

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P2-86-802

Н.С.Амелин

МОДЕЛИРОВАНИЕ СТОЛКНОВЕНИЙ ЯДЕР ПРИ ВЫСОКИХ ЭНЕРГИЯХ В РАМКАХ МОДЕЛИ КВАРК-ГЛЮОННЫХ СТРУН

В настоящее время огромный интерес вызывают процессы взаимодействия ядер с энергией в десятки и сотни ГэВ на нуклон. Он обусловлен надеждой получить в ядерных столкновениях новое состояние вещества - кварк-глюонную плазму/1/. В самое ближайшее время начинаются эксперименты в ЦЕРНе, где ядра кислорода с энергией 60+200 ГэВ/н будут взаимодействовать с различными мишенями. Поэтому особое значение принимают различные программы-генераторы взаимодействия ядер, которые дают возможность с помощью ЭВМ прогнозировать и в той или иной степени воспроизводить экспериментальную ситуацию.

Комплекс программ colli /2/ для моделирования с помощью ЭВМ мягких неупругих соударений адронов, адронов с ядрами и ядер с ядрами дает возможность, выбрав конкретную физическую модель столкновения ядер, произвести необходимые расчеты.

В данной работе выбрана дуальная партонная модель^{/3,5/}, или модель кварк-глюонных струн^{/4/}. Модель позволяет единым образом с одинаковыми функциями распределения кварков в нуклоне, с одинаковыми параметрами и той же самой процедурой разрыва кварк-глюонных струн описывать взаимодействия протонов/6/, протонов с ядрами/7/ и ядер гелия, где имеются экспериментальные данные, а также рассчитывать взаимодействия ядер, где этих данных пока нет. Кроме того, практически важно, что расчеты в рамках модели кварк-глюонных струн требуют приемлемых затрат ресурсов ЭВМ, значительно меньших, чем, например, в модели внутриядерного каскада/77/.

Модель в применении к столкновению ядер развита в работе^{/5/}, а в работе^{/8/} приведена первая ее монтекарловская реализация.

Процедура моделирования неупругого столкновения ядер разбивается на три основных шага:

- спределение конфигурации участвующих во взаимодействии нуклонов, что дает возможность определить количество и тип образующихся струн, а также ароматы кварков на концах отдельной струны;

- определение долей энергии нуклонов, уносимой кварками, зная которые, можно вычислить инвариантные массы и импульсы струн;

Воъсябненный наститут насиных иссонйования

- моделирование разрыва струн с образованием цепочек стабильных адронов.

Определение конфигурации взаимодействующих нуклонов. Как показано в работах^{79,107}, для процессов множественного рождения в ядерных взаимодействиях близкий к модели кварк-глюонных струн реджеонный подход приводит к модели независимых соударений внутриядерных нуклонов.

При столкновении двух ядер с прицельным параметром вероятность конфигурации неупруго взаимодействующих нуклонов сесть /10/:

$$P_{\mathcal{D}}(\vec{\mathbf{b}}) = \int \prod_{(\mathbf{i},\mathbf{j})\in\mathcal{D}} P_{\mathbf{i}\mathbf{n}}(\vec{\mathbf{x}}_{\mathbf{i}} - \vec{\mathbf{y}}_{\mathbf{j}}) \prod_{(\mathbf{k},\ell)\notin\mathcal{D}} (1 - \vec{p}_{\mathbf{i}\mathbf{n}}(\vec{\mathbf{x}}_{\mathbf{k}} - \vec{\mathbf{y}}_{\ell})) \times$$
(I)
$$\mathcal{P}_{\mathbf{A}}(\vec{\mathbf{x}}_{1}, \vec{\mathbf{x}}_{2}, \dots, \vec{\mathbf{x}}_{\mathbf{A}}) \mathcal{P}_{\mathbf{B}}(\vec{\mathbf{y}}_{1} - \vec{\mathbf{b}}, \vec{\mathbf{y}}_{2} - \vec{\mathbf{b}}, \dots, \vec{\mathbf{y}}_{\mathbf{B}} - \vec{\mathbf{b}}) d\vec{\mathbf{x}}_{1} d\vec{\mathbf{x}}_{2} \dots d\vec{\mathbf{y}}_{\mathbf{B}} .$$

В выражении (I) $\rho_A(\vec{x}_1, \vec{x}_2, \dots, \vec{x}_A)$ и $\rho_B(\vec{y}_1, \vec{y}_2, \dots, \vec{y}_B)$ распределения плотности нуклонов в ядрах с числом нуклонов А и В, а $P_{in}(\vec{x}_i - \vec{y}_j)$ – вероятность неупругого взаимодействия нуклонов і и і.

