

СООБЩЕНИЯ Объединенного института ядерных исследования дубна

P 422

P2-87-514

К.В.Рерих

О НОВЫХ РЕШЕНИЯХ УРАВНЕНИЙ ЧУ - ЛОУ

1. ВВЕДЕНИЕ

Как известно^{/1/}, широкий класс уравнений Чу-Лоу и им подобных, отличающихся от последних по существу только матрицей кроссинг-симметрии, допускает формулировку их в виде следующей системы нелинейных разностных уравнений^{/1,3/}:

$$S_{i}(-w) = \sum_{j} A_{ij} S_{j}(w),$$

/1/

 $\boldsymbol{S}_{i}\;(\boldsymbol{w}\;+\;\boldsymbol{1})\;=\;\boldsymbol{1}/\sum\limits_{j}\;\boldsymbol{A}_{ij}\;\boldsymbol{S}_{j}\;(\boldsymbol{w})$.

Здесь $S_i(w)$ - матричные элементы S-матрицы в состояниях i, A_{ij} - элементы матрицы кроссинг-симметрии $n \times n$ со свойствами $A^2 = E$, $\sum_j A_{ij} = 1$. Решения системы /1/ должны быть мероморфными действительными функциями униформизующей переменной $w = \frac{1}{\pi} \arccos \omega$, где ω - энергия пиона в лабораторной системе, и удовлетворять некоторым локальным условиям требуемого поведения на пороге и в борновском полюсе.

Ввиду отсутствия общих методов решения нелинейных разностных уравнений система /1/ представляет собой привлекательную, но весьма трудную нелинейную задачу, на решение которой были направлены многолетние исследования ряда авторов /см.ссылки, например, в^{/3-5/}. Отношения $x_i(w) = S_i(w)/S_k(w)$ /n = 3/ для известных частных решений /1/ являются рациональными функциями w^{/1,6/}, либо рациональными функциями $e^{\lambda w}$, где $\lambda = const/7/$. Наряду с этим для уравнений /1/ с матрицей A(1, 1) были получены^{/5,8/} решения, являющиеся трансцендентными мероморфными функциями $z = e^{\lambda w}$. Ниже будет показано существование таких же решений для уравнений Чу – Лоу /1/ с матрицей

$$A = \frac{1}{9} \begin{pmatrix} 1 & -8 & 16 \\ -2 & 7 & 4 \\ 4 & 4 & 1 \end{pmatrix} .$$
 /2/

При малых значениях z эти решения определяются сходящимся в некоторой окрестности начала координат рядом по z, дан ал-

горитм вычисления найденных решений для произвольных значений z, получено графическое представление решений.

2. НОВЫЕ РЕШЕНИЯ УРАВНЕНИЙ ЧУ - ЛОУ

Будем рассматривать систему уравнений /1/ с матрицей /2/ в удобной для нас форме /3,1-2,4/, предложенной в^{/9/}:

$$x' = F(x, y), \quad F(x, y) = \frac{x + 2x^{2} - xy - 2y^{2}}{1 + 3x + 3y - 2x^{2} - 3xy - 2y^{2}}$$

$$y' = -F(y, x), \quad x' = x(w + 1), \quad y' = y(w + 1)$$

$$(3.1/y)$$

$$x(-w) = -x(w), y(-w) = y(w)$$
 /3.2/

$$s_{1}s_{1}'(1-2y+x)(1-2y'-x') = 1$$
(4/

$$s'_{1} = s_{1}(w + 1), s_{1}(-w) = s_{1}(w).$$

Связь $S_{1}(w)$ в /1/ с функциями $s_{1}(w), x(w), y(w)$ из /3.1/
и /4/ дается следующей формулой:

$$S_{i}(w) = S_{1}(w) \cdot \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + y(w) \begin{pmatrix} 4\\-2\\1 \end{pmatrix} + x(w) \begin{pmatrix} -4\\-1\\2 \end{pmatrix} \right\} .$$

Ниже мы ограничимся построением новых решений системы /3.1/, не прибегая на этой стадии к уравнению /4/。

Система /3.1/, рассматриваемая как преобразование плоскости x, y, является квадратичным преобразованием Кремона (10). Оно имеет следующие неподвижные точки: $d_1(x = 0, y = 0)$

и d_2 , $d_3(x = \pm \frac{2}{3}\sqrt{2}$, $y = \frac{2}{3}$) и фундаментальные точки^{/4/} $O_i(x_i, y_i)$ ($O_i'(-x_i, y_i)$ /для обратного преобразования/: O_1 (1, 1), $O_2(-\frac{1}{2}, \frac{1}{4})$, $O_3(\frac{1}{4}, -\frac{1}{2})$. /5/

Через неподвижную точку d₁ проходит известное решение /1, 6/, лежащее на параболе у = x². Ниже мы будем интересоваться решениями, проходящими через d₂ (x = $\frac{2}{3}\sqrt{2}$, y = $\frac{2}{3}$).

