ,λ' = 0, <u>+</u>1), δ – символ Кронекера. Недиагональные матричные элементы M₀₁ и M₁₀, отвечающие электромагнитному перемешиванию состояний с изотопическими спинами 0 и 1 и противоположными G-чётностями, пропорциональны константе $\alpha = e^2/\hbar c$.

Из требования инвариантности сильного и электромагнитного взаимодействий относительно обращения времени вытекает, что в представлении чистых изоспиновых состояний |0> и |1> массовая матрица симметрична ($M_{01} = M_{10}$). С учётом этого собственные состояния матрицы \hat{M} , которые ассоциируются с полюсами S матрицы при комплексных значениях эффективной массы m и соответствуют физическим резонансам ρ° и ω , представляют собой суперпозиции /1-7/:

$$|\rho^{\circ}\rangle_{\lambda} = (1 + |\epsilon|^{2})^{-\frac{1}{2}} (|1\rangle_{\lambda} - \epsilon |0\rangle_{\lambda}),$$

$$|\omega\rangle_{\lambda} = (1 + |\epsilon|^{2})^{-\frac{1}{2}} (|0\rangle_{\lambda} + \epsilon |1\rangle_{\lambda}).$$

$$(2)$$

Здесь ϵ - параметр смешивания; при этом, в связи с малостью электромагнитной константы, $|\epsilon| << 1$. В первом приближении

$$\epsilon = \frac{M_{01}}{M_{00} - M_{11}} . \tag{3}$$

Так как ϵ - комплексная величина, нестабильные состояния $|\rho^{\circ}\rangle$ и $|\omega\rangle$ с одинаковыми спиновыми квантовыми числами неортогональны друг другу:

$$<\rho_{\lambda}^{\circ} | \omega_{\lambda} > = <\rho^{\circ} | \omega > \delta_{\lambda\lambda}, ,$$

$$<\rho^{\circ} | \omega > = 2.i \frac{\mathrm{Im} \epsilon}{1+|\epsilon|^{2}} \approx 2.i \mathrm{Im} \epsilon.$$
(4)

Подчеркнем, что равенство нулю реальной части $< \rho^{\circ} | \omega >$ является следствием T -инвариантности теории.

2. Рассмотрим теперь следствия из условия унитарности, которое в применении к нестабильным частицам просто означает, что число "исчезнувших" частиц равно числу актов распада. Введем эрмитовскую матрицу

 $\hat{\Gamma} = i(\hat{M} - \hat{M}^+).$

С учётом **Т**-инвариантности все элементы этой матрицы в представлении состояний |0> и |1> действительны. Согласно условию унитарности, матрица $\hat{\Gamma}$ выражается через амплитуды распада чистых изоспиновых состояний:

$$\Gamma_{tt'} = i(M_{tt'}, -M_{t't}) = \sum_{n} a^*_{t \to n} a_{t' \to n} = \sum_{n} a_{t \to n} a'^*_{t \to n} . (5)$$

Знак Σ означает суммирование по всем возможным каналам распада, включая интегрирование по фазовому объему конечных частиц.

На основе уравнений

$$\hat{\mathbf{M}} | \rho^{\circ} > = (\mathbf{m}_{\rho^{\circ}} - \mathbf{i} \frac{\Gamma_{\rho^{\circ}}}{2}) | \rho^{\circ} > , \hat{\mathbf{M}} | \omega > = (\mathbf{m}_{\omega} - \mathbf{i} \frac{\Gamma_{\omega}}{2}) | \omega > ,$$

$$(\mathbf{t}, \mathbf{t}' = 0, 1)$$

$$(\mathbf{t}, \mathbf{t}' = 0, 1)$$

где $m_{\rho^{\circ}}$ и m_{ω} - массы, а $\Gamma_{\rho^{\circ}}$ и Γ_{ω} - ширины ρ° - и ω - мезонов, нетрудно получить выражение

$$<\rho^{\circ}|\omega> = \frac{<\rho^{\circ}|\Gamma|\omega>}{(\Gamma_{\rho^{\circ}} + \Gamma_{\omega})/2 + i(\mathfrak{m}_{\omega} - \mathfrak{m}_{\rho^{\circ}})}$$