Моделирование конфигурации Ω осуществляется следующим образом. Сначала из условия

$$Q(\mathbf{R}) / Q(\mathbf{0}) = \mathcal{A} \tag{2}$$

вычислялись радиусы к взаимодействующих ядер. Радиальные плотности нуклонов выбирались в виде

$$\mathcal{P}_{A}(r) = \begin{cases} \frac{\mathcal{P}_{O}}{1 + \exp[(r-R)/a]}, & \text{ДЛЯ} & A > 12 \\ \frac{(\frac{1}{\pi \bar{R}^{2}})^{3/2} \exp(-r^{2}/R^{-2}), & \text{ДЛЯ} & A=4 \end{cases}$$
(3)

со следующими значениями параметров $R=r_0A^{1/3}$, $r_0=1,14$ фм, a=0,545 фм и $\bar{R}=1,37$ фм, ρ_0 – в выражении (3) нормировочная постоянная. Для \measuredangle принимались значения 0,I в случае A>12 и 0,0I в случае A=4. После вычисления радиусов ядер с вероятностью, пропорциональной d^2b , разыгрывался прицельный параметр столкновения ядер. Затем с использованием выражений (3) и условия равномерного распределения по угловым переменным генерировались координаты нуклонов i, где i = 1,2,... A, и j, j = 1,2,..., B. В случае выполнения условия

$$\mathbf{\dot{b}}_{ij}^{2} \leq \frac{G_{in}(s_{ij})}{\pi} , \quad \dot{b}_{ij}^{2} = (\vec{x}_{i} - \vec{y}_{j})^{2}$$
 (4)

принималось, что возможно неупругое взаимодействие нуклонов і и ј. В конкретных расчетах использовалось не зависящее от квадрата полной энергии взаимодействующих нуклонов s_{ij} значение сечения их неупругого взаимодействия $\mathfrak{S}_{in}(s_{ij})$, равное 32 мб, хотя в программу включены известные экспериментальные данные по сечениям взаимодействия адронов в широкой области энергий. При необходимости, с вероятностью, пропоршиональной сечению дифракционного взаимодействия, этот процесс отбраковывался.

Изложенным выше способом можно вычислять сечения рождения частиц в случае неупругого столкновения ядер. Пример такого вычисления приведен на рисунке I.

Рис. I. Зависимость сечения рождения частиц \mathfrak{S}_{prod} при столкновении ядер 0^{16} с различными ядрами от числа нуклонов в мишени A_m .

В таблице I представлены средние числа столкновений < $_n$ > для взаимодействующих ядер с числом нуклонов A и $_B$, а также средние числа "раненых" нуклонов < $n_{\rm A}$ > и < $n_{\rm B}$ > , т.е. нуклонов, которые хотя бы один раз участвовали в столкновении.

A	B_	$\langle n_A \rangle$	<n<sub>8></n<sub>	< n>
1	40	1	2.27	2.27
1	130	1	3.27	3.27
4	4	1,69	1.66	2.23
16	16	4.66	4.67	8.01
16	40	5.71	7.58	12.41.
16	130	7.49	14.49	24.85
40	40	10.66	10.71	24.55

Таблица I.

Зависимость средней кратности столкновения нуклонов < n > и средних чисел "раненых" нуклонов < n_A > и < n_B > от количества нуклонов в ядре-снаряде A · и ядре-мишени $^{\rm B}$.

Расчет распределения кратности взаимодействия 3 в реакции са⁴⁰+са⁴⁰, приведенный на рисунке 2, показывает, что эта величина может превышать суммарное число нуклонов сталкивающихся ядер.

На рисунке 3 показаны рассчитанные распределения числа "раненых" нуклонов ϑ ядра кислорода в случае его взаимодействия с различными мищенями. Эти распределения говорят о большой вероятности "поглощения" кислорода в тяжелом ядре.

2

Pv104-

Рис.2. Распределение по кратности взаимодействия нуклонов ν в реакции са⁴⁰+са⁴⁰.