Совершим для удобства квадратичное преобразование Кремона от функций x(w) и y(w) к $u_1(w)$ и $u_2(w)$:

$$u_{1} = \frac{(y + x)(y - 1)}{y^{2} - x^{2}}, \quad x = \frac{u_{1} - u_{2}}{u_{1} + u_{2} - 2u_{1}u_{2}}$$
/6/

$$u_2 = \frac{(y - x)(y - 1)}{y^2 - x^2}$$
, $y = \frac{u_1 + u_2}{u_1 + u_2 - 2u_1 u_2}$

Тогда система /3.1/ примет более простой вид:

$$u_{1}^{-}(w+1) = \frac{(9u_{1} + u_{2} - 2u_{1}u_{2})(1 - u_{1})}{u_{1} + u_{2} - 2u_{1}^{2}},$$
/7/
$$u_{2}^{-}(w+1) = 1 - u_{1}^{-}(w).$$

Неподвижная точка d_2 перейдет в точку $(u_{10} = \frac{1 + \sqrt{2}}{2}, u_{20} = \frac{1 - \sqrt{2}}{2})$. Диагонализуя линейное приближение к системе /7/ в окрестности этой точки, получим

$$v_1(w+1) = \lambda_1 v_1 + f_1(v_1, v_2)$$

 $v_2 (w+1) = \lambda_2 v_2 + f_2 (v_1, v_2),$ где v_1 и v_2 - линейные комбинации $u_1 - u_{10}, u_2 - u_{20}, \lambda_{1,2} =$ $= \frac{6\sqrt{2} + \sqrt{65}}{2\sqrt{2} + 1}, \lambda_2 < 1 < \lambda_1, f_1, f_2$ - голоморфны в начале координат, а их первые частные производные равны нулю в этой точке.

Тогда согласно теореме из^{/11} /см. с.74/ можно утверждать, что система /7/ имеет два частных решения: $u_i^{I}(z_1(w))$ и $u_i^{II}(z_2(w))$, голоморфных в окрестности z = 0, а $z_1(w)$ и $z_2(w)$ являются решениями уравнений

$$z_{1}(w + 1) = \lambda_{1} z_{1}(w), \quad z_{2}(w + 1) = \lambda_{2} z_{2}(w)$$

и имеют вид

$$\mathbf{z}_{1}(\mathbf{w}) = \exp(\ln \lambda_{1} \cdot \mathbf{w}), \quad \mathbf{z}_{2} = \exp(\ln \lambda_{2} \cdot \mathbf{w}).$$

Легко видеть из /7/, что фактически нужно найти только $u_{l}(z)$, так как

$$u_2(z) = 1 - u_1(\frac{z}{\lambda})$$
.

Для $u_1(z)$ получим из /7/ уравнение $u_1(\lambda^2 z)[1 + u_1(\lambda z) - u_1(z) - 2u_1^2(\lambda z)] =$ /8/ = $[1 + 7u_1(\lambda z) - u_1(z) - 2u_1(z) u_1(\lambda z)](1 - u_1(\lambda z)].$ Подставляя в /8/ $u_1(z)$ в виде ряда по степеням z:

$$u_{1}(z) = \sum_{k=0}^{\infty} f_{k} z^{k}$$
⁽⁹⁾

и приравнивая коэффициенты при одинаковых степенях z в левой и правой частях уравнения, получим

$$f_{0} = \frac{1 + \sqrt{2}}{2}, \quad \lambda = \lambda_{1,2} = \frac{6\sqrt{2} \pm \sqrt{65}}{2\sqrt{2} + 1}, \quad /10/$$

$$f_0 = \frac{1 - \sqrt{2}}{2}, \quad \lambda = \lambda_{3,4} = \frac{6\sqrt{2} \mp \sqrt{65}}{2\sqrt{2} - 1} = \frac{1}{\lambda_{1,2}}.$$