С помощью (2) и (5) эта формула приводится к виду:

$$<\rho^{\circ} | \omega > = \frac{\sum_{n} A_{\rho^{\circ} \rightarrow n}^{*} A_{\omega \rightarrow n}}{(\Gamma_{\rho^{\circ}} + \Gamma_{\omega})/2 + i(m_{\omega} - m_{\rho^{\circ}})}.$$
 (7)

Здесь

$$A_{\rho^{\circ} \rightarrow n} = (1 + |\epsilon|^2)^{-1/2} (a_{1 \rightarrow n} - \epsilon a_{0 \rightarrow n}),$$

$$A_{\omega \rightarrow n} = (1 + |\epsilon|^2)^{-1/2} (a_{0 \rightarrow n} + \epsilon a_{1 \rightarrow n}) -$$
(8)

.

амплитуды распада резонансов ρ° и ω , удовлетворяющие равенствам $\sum_{n} |A_{\rho^{\circ} \rightarrow n}|^2 = \Gamma_{\rho^{\circ}}$, $\sum_{n} |A_{\omega \rightarrow n}|^2 = \Gamma_{\omega}$. Билинейные комбинации $A_{\rho^{\circ} \rightarrow n}^{*} A_{\omega \rightarrow n}$, входящие в числитель правой части (7), вместе с амплитудами рождения резонансов характеризуют вклад $\rho^{\circ} - \omega$ -интерференции в распределение эффективных масс системы частиц с квантовыми числами n.

Сравнивая (4) и (7), получаем окончательно:

$$|\operatorname{Im} \epsilon| = |\sum_{n} A_{\rho^{\circ} \to n} A_{\omega \to n}| [(\Gamma_{\rho^{\circ}} + \Gamma_{\omega})^{2} + 4(m_{\omega} - m_{\rho^{\circ}})^{2}], (9)$$

$$\psi = \arg\left(\sum_{n} A_{\rho^{\circ} \to n} A_{\omega \to n}\right) = \arg\left\{\pm \left[m_{\rho^{\circ} - m_{\omega}} + \frac{i}{2}\left(\Gamma_{\rho^{\circ}} + \Gamma_{\omega}\right)\right]\right\}.(10)$$

При этом $tg \psi = -\frac{1}{2} \frac{\Gamma_{\rho^{\circ}} + \Gamma_{\omega}}{m_{\omega} - m_{\rho^{\circ}}}$.

Заметим, что соотношение (7) совпадает с известным правилом сумм Белла-Штейнбергера, установленным первоначально для нейтральных **К** -мезонов $^{/8/}$. По смыслу своего вывода формула Белла-Штейнбергера должна быть справедлива для любых нестабильных частиц с общими каналами распада $^{/9,10/}$. При этом величина $\sum_{n} A_{\rho^{\circ} \rightarrow n}^{*} A_{\omega \rightarrow n}$ обращается в нуль только при условии, что нестабильные частицы имеют разные внутренние квантовые числа, сохраняющиеся в процессах распада. В рассматриваемом случае у ρ° - и ω -мезонов одинаковые спины, чётности и проекции спина, так что правая часть (7) не равна нулю (см. также $^{/6,11/}$).