Рис.З.

Распределение "раненых" нуклонов кислорода в различных реакциях. Сплошная линия соответствует реакции $o^{16}_{+xe} = 1^{30}$. Штрихцунктирная линия – реакции $o^{16}_{+Ar} = 4^{40}$. Штриховая линия – реакции $o^{16}_{+O} = 1^{6}$. Нижняя штрихцунктирная линия соответствует реакции $o^{16}_{+N} = 1^{4}$.

Рис.4.

Пример конфигурации возникающих при столкновении двух ядер кварк-глюонных струн. Общая кратность столкновения n=4, а числа "раненых" нуклонов $n_A=2$ и $n_B=2$ соответственно для ядра-снаряда A и ядра-мишени в .

 $\begin{array}{c}
P_{2} \\
P_{2} \\
T_{1} \\
T_{2} \\
T_{2} \\
T_{2} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{5}$

Следует заметить, что предварительно рассчитанные распределения типа представленных на рисунках 2 и 3 можно использовать в качестве весовых функций при моделировании редких событий, связанных с большой хратностью соударений. В данной модели при столкновении ядер возможны струны трех типов^{/8/}, пример которых представлен на рисунке 4. Струны с валентными кварками на концах, с морскими кварками и валентным и морским кварком на концах.

Валентный кварк и находился с вероятностью 2/3 в протоне и вероятностью I/3 в нейтроне. Валентный d-кварк соответственно с вероятностями I/3 и 2/3. Отношения вероятностей найти морскую пару кварков с данным ароматом в нуклоне брались в виде:

 $P_{u\bar{u}}: P_{d\bar{d}}: P_{s\bar{s}}=1:1:\zeta, \zeta=0.33.$ (5)

В программе предусмотрена возможность выбора поперечного импульса кварков с распределением Гаусса, при условии, что суммарный поперечный импульс нуклона равен нулю. Однако представленные ниже конкретные расчеты проведены без учета поперечного импульса кварков в нуклоне.

Предполагалось, что спин и изоспин дикварков, выбранный с помощью вероятностей / II/, сохраняется до перехода дикварков в барионы.

При известном количестве и кварковом составе образованных при взаимодействиии ядер кварк-глюонных струн осуществлялся переход к вычислению их инвариантных масс и импульсов.

Определение долей энергии нуклона, уносимой валентными и морскими кварками. Доли энергии нуклона $x=2E_q/\sqrt{s}$, где E_q - энергия квар-ка, генерировались в соответствии с распределением

$$\mathcal{P}_{n}(x_{1}, x_{2}, \dots, x_{2n}) = C \delta(1 - \sum_{i=1}^{n} x_{i}) f_{V}(x_{1}) f_{s}(x_{2}) \dots f_{qq}(x_{2N}).$$
(6)

В этом выражении с – нормировочная постоянная, дельта-функция обеспечивает закон сохранения энергии, а функции распределения для валентного кварка $f_V(x)$ морских кварков $f_s(x)$ и дикварка $f_{qq}(x)$ выбирались в виде^{/4/}:

$$f_{v}(x_{1}) \sim \frac{1}{\sqrt{x_{1}}}$$

$$f_{s}(x_{2}) \sim \frac{1}{\sqrt{x_{2}}}$$

$$\vdots$$

$$f_{gg}(x_{2p}) \sim x^{2,5}.$$

$$(7)$$

Доли х для кварков заключены в интервале $x_0 \le x \le 1$ с $x_0 = 0.3/\sqrt{s}$, обеспечивающим получение струн с инвариантной массой выше массы пиона.

Получение случайных чисел в соответствии с распределением (6) и выбором функций (7) проводилось методом исключения /12/. С учетом дельта-функции величины х₁ генерировались по распределению

$$f_{1}(x_{1}) \sim \int \rho_{N}(x_{1}, x_{2}, \dots, x_{2n-1}) \prod_{i=2}^{2n-1} dx_{i}$$
, (8)

а следующая величина x_2 , при условии реализации x_1 , по распределению 2n-1

$$f(x_2/x_1) \sim \int \beta_N(x_1, x_2, \dots, x_{2n-1}) \prod_{i=3}^{2n-1} dx_i$$
 (9)

и т.д. Наконец, величина x_{2N} находилась из равенства $x_{2n} = 1 - \sum_{i=1}^{2n-1} x_i$.

