

P2-86-441

Е.З.Авакян*, С.Л.Авакян*, Г.В.Ефимов,

М.А.Иванов

О РАСПАДЕ К $\rightarrow e v \gamma$

Направлено в "Письма в ЖЭТФ"

* Ташкентский государственный университет

В связи с планируемыми экспериментами по изучению свойств каонов возрос интерес к каонной физике. Физика каонов чрезвычайно богата нетривиальными физическими эффектами: переходы с $\Delta S = I$, $\Delta T = I/2$, $\Delta S = 2$ и т.п. Наряду с нелептонными распадами ($\Delta T = I/2$, $\Delta S = 2$), природа которых еще недостаточно ясна, интерес представляют также лептонные и полулептонные распады с $\Delta S = I$. С точки зрения кварковых моделей изучение этих распадов позволяет определить параметры странного кварка и уточнить значения таких величин, как параметры наклона K_{e3} - распада, радиус К-мезона, характеризующих внутреннюю структуру каона. На наш взгляд, весьма интересен распад $K - e \sim g$.

 $M^{r} = \varepsilon_{\mu\nu\rho\sigma} \quad q^{\rho}p^{\sigma} b(q^{2}) - i(q^{\mu}p^{\nu} - g^{\mu}pq) a(q^{2}),$

где $q_{,\rho}$ - импульсы фотона и каона соответственно. Экспериментально измеряется отношение $\gamma_{\kappa} = \alpha(o)/b(o)$, которое к настоящему времени известно с очень большой погрешностью $0,05 < \gamma_{\kappa} < 0,6^{/1/}$. В кварковых моделях значение этого отношения $\gamma_{\kappa} = 1$, так же как и в случае распада $\pi \to e \circ \gamma$. Следует отметить, что ситуация с распадом $\pi \to e \circ \gamma$ явилась своеобразным вызовом кварковым моделям /2/, поскольку большинство попыток /3/ решить эту проблему оканчивалось неудачей. В работе /4/ было показано, что последовательный учет $A - \pi$ переходов, где A - псевдоскалярный мезон с массой ≈ 1270 МэВ, приводит к значению $\gamma_{\pi} = 0.53$, что хорошо согласуется с недавними экспериментальными данными /5/. Учет $A - \pi$ переходов привел к незначительному переопределению параметров нестранных кварков и практически не изменил результаты вычислений для основных эффектов нестранной физики.

Цель данной расоты состоит в описании распада $K \rightarrow e \Im \gamma$ с учетом. $K - Q_1$ переходов, где Q_1 (I280) - странный псевдоскалярный мезон.

Поскольку физика каонов отличается от пионной физики прежде всего появлением странного кварка, то вначале необходимо определить его параметры. Лагранжиан взаимодействия мезонов с кварками записывается в следующем виде:

$$\begin{aligned} \mathcal{Z} &= \frac{i g_{\pi}}{\sqrt{2}} \,\mathcal{T}_{i} \,\overline{q} \, \gamma^{5} \mathcal{J}_{\pi}^{i} \, q + \frac{i g_{\pi}}{\sqrt{2}} \,\mathcal{K}_{i} \,\overline{q} \, \gamma^{5} \mathcal{J}_{\kappa}^{i} \, q + \frac{i g_{s}}{\sqrt{2}} \,\mathcal{G}_{ir}^{i} \,\overline{q} \, \gamma^{r} \mathcal{J}_{s}^{i} \, q \, + \\ &+ \frac{i g_{\kappa^{*}}}{\sqrt{2}} \,\mathcal{K}_{ir}^{*} \,\overline{q} \, \gamma^{r} \mathcal{J}_{\kappa^{*}}^{i} \, q + \frac{g_{\Lambda}}{\sqrt{2}} \,\mathcal{A}_{ir}^{i} \,\overline{q} \, \gamma^{r} \gamma^{5} \mathcal{J}_{\Lambda}^{i} \, q \, + \frac{g_{\alpha}}{\sqrt{2}} \,\mathcal{Q}_{ir}^{i} \,\overline{q} \, \gamma^{r} \gamma^{5} \mathcal{J}_{\alpha}^{i} \, q \, + \\ \end{aligned}$$

В отличие от предыдущих работ по ВКМ $^{/6/}$, расчеты проводились в рамках ВКМ с конфайнмированными петлями $^{/4/}$. Параметрами, описывающими S -кварк, являются L_s -величина, характеризующая область конфайнмента, и M_s -масса s - кварка. L_s и M_s определяются фитированием по основным низкоэнергетическим распадам странных мезонов. В качестве величин, по которым проводилось фитирование, вы браны:

5. Ч/5, константа слабого распада К-мезона;
 9 κ^{*}κπ константа сильного распада К^{*} (892)-мезона;
 9 κ^{*}κγ константа радиационного распада Κ^{*} (892)-мезона;
 9 чкк константа сильного распада Ч -мезона;

В таблице приведены параметры S -кварка, полученные в результате фитирования, а также параметры, характеризующие U-и d--кварки. Также в таблице приведены диаграммы основных процессов и численные значения констант распадов. Видно, что наши результаты в рамках 20% точности совпадают с экспериментом.

Pachag K-evr

описывается диаграммами рис.І.