3. Если предположить, что прямые переходы с изменением G четности подавлены и ими можно пренебречь (т.е. |Г₁₀ |<<2 | ReM₁₀ |), то на основе соотношения Белла-

6

Штейнбергера или просто с помощью формулы (3) легко получить оценку для фазы параметра смешивания ^{/6/}:

$$\arg \epsilon = \arg \{\pm [\mathfrak{m}_{\rho^{\circ}} - \mathfrak{m}_{\omega} + \frac{i}{2} (\Gamma_{\rho^{\circ}} - \Gamma_{\omega})] \}$$

В данной работе мы не будем пользоваться этим предположением, которое вряд ли можно строго обосновать $^{7/}$, и рассмотрим, какие утверждения можно сделать, опираясь на общие требования унитарности и **Т**-инвариантности и экспериментальные данные о парциальных ширинах и массах ρ° – и ω -резонансов. Для этого оценим относительный вклад различных каналов распада в сумму $\sum A_{n}^* A_{\omega \to n}$. Если ввести парциальные ширины распада, мы можем написать:

$$\sum_{n}^{\Sigma} A_{\rho^{\circ} \rightarrow n}^{*} A_{\omega \rightarrow n} = \left(\Gamma_{\rho^{\circ} \rightarrow \pi^{+} \pi^{-}} \Gamma_{\omega \rightarrow \pi^{+} \pi^{-}} \right)^{\frac{1}{2}} \times$$

$$\times \left\{ e^{i\psi_{\pi^{+}}\pi^{-}} + \kappa_{\pi^{\circ}\gamma} e^{i\psi_{\pi^{\circ}\gamma^{-}}} + \kappa_{3\pi} e^{i\psi_{3\pi}} + \xi \right\},$$
(11)

параметры $\kappa_{3\pi}$ и $\psi_{3\pi}$ соответствуют процессам ρ° , $\omega \rightarrow \pi^{+}\pi^{-}\pi^{\circ}$, а комплексная величина ξ описывает вклад других распадов. Заметим, что отношение амплитуд трехпионного распада ρ° – и ω –мезонов, вообще говоря, может зависеть от конфигурации конечных π –мезонов; в любом случае

$$\kappa_{3\pi} \leq \left(\frac{\Gamma_{\rho^{\circ} \to \pi^{+}\pi^{-}\pi^{\circ}} \quad \frac{\Gamma_{\omega \to \pi^{+}\pi^{-}\pi^{\circ}}}{\Gamma_{\rho^{\circ} \to \pi^{+}\pi^{-}} \quad \Gamma_{\omega \to \pi^{+}\pi^{-}}}\right)^{\frac{1}{2}}$$

Согласно экспериментальным данным $^{/12/}$, $\Gamma_{o^{\circ} \rightarrow \pi^{+}\pi^{-}} \approx$ $\Gamma_{\omega \to \pi^+ \pi^- \pi^\circ} = (0,9\underline{+}0,006) \Gamma_{\omega}, \ \Gamma_{\omega \to \pi^\circ \gamma} = (0,087\underline{+}0,005) \Gamma_{\omega}.$ Недавно методом Примакова была определена парциальная ширина распада $\rho^- \to \pi^- \gamma_{/13/}$; оказалось, что $\Gamma_{\rho^- \to \pi^- \gamma} = (35\pm10)$ кэВ //13/. Как известно, в низшем порядке по константе a = 1/137 справедливо равенство $\Gamma_{\rho^{\circ} \to \pi^{\circ} \gamma} = \Gamma_{\rho^{-} \to \pi^{-} \gamma}$. С учётом этого $\kappa_{\pi^{\circ} \gamma} \approx 4.10^{-2}$. Парциальная ширина $\Gamma_{\rho^{\circ} \to \pi^{+} \pi^{-} \pi^{\circ}}$ в настоящее время неизвестна, но разумно считать, что поскольку распад $\rho^{\circ} \rightarrow \pi^{+}\pi^{-}\pi^{\circ}$, так же как и распад $\omega \rightarrow \pi^{+}\pi^{-}$, запрещен по G-чётности, то $\Gamma_{\rho^{\circ} \to \pi^{+}\pi^{-}\pi^{\circ}} \Gamma_{\omega \to \pi^{+}\pi^{-}\pi^{\circ}} \frac{\Gamma_{\omega \to \pi^{+}\pi^{-}}}{\Gamma_{\rho^{\circ} \to \pi^{+}\pi^{-}}}$. Это приводит к оценке $\kappa_{3\pi} < 1/10$. Что касается остальных каналов распада $(4\pi, 2\pi\gamma, 3\pi\gamma, \eta\gamma, e^+e^-, \mu^+\mu^-)$, то экспериментальные данные вместе с теоретическими оценками показывают, что их вклад в (11) пренебрежимо мал ($|\xi| < 10^{-2}$).Таким образом, доминирующую роль в сумме (11) играет двухпионный распад, и в пределах точности порядка 10% справедливо соотношение