После выполнения интегрирований типа (6) или (7) получались выражения, которые имеют общий вид:

$$f(x_{i}) \sim x_{i}^{-d_{i}} (1 - \sum_{j=0}^{i-1} x_{j} - x_{i})^{\beta_{N}} .$$
(II)
Здесь $\beta_{N} = \sum_{j=1}^{2N-1} (1 - d_{j}) + \beta_{q} - \sum_{j=1}^{i} (1 - d_{j}) c d_{i} = 0, 5$ И $\beta_{q} = 2, 5.$

Зная величины х и х' для кварков, находящихся на концах струны, легко вычислить ее инвариантную массу

$$M^2 = s \cdot x \cdot x' \tag{12}$$

(IO)

и продольный импульс

 $P = \frac{\sqrt{s}}{2} (x - x').$ (13)

Затем выбирались экспериментально измеренные значения масс для стабильного адрона m и резонанса m_R с тем же составом валентных кварков, что и струна. Масса струны M должна быть больше m. В противном случае \times и \times' генерировались снова. Если $m \leq M \leq m_R$, то $M = m_R$, а \times и \times' корректировались. Корректировка \times и \times' производилась также для случая $m_R \leq M \leq m_R + 0.8$ ГэВ, при этом массе M присваивалось значение m_R . Наконец, если $M \gg m_R + 0.8$ ГэВ, то возможны разрывы струны, и делался переход к третьему основному шагу.

<u>Моделирование разрывов струны с образованием цепочки стабильных</u> адронов. Разрыв струны рассматривался в системе, где она покоится. Процедура получения адронов при разрыве струны подробно описана в работе / II /. Однако по сравнению с / II / в данном рассмотрении сделаны существенные изменения. Прежде всего, законы сохранения энергии, импульса и квантовых чисел выполнялись для отдельной струны, а не для всего процесса, как в / II / Изменены функции распределения f(1-z) доли z переменной светового конуса $w_q = E_q + P_q$ кварка или дикварка при. фрагментации их в адроны. Для фрагментации кварка в мезон выбиралась функция

 $f_{q+M}(1-z) = 1-a+2a(1-z)$. (I4)

Для случая перехода дикварка в мезон

$$m(1-z) = 1-a+3a(1-z)^2$$
 (I5)

и барион

$$qq - \beta^{(1-z)=0.4+0.6exp[-20(1-z)]/[1-exp(-20)]}$$
. (I6)

Параметр а = 0,88 в (7), (8). Некоторые обоснования выбора вида функций (14) и (15) можно найти в работо /13/.Вид функции (16) обусловлен необходимостью учета эффекта лидирования при столкновении нуклонов /14/

Подавление странных адронов осуществлялось введением относительных вероятностей рождения из вакуума странной ss-пары $\gamma^{=}$ 0,33.

Поперечный импульс вакуумной qq-пары считался равным нулю, а импульс отдельного кварка разыгрывался по распределению

$$f(P_{L}^{2}) = \exp(-P_{L}^{2}/6^{2})/\pi \sigma^{2}$$
, $\sigma = 0, 4 \Gamma_{3}B$. (I7)

Как и в работе^{/II/}, переход кварка в векторный или псевдоскалярный мезон считался равновероятным. Для $\pi^2, \rho^2, \omega^2, \eta^2$ и η^2 – мезонов учитывалось смешивание. Переход дикварка с данным спином и изоспином в октетный или декаплетный барион регулировался вероятностями, рассчитанными из кварковых волновых функций барионов^{/II/}.

Контролировалась масса струны, остающаяся при отделении адрона. Когда м \leq 2,4 ГэВ, то осуществлялся последний разрыв струны.