DODLAND MICHELYT

6H5 THE

2

		Габлица		
	И, d - кварк	S-кварк		
L	5,48 ГэВ ^{-I}	3,8 гә <u>в</u> -І		
m	220 МәВ	400 МэВ		
Процесс	Диаграмма	Наблюдае- мая вели- чина	Эксперимент	BKM
К->µ»	=0<	fĸ	154,3 MəB	158,9 MəB
K*→ K5ī		gк*кл	4,6	3,9
K*-+Kγ		gr*r8	1,0	I,I
Ý→ K ^Ť K		gyrr	4,4	3,5
Y→e*e	± =0~<	1/5,	0,076	0,080
K-Jen		ş (o)	-0,35 <u>+</u> 0,14 /7/	-0,19
		λ_{\star}	0,0284 <u>+</u> 0,0047 ^{/8/}	0,022
	K.O	λ	-0,003 <u>+</u> 0,007 /7/	0,006
K≁Kx	3,4	$\langle \tau^2 \rangle_{k} P_{j}$	2 0,26 <u>+</u> 0,07 /9/	0,31
ᠮᢇᢣᠺ᠈ᢧ		Г,эв (2,99 <u>+</u> 1,51) 10 ^{-5/10/}	I,69 10 ⁻⁵

В результате стандартных вычислений получим

ì

$$\gamma_{k} = \gamma \left(k \rightarrow e \nu \gamma \right) = 1 - \frac{48 \lambda_{a}}{\mu_{a}^{2}} J_{k} = 0,21 ,$$

$$\gamma_{\pi} = \gamma \left(\pi \rightarrow e \nu \gamma \right) = 1 - \frac{48 \lambda_{a}}{\mu_{a}^{2}} J_{\pi} = 0,53 .$$

Здесь $\lambda_{A} = 0, II, \lambda_{Q} = 0,08$ - константы связи A_{\pm} и Q_{\pm} -мезонов, определяемые из условия связанности

$$J_{x} = 2 \int_{x}^{\infty} dt t^{2} \sin(2t\mu_{u}) e^{-t^{2} + \mu_{u}^{2}} = 1,08,$$

$$J_{\kappa} = 2 \int_{x}^{\infty} dt t^{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})^{2}) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} + \frac{1}{2} \sin(t(\mu_{u} + \mu_{s})^{2}) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})} + \frac{1}{2} \sin(t(\mu_$$

$$+ \frac{(\mu_{s} - \mu_{u})^{2}}{3} 2 \int_{0}^{\infty} dt \sin(t(\mu_{u} + \mu_{s})) e^{-t^{2} + (\frac{\mu_{u} + \mu_{s}}{2})^{2}} =$$

$$= 1, 16 + \frac{0, 25^{2}}{3} 1, 6 = 1, 19,$$
FIGP
$$M_{u} = \frac{M_{u}L_{u}}{2} \approx 0, 6 ; \mu_{s} = \frac{M_{s}L_{s}}{2} \approx 0, 85;$$

$$M_{A} = \frac{M_{A}L_{u}}{2} \approx 3, 49 ; \mu_{q} = \frac{M_{a}L_{s}}{2} \approx 2, 43.$$

Отсюда видно, что различие $\chi_{\mathbf{k}}$ и χ_{π} происходит в основном за счетразличия параметров L_s и L_u , характеризующих область конфайнмента и мало зависит от масс кварков M_s и M_u .

Литература

1. K.S.Heard et al. Phys.Lett., B, 1975, v.55, p.324.

- 2. Paver N., Scadron M.D. Nuovo Cim., 1983, 78A, p.159.
- 3. Brymon. D.A. et al. Phys. Rep., 1982, 88, p.151.
- 4. Авакян Е.З. и др. ОИЯИ, Р2-86-278, Дубна, 1986.
- 5. Stetz A. et al. Nucl. Phys., 1978, B138, p.285.
- 6. Ефимов Г.В., Иванов М.А. ЭЧАЯ, 1981, 12, вып.5.
- 7. Particle Data Group. Phys.Lett., 1978, 75B, N 1.
- 8. Carroll A.S. et al. Phys. Rev. D, 1980, 21, p.652.
- 9. Dally E.B. et al. Contribution to the XIX Cond. Tokyo, 1978.

10.Klanner R.I. Proc. of Leipzig Conf. Leipzig, 1985, v.11, p.202.

Рукопись поступила в издательский отдел 4 июля 1986 года. Авакян E.3. и др. О распаде $K \rightarrow e\nu\gamma$

Вычислено отношение $\gamma_{\rm K}$ аксиального и векторного формфакторов в распаде К $\rightarrow e\nu\gamma$ в рамках виртон - кварковой модели. Оказалось, что последовательный учет К - Q₁ переходов, где Q₁(1280) - странный псевдоскалярный мезон, приводит к значению $\gamma_{\rm K}$ = = 0,21. Проведено сравнение с соответствующей величиной γ_{π} в распаде $\pi \rightarrow e\nu\gamma$.

P2-86-441

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Avakyan E.Z. et al. P2-86-441On $\mathbf{K} \rightarrow \mathbf{e}\nu y$ Decay

The $\gamma_{\rm K}$ ratio of axial and vector form factor in ${\rm K} \rightarrow {\rm e}\nu\gamma$ decay has been calculated in the framework of virton-quark model. It appears that consistent account of ${\rm K} - {\rm Q}_1$ transitions, where ${\rm Q}_1(1280)$ is the strange pseudoscalar meson, leads to the value $\gamma_{\rm K} = 0.21$. The comparison with corresponding quantity γ_{π} in the $\pi \rightarrow {\rm e}\nu\gamma$ decay has been made.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986