*Результат эксперимента /13/ не согласуется с теоретическим значением $\Gamma_{\rho^{\circ} \to \pi^{\circ} \gamma} \sim 0,1 \Gamma_{\omega \to \pi^{\circ} \gamma} \approx 100$ кэВ, которое следует из кварковых моделей (см., напр., /15/). Если принять $\Gamma_{\rho^{\circ} \to \pi^{\circ} \gamma}$ равным 100 кэВ, то для параметра $\kappa_{\pi^{\circ} \gamma}$ мы получим значение $\sim 7 \cdot 10^{-2}$.

$$<\rho^{\circ}|\omega>\approx 2i \operatorname{Im}\epsilon \approx \frac{\sqrt{\Gamma_{\omega \rightarrow \pi^{+}\pi^{-}}\Gamma_{\rho^{\circ}}} e^{i\psi_{\pi^{+}\pi^{-}}}}{(\Gamma_{\rho^{\circ}}+\Gamma_{\omega})/2+i(m_{\omega}-m_{\rho^{\circ}})}$$
. (12)

Отсюда следует, что

$$|\langle \rho^{\circ} | \omega \rangle| \approx \left(\frac{4\Gamma_{\rho} \circ \Gamma_{\omega \to \pi^{+} \pi^{-}}}{(\Gamma_{\rho} \circ + \Gamma_{\omega})^{2} + 4(\mathfrak{m}_{\omega} - \mathfrak{m}_{\rho} \circ)^{2}}\right), \qquad (13)$$

$$\psi_{\pi^+\pi^-} \approx \psi = \arg\{\pm [\mathfrak{m}_{\rho^\circ} - \mathfrak{m}_{\omega} + \frac{\mathrm{i}}{2}(\Gamma_{\rho^\circ} + \Gamma_{\omega})]\}.$$
(14)

Подставляя в (13) и (14) значения $\Gamma_{\rho^{\circ}} = 150$ МэВ, $\Gamma_{\omega} = 10$ МэВ, $\Gamma_{\omega \to \pi^{+}\pi^{-}} = 0,13$ МэВ, $m_{\omega} - m_{\rho^{\circ}} =$ = 13 МэВ, получаем:

1

 $tg \psi_{\pi^+\pi^-} \approx -\frac{1}{2} \frac{\Gamma_{\omega} + \Gamma_{\rho^\circ}}{m_{\omega} - m_{\rho^\circ}} \approx -6,15; \qquad (15)$

$$\psi_{\pi^+\pi^{-=}} \begin{cases} +99^\circ \\ -81^\circ \end{cases}$$

 $|\langle \rho^{\circ} | \omega \rangle| \simeq 2$ | Im ϵ | = 0.054 ;

4. Мы приходим к следующим выводам:

а) Фаза параметра двухпионной $\rho^{\circ} - \omega$ -интерференции

$$\eta_{\pi^+\pi^-} = \frac{A_{\omega \to \pi^+\pi^-}}{A_{\rho^\circ \to \pi^+\pi^-}}$$
 близка к $\frac{\pi}{2}$ (или – $\frac{\pi}{2}$), причём
tg $\psi_{\pi^+\pi^-} < 0$ *.