Возникающие при разрыве струн резонансы далее могли распадаться. Использовались табличные данные для вычисления относительных вероятностей при выборе канала распада. Считались равновероятными проекции спинов образованных резонансов, и все двухчастичные распады аппроксимировались изотропными распределениями в с.п.и. резонансов. Трехчастичные распады рассчитывались через два следующих друг за другом двухчастичных распада. Резонанс с массой m_о сначала распадался на промежуточную частицу с массой m и стабильный адрон с массой m₁, а затем частица с массой m распадалась на адроны с массами m₂ и m₃. Промежуточная масса m генерировалась в соответствии с распределением

$$f(m^{2}) \sim \frac{1}{m^{2}} \sqrt{\lambda(m_{o}^{2}, m_{1}^{2}, m^{2})\lambda(m^{2}, m_{2}^{2}, m_{3}^{2})} , \quad 3 \text{ десь}$$
(18)
$$\lambda(d, \beta, \gamma) = d^{2} + \beta^{2} + \gamma^{2} - 2 d\beta - 2 d\gamma - 2 \beta \gamma .$$

На заключительном этапе осуществлялось преобразование Лоренца для энергии и импульсов адронов – продуктов распада струны в систему, где струна движется.

Из-за ограничения выделенного для расчетов времени на ЭВМ, генерировалось ~400 событий для определенной комбинации ядер при данной энергии.

Рис.5.

Распределение по быстроте у для отришательно заряженных частиц в рр-и «« взаимодействиях при полной энергии столкновения на нуклон vs = 31,2 ГэВ. Пунктирная гистограмма - расчет для ррвзаимодействия. Сплошная гистограмма для ««-взаимодействия. Нижние и верхние точки (†) - экспериментальные данные ^{/15}/ соответственно для pp-и ««-взаимодействий.

Рис.6.

Распределения по множественности для стрицательно заряженных частиц n_ в pp-и dd - взаимодействиях при полной энергии столкновения на нуклон √s = 31,2 ГэВ. Точки (\$) - экспери-ментальные данные^{/15/} в случае dd-взаимодействия, треуголь-ники (\$) - для pp -взаимодействия. Прямоугольники (◦) и кружки (◦)-расчет соответственно для dd и pp-взаимодействий.

Результаты моделирования столкновений протонов и ядер гелия при энергии $\sqrt{s}_{NN} = 3I,2$ ГэВ сравниваются с экспериментальными данными/I5/ на рисунках 5,6 и 7. Особенности моделирования столкновения протонов рассмотрены в работе⁶. В работе⁷⁷ приведено сравнение с экспериментальными данными рассчитанных по модели кварк-глюонных струн быстротных распределений заряженных частиц в протон-ядерных взаимодействиях. Результаты расчетов на рисунках 5,6 и результаты работ ^{6,7} демонстрируют единообразие описания моделью различных процессов. Следует заметить, что, варьируя отдельные параметры модели для конкретного процесса pp-, pA- или $\sqrt{-3}$ -взаимодействия, можно улучшить согласие расчетных данных с экспериментальными.

Рис.7. Распределения по множественности заряженных частиц n_c в центральной $|\eta| < I,8$ области для PP-(верхний рисунок) и dd-(нижний рисунок) взаимодействий при полной энергии столкновения на нуклон \sqrt{s} =3I,2 ГэВ. Крестики (x) -экспериментальные данные / I5/, кружки (o) -расчет. η -псевдобыстрота заряженных частиц.

Переходя к рассмотрению результатов моделирования столкновений ядер при различных энергиях, представленных в таблице 2, следует обратить внимание на высокую среднюю множественность заряженных < n_{ch} > и отрицательно заряженных < n_{-} > частиц. Для сравнения: такая множественность может быть достигнута при столкновениях PP или PP на коллайдерах⁶. Из таблицы 2 видно также, что отношения среднего числа заряженных каонов к среднему числу заряженных пионов и среднего числа странных барионов к среднему числу нуклонов приблизительно одни и те же и близки к $\gamma^2 = 0, II$. Данное равенство есть следствие парного рождения струн и независимого распада отдельной струны.

