

P2-86-65

С.И.Биленькая, Д.Б.Стаменов*

ЗАМЕЧАНИЯ О ВЕЛИЧИНЕ $\mathbf{R} = \sigma_L / \sigma_T$ НА ОСНОВЕ АНАЛИЗА ДАННЫХ ЕМС ПО ГЛУБОКОНЕУПРУГОМУ $\boldsymbol{\mu} \mathbf{p}$ -РАССЕЯНИЮ

Направлено в журнал "Nuclear Physics"

 Институт ядерных исследований и ядерной энергетики БАН, София

1986

Введение

Измеряемое на опыте дифференциальное сечение глубоконеупругого рассеяния мюонов на протоне в однофотонном приближении имеет следующий вид:

$$\frac{d^{2}G}{d \times d Q^{2}} = \frac{4\pi d^{2}}{Q^{4}} \frac{1}{x} \left[1 - y - \frac{M \times y}{2E} + \frac{y^{2}(1 + 4M^{2}x^{2}/Q^{2})}{2(1 + R(x,Q^{2}))} \right] F_{2}(x,Q^{2}),$$

где Q^2 - квадрат переданного импульса, $x = Q^2/2M\mathcal{N}$ - скейлинговая переменная Бьёркена, $\gamma = \mathcal{V}/\mathcal{E}$, $\mathcal{V} = \mathcal{E} - \mathcal{E}'$, \mathcal{E} и \mathcal{E}' - энергии начального и конечного мюонов в лабораторной системе, M - масса протона. Информация о структуре протона содержится в функциях F_2 и R, которые являются функциями переменных X и Q^2 .

Величина К является отношением полных сечений поглощения виртуального фотона с продольной (G_L) и поперечной (G_T) поляризациями:

$$R \equiv \frac{G_{L}}{G_{T}}$$

Чтобы определить из опыта отношение R и структурную функимо F_2 модельно-независимым способом, необходимы данные по сечениям при фиксированных X и Q^2 для разных значений Y, т.е. для разных значений энергии налетающего мюона. Эта пропедура требует дополнительных экстраполяций, что снижает точность в определении R. Отметим еще, что при такой процедуре нельзя допользовать всю информацию о сечениях. Поэтому кинематическая (по X и Q^2) область определения R существенно сужаетоя (см. работы /I.2/).

В настоящей работе нами используется другой подход при определении структурных функций F_2 и R. Полученные в теории или феноменологической модели выражения для этих величин подотовляются в формулу (I), и все свободные параметры, связанные о F_1 и $R_{,,}$ находятся из фита данных по сечениям. Преимущество такого подхода заключается в том, что сравнение теории осуществляется с непосредственно измеряемыми на опыте величинами во воей исследованной кинематической области. Такой метод применялся нами ранее^{/3}

2

при анализе данных упругого и глубоконеупругого рассеяния электронов на протонах. Отметим, что такой подход был применен также в работе /4/ при совместном анализе глубоконеупругого ер-и µррассеяния.

В работе ^{/5/} нами был проведен совместный анализ данных Европейской мюонной коллаборации (ЕМС) по рассеянию мюонов на водороде^{/2/} и дейтерии ^{/6/} в рамках плавного логарифмического приближения (IЛП) квантовой хромодинамики для структурных функций свободного нуклона. В этом приближения R = O, и тогда между сечением (I) и структурной функцией $F_{0}^{10}(x, Q^{2})$ существует однозначная связь. Как хорошо известно ^{/7/}, для того чтобы сравнивать значения

Как хорошо известно ''', для того чтобы сравнивать значения параметра КХД Λ , полученные из анализа различных процессов, необходимо учесть следующие к ІЛП поправки по константе связи сильных взаимодействий d_s . В этом приближении, однако, $R^{th} \neq 0$, и поэтому нужно анализировать непосредственно сечение глубоконеупругого μN – рассеяния.

Данная работа является первым этапом в решении этой задачи. Анализ проводился в предположении о том, что структурная функция

F₂ дается выражением, полученным в IIII квантовой хромодинамики, а отношение R – простыми феноменологическими параметризациями.

Метод анализа

Метод анализа был подробно изложен в работе ^{/5/}. Здесь напомним его основные предпосылки и приведем некоторые необходимые формули.