б) Мнимая часть параметра смешивания составляет около 0,03 или (~0,03); с точностью до членов порядка

*В области $\rho^{\circ}-\omega$ -интерференции распределение эффективных масс ($\pi^{+}\pi^{-}$)-системы имеет вид:

ФЕКТИВНЫХ МАСС (1 1 1) $dW(m) \sim dm \left\{ \frac{1}{(m_{\rho^{\circ}} - m)^{2} + \Gamma_{\rho^{\circ}}^{2}/4} + \frac{D |\eta_{\pi^{+}\pi^{-}}|^{2}}{(m_{\omega^{-}} - m)^{2} + \Gamma_{\omega}^{2}/4} + 2 \operatorname{Re} \frac{B \eta_{\pi^{+}\pi^{-}}}{(m_{\rho^{\circ}} - m + \frac{1}{2} \Gamma_{\rho^{\circ}})(m_{\omega} - m - i \frac{\Gamma_{\omega}}{2})} \right\}.$ Если не фиксировать углов вылета π -мезонов, то $D = \sum_{\lambda} \sum_{\{\beta\}} |g_{\omega\lambda}^{\{\beta\}}|^{2} / \sum_{\lambda} \sum_{\{\beta\}} |g_{\rho^{\circ}_{\lambda}}^{\{\beta\}}|^{2},$ $B = \sum_{\lambda} \sum_{\{\beta\}} g_{\omega\lambda}^{\{\beta\}} g_{\rho^{\circ}_{\lambda}}^{* \{\beta\}} / \sum_{\lambda} \sum_{\{\beta\}} |g_{\rho^{\circ}_{\lambda}}^{\{\beta\}}|^{2} (|B| \leq \sqrt{D}).$ Здесь $g_{\omega\lambda}^{\{\beta\}}$ и $g_{\rho^{\circ}_{\lambda}}^{\{\beta\}}$ – амплитуды рождения ω – и

 ρ° -мезонов со спиральностью λ , $\{\beta\}$ - совокупность кинематических параметров и квантовых чисел других частиц, по которым проводится усреднение. Амплитуды \mathbf{g}_{ω} и $\mathbf{g}_{\rho^{\circ}}$ связаны с амплитудами перехода в состояния $|0\rangle$ и $|1\rangle$ соотношениями

 $\mathbf{g}_{\omega} = \mathbf{g}_{0} + \epsilon \mathbf{g}_{1}$, $\mathbf{g}_{\rho^{\circ}} = \mathbf{g}_{1} - \epsilon \mathbf{g}_{0}$.

$$\Gamma_{\omega}/\Gamma_{\rho^{\circ}} \approx \frac{1}{15}, \quad \left(\frac{2(m_{\omega}-m_{\rho^{\circ}})}{\Gamma_{\rho^{\circ}}}\right)^2 \approx \frac{1}{35}$$
 выполняется

равенство

$$\operatorname{Im} \epsilon \approx \operatorname{Im} \eta_{\pi^{+}\pi^{-}} \approx \left(\frac{\Gamma_{\omega \to \pi^{+}\pi^{-}}}{\Gamma_{\rho^{\circ}}} \right).$$
(16)

Заметим, что без потери общности (не нарушая симметричности массовой матрицы) мы всегда можем выбрать фазы состояний |0 > u|1 >так, чтобы знак Im ϵ был положительным. При таком соглашении перед квадратными скобками в формулах (10) и (14) следует оставить знак "плюс", и тем самым фазы ψ и $\psi_{\pi}+_{\pi}$ определяются однозначно: $\psi_{\pi}+_{\pi}- \approx \psi \approx 99^{\circ}$.

Еще раз подчеркнем, что полученные результаты вытекают только из правила сумм Белла-Штейнбергера, требования Т -инвариантности теории и данных о резонансных параметрах $\rho^{\circ} - и \omega$ -мезонов. Они согласуются с предположением о малости амплитуды прямого перехода $0 \to \pi^{+}\pi^{-}$ с изменением G -чётности, в рамках которого $|a_{1 \to \pi^{+}\pi^{-}}| << |\eta_{\pi^{+}\pi^{-}}|$, и,следовательно /2,4,5/,

$$\eta_{\pi^+\pi^-} = \left(\epsilon + \frac{a_{0\to\pi^+\pi^-}}{a_{1\to\pi^+\pi^-}}\right) / \left(1 - \epsilon \frac{a_{0\to\pi^+\pi^-}}{a_{1\to\pi^+\pi^-}}\right) \approx \epsilon$$