8

Den	Pa			-	
геокция	130/0	<nch< th=""><th>> < n ></th><th>$-\frac{K^2}{2T^2}$</th><th>$\frac{\mathcal{R}, \mathcal{L}, \mathcal{L}}{\mathcal{R}, \mathcal{L}}$</th></nch<>	> < n >	$-\frac{K^2}{2T^2}$	$\frac{\mathcal{R}, \mathcal{L}, \mathcal{L}}{\mathcal{R}, \mathcal{L}}$
	100	6.760	2.382	0.474	0136
P+P	200	8,70	3.386	2693	0198
	511	11.740	4873	1.085	0.240
P + Ar 40	200	12.42	5,252	0.91	0257
$< \nu > = 227$.	511	17164	7.622	1.515	1314
d+d <>>>=2.23	511	17.630	7.256	1458	2.833
P+Xe 130	200	16.175	6.987	1.337	3.029
< V> = 3.29	511	22.100	9.785	12.897	<u>3.666</u> <u>Q389</u>
016+016	50	21.000	8.452	1363	3.88 0.563
	100	30,172	12.691	2.141	0799
<y> = 7.70</y>	200	35.498	15.685	2796	7.692 0821
	511	52,299	24,106	4.314	<u>8276</u> <u>2934</u>
016 4 40	100	45.65	19.76	3.290	1.183
• FAR	200	56.34	25.012	4,386	12.034
<¥> ≈12.82	5//	85.552	39.335	45.84	12.076
116 × 130	100	63,665	28.092	71.863	13.349
0 7/2	200	87 889	36 366	50.787 6.528	16.812
<v>=24.82</v>	200	122,798	56 4/4	65.834	16.817
C40, C40	511	67.776	29 224	101.734	TRA C
	100	13.56	17 200	59.962	17.174
< V> = 24.55	200	107 22	60.24	68.374	6.44
	511	161.68	30.214	106 667	141

Таблиша 2.

Средние характеристики рождающихся в различных реакциях частиц при начальном импульсе на нуклон Ро. Здесь <v>средняя кратность столкновений нуклонов для данной реакиии, < n_{ch}> - среднее число рождающихся заряженных частиц, < n >_ - средняя множественность отрицательно заряженных частиц. к / л - отношение средней множественности заряженных каонов и пионов, λ , ξ , Ξ/n , p – отношение средних множественностей странных барионов к нестранным.

Рис.8.

Рассчитанные распределения по множественности отрицательно заряженных частиц n_,рождающихся во взаимодействиях ядер кислорода с ядрами ксенона (сплошная линия), аргона (пунктирная линия) и кислорода (штрихпунктирная линия) при начальной энергии 200 ГэВ/н. Довольно близки также средние характеристики вторичных частиц в различных реакциях при одной и той же начальной энергии и одинаковой средней кратности взаимодействий < \rangle .

На рисунке 8 представлены рассчитанные распределения множественности отрицательно заряженных частиц n_в случае столкновения ядер кислорода с энергией 200 ГэВ/н с ядрами кислорода, аргона и ксенона.

Для распределения заряженных частиц в случае pp -соударений при энергиях коллайдеров длинные "хвосты" распределений, аналогичные "хвостам" на рисунке 8, нарушают КНО-скейлинг^{/6/}.

Для различных комбинаций сталкивающихся ядер при различных энергиях на рисунках 9-12 демонстрируются рассчитанные распределения заряженных частиц по псевдобыстроте η .

Рис.9.

Распределение по псевдобыстроте у заряженных частиц, рождающихся в реакции о¹⁶+Ar⁴⁰ при различных начальных энергиях. Точки(•) соответствуют энергии IOO ГэВ/н, прямоугольники(**D**) – 200 ГэВ/с, крестики (x)- 5II ГэВ/н.

Рис.II. Распределение по псевдобыстроте η заряженных частиц, рождающихся в реакции o^{16} +хе¹³⁰ при различных начальных энергиях. Обозначения те же, что и на рис.IO. Хотя средние множественности заряженных частиц, рождающихся в реакциях $ca^{40} + ca^{40}$ и $o^{16} + xe^{130}$, одинаковы, максимальное значение распределений по η в случае асимметричной комбинации сталкивающихся ядер значительно выше.

Для реакции о¹⁶ + хе¹³⁰ на рисунке I2 видна независимость распределений от начальной энергии в области фрагментации мишени.

Из рисунков 8-12 следует, что в областях максимумов распределений увеличиваются флуктуации.

Быстротные распределения протонов, образованных в столкновениях ядер кислорода при энергиях 50 ГэВ/н и 500 ГэВ/н, представлены на рисунке I3, чтобы продемонстрировать тормозную способность ядер в данной модели.

Рис.13.

Распределения по быстроте у протонов, рождающихся в реакциях $0^{16}+0^{16}$. Пунктирная гистограмма соответствует начальной энергии 511 ГэВ/н, а сплошная – 50 ГэВ/н.

Распределения по псевдобыстроте η заряженных частии, рождающихся в реакции са⁴⁰+са⁴⁰ при различных энергиях. Обозначения те же, что и на рисунке IO.