I. Структурная функция F_2 выражается через кварк-партонные распределения в свободном нуклоне. В ГЛП квантовой хромодинамики F_2^P имеет следукций вид:

$$F_{2}^{P}(x,Q^{2}) = \frac{4}{9} \times \mathcal{U}_{v}(x,Q^{2}) + \frac{4}{9} \times d_{v}(x,Q^{2}) + \frac{2}{9} \times S(x,Q^{2}) + \frac{4}{9} \times C(x,Q^{2})_{(2)}$$

где $S = 6S$, $C = 2c$ ($\bar{c} = C$).
В (2) \mathcal{U}_{v} , d_{v} , S и C - функции распределения
валентных \mathcal{U} - и d_{v} - кварков, странных и очарованных кварков
в протоне. Предполагается также $S \mathcal{U}(3)$ - симметрия моря неоча-
рованных кварков.

Для отношения К рассматриваются следующие феноменологические параметризации:

$$\lambda = \frac{4a}{a^2} , \qquad (3a)$$

объснаянсьный енститут насиных весяедованый БИБЛИОТЕНА

$$R = b, \qquad (36)$$

$$R = C / ln \left(\frac{Q^2}{\Lambda^2}\right). \qquad (3B)$$

Здесь α , b и C – свободные параметры, которые определяются из анализа экспериментальных данных. Выражение (За) получено Фейнманом ^{/8/} в рамках партонной модели с учетом поперечного импульса партонов в нуклоне. Параметр α имеет смысл среднего значения квадрата этого импульса: $\alpha = \langle p_{\perp}^2 \rangle$.

2. Для партонных распределений используется параметризация Бураса – Гемерса /9/:

$$\times \mathcal{U}_{v}(x, Q^{2}) = \prod_{u} (\bar{s}) \times \frac{\eta_{1}(\bar{s})}{(1 - \chi)},$$
 (4a)

$$x d_{v}(x, Q^{2}) = \int_{d} (\bar{s}) x^{\frac{\eta_{s}(\bar{s})}{2}} (1 - x)^{\frac{\eta_{4}(\bar{s})}{2}},$$
 (46)

$$x S(x, Q^2) = A_s(\bar{s})(1-x)^{\gamma_s(\bar{s})}$$
 (4B)

$$x \left((x, Q^{2}) = A_{c}(\overline{s})(1-x)^{\gamma_{c}(s)}, (4r) \right)$$

$$\times G(\times, Q_{\circ}^{2}) = A_{G}(1-\times)^{l_{G}}, \qquad (4\pi)$$

где

$$(\bar{s}) = \eta_{i} + G \eta_{i} \bar{s}, \quad i = 1, 2...4,$$

$$\bar{s} = \ln \frac{\ln(Q^{2}/\Lambda^{2})}{\Lambda(Q^{2}/\Lambda^{2})}.$$
(6)

 $ln(4;/\wedge^2)$ Коэффициенты $\Gamma_u(\bar{s})$ и $\Gamma_d(\bar{s})$ в (4a,6) определяются правилами сумм, а A_G . в формуле (4д) фиксируется законом сохранения энергии-импульса. В формуле (6) $G = 4/(33 - 2N_f)$, где N_f – число ароматов. η_i , $A_s \equiv A_s(0)$, $\eta_s \equiv \eta_s(0)$, η_G . ($A_c(o)$ принимается равным нулю) являются свободными параметрами, определяющими функции распределения кварков и глюонов в протоне для произвольного значения Q_o^2 , лежащего в кинематической области эксперимента. Имеются экспериментальные указания на то, что функции распределения морских кварков в области $X \ge 0.45$ стремятся к нулю. Тогда $A_s(\bar{s})$, $\eta_s(\bar{s})$, $A_c(\bar{s})$ и $\eta_c(\bar{s})$ могут быть записаны в яеном виде /9/ как функции этих параметров и параметра Λ . При определении γ'_i мы требуем, чтобы функции распределения валентных кварков (4а,6) воспроизводили в кинематической области ЕМС точные решения уравнений КХД для моментов в IЛП с точностью не меньше 2-3%.