Однако на основе пунктов а) и б) все же нельзя исключить возможность другой ситуации: когда вклад амплитуды $a_{0 \to \pi} + \pi$ - является существенным. Мы можем лишь утверждать, что

$$| \operatorname{Im} \frac{a}{a} \frac{0 \to \pi^{+} \pi^{-}}{1 \to \pi^{+} \pi^{-}} | \ll (\frac{\Gamma_{\omega \to \pi^{+} \pi^{-}}}{\Gamma_{\rho^{\circ}}})^{\frac{1}{2}},$$

$$| \operatorname{Re} \epsilon + \operatorname{Re} \frac{a}{a} \frac{0 \to \pi^{+} \pi^{-}}{1 \to \pi^{+} \pi^{-}} | \ll (\frac{\Gamma_{\omega \to \pi^{+} \pi^{-}}}{\Gamma_{\rho^{\circ}}})^{\frac{1}{2}}.$$

$$(17)$$

Оценки для фазы $\psi_{\pi^+\pi^-}$ были также получены другим методом в работе $^{/3/}$; формула (14) отличается от соответствующего выражения в $^{/3/}$ членами порядка $\Gamma_{\omega}/\Gamma_{\rho^\circ}$. Анализ экспериментов по изучению $\rho^\circ - \omega$ интерференции в процессе $e^+e^- \pi^+\pi^-$ показывает, что $A_{\omega^+e^-/5/}$

 $\psi_{\pi^{+}\pi^{-}} = (95\pm15)^{\circ} - \psi_{e^{+}e^{-}}$ Fige $\psi_{e^{+}e^{-}} = \arg \frac{\omega \rightarrow e^{-}e^{-}}{A_{\rho^{\circ} \rightarrow e^{+}e^{-}}}$. Это

значение в пределах ошибок согласуется с (14), если считать, что в соответствии с моделью векторной доминантности фаза ψ_{a+a-} близка к нулю.

Автор выражает глубокую благодарность Б.Н.Валуеву и М.И.Подгорецкому за интерес к работе и полезные замечания.

Литература

- 1. J.Harte and R.G.Sachs. Phys.Rev., 135, 459 (1964).
- 2. A.S.Goldhaber, G.C.Fox and C.Quigg.Phys. Lett., 30B, 249 (1969).
- 3. M.Gourdin, L.Stodolsky and F.M.Renard. Phys.Lett., 30B, 347 (1969).
- 4. D.Horn. Phys.Rev., D1, 1421 (1970).
- 5. J.L.Lemke and R.G.Sachs. Phys.Rev., D5, 590 (1972).
- 6. T.T.Gien. Phys.Rev., D5, 1773 (1972).
- 7. A.Rabl and N.W.Reay. Phys.Lett., 47B,29 (1973).

- 8. J.S.Bell, J.Steinberger. Proc. of the Intern. Conf. on Elementary Particles, Oxford, 1965.
- 9. В.Г.Барышевский, В.Л.Любошиц, М.И.Подгорецкий. ЖЭТФ, 57, 157 (1969).
- 10. В.Л.Любошиц. Сообщение ОИЯИ, Р2-5328, Дубна, 1970.
- 11. T.T.Gien.Canad.Jorn.Phys., 51, 1915(1973).
- 12. Review of Particle Properties. Phys.Lett., 50B, N 1, p.77-80 (1974).
- 13. B.Gobbi, J.L.Rosen, H.A.Scott, S.L.Shapiro, L.Strawezynski and C.M.Meltzer. Phys.Rev.Lett., 33, 1450 (1974).
- 14. G.Feinberg, A.Pais. Phys.Rev.Lett., 9, 45 (1962).
- 15. W.E.Thirring.Phys.Lett., 16, 335 (1965).

Рукопись поступила в издательский отдел 9 апреля 1975 года.

12