Значения $f_0 = \frac{1-\sqrt{2}}{2}$ и $\lambda = \lambda_{3,4}$ соответствуют решениям, проходящим через неподвижную точку d_3 . Коэффициент f_1 остается произвольным, мы полагаем $f_1 = 1$. Из уравнения для коэффициентов при z^k ($k \ge 2$) получим рекуррентное соотношение на f_k :

$$f_{k} = \frac{\sum_{m=1}^{k-1} f_{k-m} \left[\left(2\lambda^{2k-m} - \lambda^{2k-2m} - 3\lambda^{k-m} + 7\lambda^{k} \right) f_{m} - 2(\lambda^{2k-2m} - 1)\lambda^{m} \sum_{n=0}^{m} f_{n} \right]}{\left(2f_{0}^{2} - 1 \right)\lambda^{2k} + 6\lambda^{k}(1 - 2f_{0}) - 1 + 4f_{0} - 2f_{0}^{2}} \qquad (11)$$

Вычисление на ЭВМ $f_k (k \le 20)$ для 1 решения $/\lambda = \lambda_1 \approx 4,32/$ показывает, что можно ожидать сходимости ряда /9/ для $u_1(z)$ в области $|z| \le \sqrt{\lambda}_1$. При малых $z (|z| < \frac{1}{4}\sqrt{\lambda}_1)$ мы можем определить с высокой степенью точности $u_1(z)$ и $u_2(z)$ с помощью ряда /9/, учитывая члены с $k \le 20$. Для больших значений z, используя итерации /7/ $(u = (\frac{u_1}{u_2}))$ $u(\lambda^n z) = T^n u(z),$ /12/ где оператор Т задан правой частью /7/, мы можем указать такие п и $z_n = \frac{z}{\lambda^n}$, что, вычисляя u_1 и u_2 при $z = z_n$ с помощью "усеченного" ряда /9/ и применяя /12/, мы получим $u_1(z)$ и $u_2(z)$ с большой точностью. Расчет на ЭВМ дает ближайшие полюса функции $u_1(z)$ при z = -2,616 и z = -45,002. На рисунке дано графическое представление x(z) и y(z) для 1 решения в области |z| < 100.

Для II решения / $\lambda = \lambda_2 \approx 0,11$ / полюса в $u_1(z)$ будут находиться в $1/\lambda_2$ раз дальше, чем в $u_2(z)$. Поэтому мы определим аналогично $u_1(z)$ функцию $u_2(z)$ из уравнения, которое имеет тот же

вид /8/, если заменить $u_1 \rightarrow u_2$, $\lambda \rightarrow \frac{1}{\lambda_2}$. Рекуррентное соотношение для коэффициентов в разложении $u_2(z)$ в ряд /9/ будет иметь тот же вид /11/, если λ заменить на $\frac{1}{\lambda_2}$, а $f_0 = \frac{1 - \sqrt{2}}{2}$. Вычисление на ЭВМ $f_k / k \le 20$ / показывает, что можно ожидать сходимости /9/ для $u_2(z)$ в области $|z| \le \frac{1}{\sqrt{\lambda_2}}$. Для малых значений z ($|z| < \frac{1}{4} - \frac{1}{\sqrt{\lambda_2}}$) $u_2(z)$ и $u_1(z)$ вычисляются с помощью "усеченного" ряда / $k \le 20$ /, при больших z - с помощью итераций обратного оператора T^{-1} :

$$\mathbf{u} \left(\lambda_{2}^{"}\mathbf{z}\right) = (\mathbf{T}^{T})^{"}\mathbf{u}(\mathbf{z}),$$

$$T^{-1}: \quad u_{1}\left(\frac{1}{\lambda_{2}}z\right) = 1 - u_{2}(z)$$
$$u_{2}\left(\frac{1}{\lambda_{2}}z\right) = \frac{(9u_{2} + u_{1} - 2u_{1}u_{2})(1 - u_{2})}{u_{1} + u_{2} - 2u_{2}^{2}}$$

Расчет на ЭВМ дает ближайшие полюса $u_2(z)$ при $z \approx -2,96$; $z \approx -201,55$. На рисунке дано графическое представление x(z) и y(z) для II решения /пунктирная линия/ для |z| < 700.

Остановимся на свойствах полученных решений. Для I решения при z > 0 решение выходит из неподвижной точки d_2 , пересекает параболу $y = x^2$ в т. O'_2 и далее осциллирует вокруг нее, бесконечно приближаясь к началу координат. При z < 0 кривая проходит в направлении аbc через т. O'_3 , пересекая параболу в т. O'_1 и O'_2 .

Д́ля II решения при z > 0 решение выходит из d₂, пересекая параболу в т. O₁, уходя на бесконечность (v + ∞) при x =1,72, затем переходит в правый нижний квадрант / x > 1,72, y < 0/, уходя на бесконечность x $\rightarrow \infty$. y $\rightarrow -\infty$ /не отражено на графике, и далее переходит в левый верхний квадрант, пересекая параболу в т. O₁ и O₂, и далее осциллирует вокруг параболы, бесконечно приближаясь к началу координат. При z < 0 кривая пересекает ось x, проходит через O₃, O₁ и O₂.