3. В отличие от работи /9/, значения параметров $\{ \Lambda^2; \eta_i, A_s, \eta_s, \alpha(\ell, c); \eta'_i \}$ находятся из совместного фита экспериментальных <u>данных по сечениям</u> (во всей кинематической области) и <u>уравнений КХД</u> для моментов распределений валентных кварков. Все свободные параметры определяются минимизацией функционала:

$$\chi^{2} = \chi^{2}_{exp} + \frac{1}{\xi^{2}}\chi^{2}_{th}$$
, (7)

где

$$\chi^{2}_{exp} = \sum_{i,\kappa} \frac{\left(\mathcal{G}_{i,\kappa}^{exp} - N_{\kappa} \mathcal{G}_{i}^{th} \right)^{2}}{\Delta^{2}_{i\kappa}} \quad .$$
(8)

Здесь $G_{i,K}^{exp}$ – дифференциальное сечение $\mu \rho$ –процесса в *i* –й точке, измеренное в K –м эксперименте, Δ_{iK} – ошиока $G_{i,K}^{exp}$, G_{i}^{th} – сечение в *i* –й точке, вичисленное по формуле (I), а N_{K} – нормировочные множители. В формуле (7)

$$\chi_{th}^{2} = \sum_{n=2}^{20} \sum_{i=1}^{M} \sum_{q=0,d} \left\{ \frac{\exp(-G\delta_{n}\bar{s}_{i}) - R_{n}^{(q)}(\bar{s}_{i};\eta,\eta')}{\exp(-G\delta_{n}\bar{s}_{i})} \right\}^{2}, (9)$$

а \mathcal{E}^{-2} – некий вес, значение которого подбирается таким образом, чтобн распределения валентных кварков (4а,6) с найденными значениями для η_i , η_i' воспроизводили с точностью, не меньщей, чем 2-3 %, численные решения эволюционных уравнений ЛАП /IO/ в IЛП во всей области эксперимента. В (9) $\Re_n^{(q_i)}$ – отношение для моментов функций распределения валентных кварков, зависимость которого от η_i и η_i' внчисляется в явном виде с помощью (4а,6).

Результаты анализа

В работе были проанализированы данные ЕМС ^{/2/} по сечениям глубоконеупругого μ р – рассеяния (234 экспериментальные точки) в следукщей кинематической области:

$$0,03 \leq X \leq 0,75$$

4

5

5,5
$$\leq$$
 $Q^2 \leq$ 170 $\Gamma \Rightarrow B^2$.

Значение Q_o^2 принималось равным 5 ГэВ². Расчети, однако, показали, что полученные результать не зависят от выбора Q_o^2 . Для параметра γ_G , характеризующего распределение глюонов × G(×, Q_o^2), принимались разные значения в интервале $3 \leq \gamma_G \leq 10$. Показано, что значение величини R не зависит от выбора γ_G . Влияние γ_G , на параметр КХД Λ подробно обсуждено нами в работе $\frac{1}{5}$. Кроме учета статистических ошибок при анализе вводились также варьируемые нормировочные множители N_i , учитывающие относительную нормировку данных, полученных при различных энергиях налетакщего мюона.

Значения параметров $\alpha(\ell, c)$, Λ^2 , N_i для всей рассматриваемой кинетической области, а также для области $0,03 \le \times \le \le 0,45$ приведены в табл. І. Анализ ($\eta_c = 5, N_f = 4$) показал, что величина R_i стремится к нулю при всех рассматриваемых для R_i параметризациях. Значения варьируемых параметров, а также величины χ^2_{exp}/D_F практически одинаковы для параметризаций (За,6, в). Отметим, что значение $\chi^2_{exp}/D_F = I_165$ велико. Однако, если выполнить процедуру, предложенную в / II/, и умножить экспериментальные ошиоки на масштаоный фактор

$$S = \sqrt{\frac{\chi^2_{exp}}{n-1}}$$

где $n_{exp} - число экспериментальных точек, то значение <math>\chi_{exp}^{2} / D_{F}$ становится близким к единице (I.IO), а значения параметров в минимуме практически не меняются.

В табл. І приведенн также результаты анализа (параметризация (За)) для $0,03 \leq x \leq 0,45$. В этой области относительное число экспериментальных точек, для которых значение $y = Q^2/2M \times E$ велико, намного больше, чем во всей кинетической области. Тогда из формулн (І) видно, что вклад в сечение от члена, связанного с R, более заметен. Однако и в этом случае мы получили практически то же самое решение для свободных параметров, а R – равное нулю ($\alpha = 0,00 \pm 0,11$).

В таблице I приведены значения нормировочных множителей N_i . Последние отличаются от единицы не более чем на 3%, что не превышает указанных авторами работы /2/ значений неопределенности в относительной нормировке.