В заключение автор благодарит В.Д.Тонеева и С.Ю.Шмакова за многочисленные обсуждения.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д 2-82 -568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 p. 75 ×.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982. 2	р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983. 6	р. 55 к.
д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к. '
д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 p. 30 ĸ
д1,2-84-599	Труды VII Международного семинара по проблемам физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
д1 7-84-850	Труды Ш Международного симпозиума по избранным пробленам статистической механики. Дубна,1984. /2 тома/	7 p. 75 K.
Д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубка, 1984 /2 тома/	13 р.50 к.
д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 р.
д1 3-85-793	Труды XII Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
	THE WUNDER OF THE MARDARDERN I	, о апресу:

Заказы на упомянутые книги могут быть направлены по адресу. 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

<u>Литер**ат**ура</u>

- I. Bjorken J.D.-Phys. Rev. D27, 1983, 140.
- 2. Амелин Н.С. ОИЯИ, Р2-86-837, Дубна, 1986.
- Capella A.-In: Proc of the Europhysics study conf., Erice, Italy, 1981, p.199.
- 4. Кайдалов А.Б.-В кн.: Одиннадцатая школа физики ИТЭФ, М., Энергоатомиздат, вып.4, 1983, с.З.
- 5. Capella A., Pajares C., Ramallo A.V. Preprint CERN, CERNTH3700, 1983.
- 6. Амелин Н.С. ОИЯИ, Р2-86-836, Дубна, 1986.
- 7. Амелин Н.С. ОИЯИ, Р2-86-803, Дубна, 1986.
- 8. Möhring H.J., Ranft J.Z.Phys.C27, 1985, 419.
- 9. Capella A., Krzywicki A.-Phys. Lett. 67B, 1977, 84.
- IO. Нелипа Н.Ф., Пухов А.Е. Вестник МГУ, сер.физика, астрономия, 1980, т.21, в.6, с.71.
- II. Амелин Н.С., Барашенков В.С., Славин Н.В.-ЯФ, т.40, 1984, с.1560.
- I2. Спанье Дж.Гелбард Э. Метод Монте-Карло и задачи переноса нейтронов. М.: Атомиздат, 1972.
- I3. Field R.D., Feynman R.P.-Nucl. Phys., B136, 1978, p.1.
- I4. Aurenche P., Bopp F.W., Ranft J. LAPP-TH-83, 1983.
- I5. Faessler M.A. CERN-EF/84-64, Geneva, 1984.

Рукопись поступила в издательский отдел 15 декабря 1986 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	: Тематика
1.	Экспериментальная физика высоких знергий
2.	Тсоретическая физика высоких знергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика пизких знергий
5.	Математика
6.	Ядерная спектроскопия и радкохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
::.	Автоматизация обработки сколориментельных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Амелин Н.С. Моделирование столкновений ядер при высоких энергиях в рамках модели кварк-глюонных струн

Комплекс программ COLLI для моделирования с помощью ЭВМ мягких адронных, адрон-ядерных и ядро-ядерных соударений применяется для расчета различных характеристик продуктов взаимодействия ядер при высоких энергиях. В качестве физической модели выбрана модель кварк-глюонных струн. При неупругом столкновении ядер сначала образуются струны с кварками на концах, которые затем распадаются в цепочки адронов. Используется метод Монте-Карло для генерации эксклюзивных событий – результата соударений ядер. В частности, рассматриваются столкновения ядер кислорода с рядом ядер-мишеней в интервале энергий 50‡ ±500 ГэВ/н.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Amelin N.S.P2-86-802Simulation of Nuclear Collisionsat High Energy in the Frames of Quark-GluonString Model

COLLI program complex for computer of soft hadronic, hadron-nucleus, nucleus-nucleus collisions is applied for calculating the different characteristics of the nucleus-nucleus interaction products at high energy. The quark-gluon string model is chosen as a physical model. In the inelastic nucleusnucleus interactions the strings with quarks at their ends were first created, which decayed later into hadron chains. The Monte-Carlo method is used for generating the exclusive events being the result of nucleus-nucleus collisions. In particular, the collisions of the oxygen nuclei with a series of target-nuclei within the 50÷500 GeV/n energy range are considered.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986

P2-86-802