Заметим, что решения, проходящие через симметричную неподвижную точку d , получаются простой заменой x - x.

ЛИТЕРАТУРА

- 1. Мещеряков В.А. ОИЯИ, P-2369, Дубна, 1965.
- 2. Chew G.F., Low F.E. Phys.Rev., 1956, 101, p.1570.
- Meshcheryakov V.A., Rerikh K.V. Ann. of Phys., 1970, 59, p.408.
- Rerikh K_oV. In: Proceedings of the XIII International Conference of Differential Geometric Methods in Theoretical Physics_o Shumen, Bulgaria, 1984, World Scient., 1986, p.170-178.
- 5. Рерих К.B. ОИЯИ, P2-85-725, Дубна, 1985; In: Proceedings of the XIX International Symposium. Ahrenshoop, DDR, 1985, p.236.
- 6. Rotheluther T. Zs.Phys., 1964, 177, p.287.
- 7. Журавлев В.И., Мещеряков В.А., Рерих К.В. ЯФ, 1968, 10, с.168.
- 8. Рерих К.В. ОИЯИ, Р2-86-798, Дубна, 1986.
- 9. Мещеряков В.А. ОИЯИ, P2-5906, Дубна, 1971.
- 10. Hudson H. Cremona Transformations in Plane and Space. Cambridge, 1927.
- 11. Harris W.A., Yr., Sibya Y. Trans. of Amer. Math. Soc., 1965, vol.115, p.62.

Рукопись поступила в издательский отдел 7 июля 1987 года.

Вы мож	ете получить по почте перечисленные ниже к если они не были заказаны ранее.	ниги,
Д7-83-644	Труды Мехдународной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р.00 к.
Д13-84-63	Труды XI Международного симпознума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р.50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р.30 к.
Д1,2-84-599	Труды VII Международного семинара по проб лемам физики высоких энергий. Дубна, 1984.	- 5 р.50 к.
Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования, про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.
Д17-84-850	Труды III Международного симпозиума по избранным проблемам статистической механики. Дубна,1984./2 тома/	7 р.75 к.
Д11-85-791	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	- 4 р.00 к.
Д13-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4 р.80 к.
Д 4 - 8 5 - 851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.
Д3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4 р.50 к.
	Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.
Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7 р.35 к.
Д9-87-105 /	Труды X Всесоюзного совещания по ускори- телям зарященных частиц. Дубна, 1986. 2 тома/	13 р.45 к.
Д7-87-68	Труды Международной школы-семинара по физике тяжелых ионов.Дубна, 1986	7 р.10 к.
Д2-87-123	Труды Совещания "Ренормгруппа-86". Дубна, 1986	4 D-45 K-

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

Рерих К.В. P2-87-514 0 новых решениях уравнений Чу - Лоу

Исследуется система уравнений Чу - Лоу для матричных элементов S-матрицы как функций униформизующей переменной W. В КОТОРОЙ ЭТА СИСТЕМА ИМЕЕТ ВИД НЕЛИНЕЙНЫХ РАЗНОСТНЫХ уравнений, Найдено квадратичное преобразование Кремона искомых функций, приводящее исходные уравнения к более простому виду. Получены новые частные решения в виде рядов по переменной $\mathbf{z} = e^{\ln \lambda \mathbf{w}}$, сходящихся в некоторой окрестности начала координат в плоскости z. Дан алгоритм вычисления найденных решений для произвольных значений ², найдены ближайшие полюса, получено графическое представление решений.

Работа выполнена в Лаборатории теоретической физики оияи.

Сообщение Объединенного института ядерных исследований. Дубна 1987

Перевод Т.Ю.Думбрайс.

Rerikh K.V. On New Solutions of Chew-Low Eguations

The system is investigated of Chew-Low equations for S-matrix elements as functions of the uniformizing variable w in terms of which this system is a system of nonlinear difference equations. The quadratic Cremona transformation for unknown functions reducing the initial equations to a more simple form is found. New particular solutions as series in variable $z = e^{\ln \lambda w}$ convergent in a vicinity of the coordinate origin in the plane z are obtained. The computation algorithm for obtained solutions for any values of z is presented, the nearest poles and a graphic representation of solutions are obtained.

P2-87-514

The investigation has been performed at the Laboratory of Theoretical Physics, JINR. Communication of the Joint Institute for Nuclear Research. Dubna 1987