Результаты а	Нализа ј	цаннь	HX EMC (β ^c =	≓l≥່ ທີ	$\frac{addinal}{f} = \frac{1}{4}, \frac{2}{0}, \frac{2}{3} = \frac{1}{3}$	5 TaB ² , N, (E = I20 TaB):	(1=
Кин. область R	$\frac{\chi^2_{exp}}{D_F}$	>5	(r _{3B} ²) A	ЕМ)	B)	N ₃ E=240 TaB	N ₄ E = 280 Tab	a (B,C)
все × R = 4a/Q ²	341/20(9	0,0065±0,0032	80	0 , 972±0,006	0,993±0,008	0,986±0,006	0,000 ± 0,119
X ≤ 0,45 R = 4a/Q²	264/14:	. 6	0,0073±0,0038	85	0,969±0,007	0,990±0,008	0,985±0,006	0,000 ± 0,113
ВСӨ Р = С	341/20(9	0,0069±0,0033	83	0 , 972±0,006	0,993±0,008	0,986±0,006	0,000 ±0,02I
$\overrightarrow{BCO} \times \overrightarrow{C} / P_n Q^2 / A_2$	34I/20(9	0,0067±0,0033	82	0,971±0,006	0,993±0,008	0,986±0,006	0,000 ± 0,175

$\sum_{a=5}^{n} (T_{aB})^{2}, d_{v} \equiv (\gamma_{e})^{2}, \beta_{e} = (\gamma_{e})$	2 3 4	± 0,05 0,80 ± 0,05 4,87 ± 0,2	± 0,40 -I,67 ± 0,25 4,96 ± 0,58	$= \frac{2 \Gamma(y_{1} + y_{2} + 1)}{\Gamma(y_{1}) \Gamma(y_{2} + 4)} \times \frac{\gamma_{1}}{(1 - \chi)^{2}}$	$: \frac{\Gamma(\eta_{3} + \eta_{4} + 1)}{\Gamma(\eta_{5}) \Gamma(\eta_{4} + 1)} \times^{\eta_{3}} (\eta - x)$	= A _s (1 - x) ^{9s} , x C (x, 0
гров, связанных с $Q_{\rho}^{2} = 5$	7	0,0I 2,90±0,	0,I7 4,56±0,	$u_{v}(x, Q_{o}^{2}) = \frac{2}{\Gamma(0)}$	$d_{v}(x, Q_{o}^{2}) = \frac{\Gamma}{\Gamma}$	د ۲ (×, ۵°) = ۱
ния свободных параме:	-	η _i 0,64 ±	υ, μει γ' -1,27 ±	×	×	

2

TROUMIN

В табл. 2 представлены полученные значения для параметров, характеризующих распределения валентных и морских кварков в протоне. Для нахождения физического решения этих параметров было необходимо привлечь данные по структурным функциям глубоконеупругого рассеяния моонов на дейтронах ^{/6/}. При анализе только протонных данных полученные для партонных распределений параметры приводили к противоречию с физическим требованием, что часть импульса протона, переносимая и – кварками, должна быть больше части импульса, которая переносится d. – кварками. Кроме того, такие распределения не согласуются с экспериментальными данными ^{/6/} для разности структурных функций протона и нейтрона F_2^{p-n} .

Заключение

В настоящей работе был проведен анализ данных ЕМС по сечениям плубоконеупругого μ р -рассеяния. При этом для структурной функции протона F_2 принималось выражение, полученное в главном логарифмическом приближении КХД, а для отношения R_- параметризации типа

$$R = const$$
, $R = 4 < p_{\perp}^{2} / Q^{2}$, $R = \frac{C}{\ln Q^{2} / \Lambda^{2}}$.

Для величин R, < pi>, с и параметра КХД Л были найдены следующие значения:

$$\begin{array}{l} & \begin{pmatrix} & \\ R \\ \end{array} = 0,000 \pm 0,021, & \bigwedge^2 = (0,0069 \pm 0,0033) \Gamma_{3B}^2 \\ & (& \bigwedge = 83 \text{ MaB}); \\ & \begin{pmatrix} & \\ P_T \\ \end{array} \rangle = (0,000 \pm 0,119) \Gamma_{3B}^2, & \bigwedge^2 = (0,0065 \pm 0,0032) \Gamma_{3B}^2 \\ & (& \bigwedge = 80 \text{ MaB}); \\ & C = 0,000 \pm 0,175 & , & \bigwedge^2 = (0,0067 \pm 0,0033) \Gamma_{3B}^2 \\ & (& \bigwedge = 82 \text{ MaB}). \end{array}$$

Полученные нама значения для K и Λ согласуются со значениями для этих величин, приведенными группой ЕМС. Подчеркнем еще раз, что при определении R нами использовалась информация о сечениях илубоконеупругого рассеяния во всей кинематической области измерений.

В заключение хотелось он отметить, что проведенный в работе анализ является только частью задачи, представляющей бесспорный

9

интерес, а именно: анализа данных по сечениям лептон-нуклонного рассеяния с учетом следующих к главному логарифмическому приближению поправок КХД как для структурной функции F_2 , так и для отношения R. Подчеркнем, однако, что измерение отношения R с большей точностью в широком кинематическом интервале явилось бы прямым способом определения константы связи сильного взаимодействия и, следовательно, более прямым тестом КХД.

Авторы признательны И.А. Савину за поддержку и интерес к работе, а также Г.Султанову и Б.З.Копелиовичу за обсуждения и полезные замечания.

Литература

- I. Aubert J.J. et al. Phys. Lett., 1983, 121B, p. 87.
- 2. Aubert J.J. et al. Nucl. Phys., 1985, B259, p. 189.
- Bilenkaya S.I., Kazarinov Yu. M., Lapidus L.I.
 Zh. Eksp. Teor. Fiz., 1971, 60, p. 460;
 Bilenkaya S.I., Stamenov D.B. Nucl. Phys., 1974, B79, p. 422;
 Yad. Fiz. 1980, 31, p. 233.
- 4. Fox G.C. Nucl. Phys., 1977, BI31, p. 107.
- Bilenkaya S.I., Stamenov D.B. JINR, E2-85-380; Dubna, 1985.
- 6. Aubert J.J. et al. Phys. Lett., 1983, 123B, p. 115.
- 7..Bace M. Phys. Lett., 1978, 78B, p. 132;
- Buras A.J. Rev. Mod. Phys., 1980, 52, p. 199.
- Feynman R.P. Photon-Hadron Interactions. Benjamin Press N.Y., 1972.
- Buras A.J. Nucl. Phys., 1977, BI25, p. 125;
 Buras A.J., Gaemers K.J.F. Nucl. Phys., 1978, BI32, p. 249.
- IO. Lipatov L.N. Yad. Fiz., 1974, 20, p. 181; Altarelli G., Parisi G. Nucl. Phys., 1977, BI26, p. 298.
- II. Reviews of Modern Phys., April 1984, vol. 56, No 2, part II.

Рукопись поступила в издательский отдел 6 февраля 1986 года.

Биленькая С.И., Стаменов Д.Б. Замечания о величине $R = \sigma_L / \sigma_T$ на основе анализа данных ЕМС по глубоконеупругому µр-рассеянию

Излагаются результаты анализа данных ЕМС по глубоконеупругому μ -рассеянию. Для структурной функции F_2 используется выражение, полученное в главном логарифмическом приближении КХД, а для отношения $R = \sigma_L/\sigma_T$ - следующие феноменологические параметризации: $R = 4a/Q^2$; R = b; $R = c/ln(Q^2/\Lambda^2)$. Все свободные параметры, связанные с F_2 и R, находятся из совместного фита экспериментальных данных по сечениям и эволюционных уравнений КХД для моментов кварк-партонных распределений. Показано, что сделанные предположения для F_2 и R согласуются с экспериментальными данными. При этом среднее значение R (независимо от используемой нами параметризации) равно нулю. В случае R = const получены следующие значения для <math>R и параметра КХД Λ : $R = 0,000+0,021, \Lambda^2 = 0,0069+0,0033 Гэ8^2 (\Lambda = 83 мэ8).$

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Bilenkaya S.I., Stamenov D.B. On the Quantity $R = \sigma_L / \sigma_T$ from Analysis of EMC Experimental Data on Deep Inelastic μp Scattering P2-86-65

P2-86-65

The EMC deep inelastic μp scattering data are analysed in the framework of the leading order approximation of QCD for the structure function F_2 . For the ratio $R = \sigma_L/\sigma_T$ (σ_L and σ_T are the longitudinal and transverse photoabsorption cross sections) the following phenomenological parametrisations are used: $R = 4a/Q^2$; b; $c/\ln(Q^2/\Lambda^2)$. All free parameters (connected with F_2 and R) are found from a simultaneous fit to the cross section data and the QCD equations for the moments of quark-parton distributions. It is shown that the experimental data are in agreement with the assumptions for F_2 and R made above. The mean value of R (independently of the parametrisations under consideration) is equal to zero. In the case of R = const the following values of R and the QCD mass scale parameter Λ are obtained: R = 0.000+0.021, $\Lambda^2 = 0.0069+0.0033$ GeV² ($\Lambda = 83$ MeV).

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986