

P2-86-365

Ю.Л.Калиновский ', Н.А.Сариков', Г.Г.Тахтамышев

ПОЛУЛЕПТОННЫЕ РАСПАДЫ ОЧАРОВАННОГО БАРИОНА Δ_c^+ В методе феноменологических КИРАЛЬНЫХ ЛАГРАНЖИАНОВ

Направлено в журнал "Physics Letters B"

¹Гомельский политехнический институт ²Институт ядерной физики АН УзССР, Ташкент

1986

Недавно появились первие экспериментальные данные / I/ по нолулептонным распадам очарованного бариона Λ_c^+ . Однако их теоретическое описание ещё неудовлетворительно. Например, в работах /2/ на основе КХД вычислена лишь полная ширина полулептонных распадов очарованных частиц. Имеется также очень грубая оценка парциальных ширин распадов, основанная на SU(4)-симметрии /3/.

В данной работе вичислени парциальние ширины полулептонных распадов очарованного Λ_c^+ – бариона с использованием метода феноменологических киральных лагранжианов $^{4,5/}$ (МФКП), обобщенных путем введения взаимодействий спин-I мезонов с 0⁻ – мезонами и I/2⁺ – барионами $^{6/}$. Ми ограничимся рассмотрением распадов типа $I/2^+ \rightarrow I/2^+ + Q + V$. Экспериментальные данные еще не имеют хорошей точности, поэтому сравнение их с результатами вичислений позволяет хотя би в общих чертах проверить киральные токи, включающие очарованные барионы. Заметим, что киральные токи хорошо описывают полулептонные распады обичных барионов $^{7/}$.

Согласно МФКІ, сильные взаимодействия псевдоскалярных мезонов и барионов описываются лагранжианом /5/

 $L_{s} = \frac{F_{\pi}^{2}}{4} tr[\partial_{\mu} \exp(i\hat{\pi}/F_{\pi})\partial^{\mu}\exp(-i\hat{\pi}/F_{\pi})] + \overline{B}_{(mn]}^{\alpha} (iy_{\mu}\partial^{\mu}-M_{o})B_{\alpha}^{(mn]} + \frac{i}{2}(\overline{B}y_{\mu}N_{i}B)_{c} tr[V_{i}\exp(-i\hat{\pi}A/F_{\pi})] + \frac{i}{2}g_{A}[\alpha(\overline{B}y_{\mu}A_{i}B)_{d} + (1-\alpha)(\overline{B}y_{\mu}A_{i}B)_{f}] tr[A_{i}\exp(-i\pi A/F_{\pi})] + \frac{i}{2}g_{A}[\alpha(\overline{B}y_{\mu}A_{i}B)_{d} + (1-\alpha)(\overline{B}y_{\mu}A_{i}B)_{f}] tr[A_{i}\exp(-i\pi A/F_{\pi})],$ $\partial^{\mu}\exp(i\pi A/F_{\pi})] + \frac{i}{2}g_{A}[\alpha(\overline{B}y_{\mu}A_{i}B)_{d} + (1-\alpha)(\overline{B}y_{\mu}A_{i}B)_{f}] tr[A_{i}\exp(-i\pi A/F_{\pi})],$ $r_{A}e g_{A} \approx I.25 - \text{перенормированная константа аксиального тока,}$ $F_{\pi} \approx 93 \text{ MaB} - \text{постоянная лептонного распада пиона, } M_{o} - \text{сред$ $няя масса барионного мультицата (равная m_{p} для обичных в$ $2,69 Гав для очарованных барионов), <math>V_{i} = \lambda_{i}/2$, $A_{i} = V_{i} \delta_{i}$, $\hat{\pi} = \hat{\pi}_{i} \lambda_{i}$ (λ_{i} -матрицы Гелл-Манна). Предполагается, что параметр смешквания (α) $f - \pi$ d -связей, определенных как

$$(\overline{B}\lambda_{i}B)_{d(f)} = \frac{1}{2} \overline{B}_{(mn]}^{a}(\lambda_{i})_{a}^{b} \overline{B}_{b}^{(mn]} + (-) \overline{B}_{[bn]}^{m}(\lambda_{i})_{a}^{b} \overline{B}_{m}^{[an]},$$

имеет одно и то же значение (2/3) для обычных и очарованных барионов.

Лагранжиан взаимодействия 15-плета спин-I мезонов и 20-плета 1/2⁺ - барионов имеет вид ^{/6/}

$$L_{s}^{t} = -g \left[\beta \left(\overline{B}_{y_{\mu}} V_{k} B \right)_{d} + (1-\beta) \left(\overline{B}_{y_{\mu}} V_{k} B \right)_{f} \right] Q_{\mu}^{k}$$
$$-gg_{A} \left[\alpha \left(\overline{B}_{y_{\mu}} A_{k} B \right)_{d} + (1-\alpha) \left(\overline{B}_{y_{\mu}} A_{k} B \right)_{f} \right] Q_{\mu}^{k},$$

где $\beta = 3/4$, $g^2/4\pi = 3$, ζ_{μ}^{k} и α_{μ}^{k} - поля I⁻ и I⁺ - мезонов соответственно.

15-плет токов записывается в виде /5,6/

$$J_{\mu}^{i} = F_{\pi} \mathcal{J}_{\mu} \pi^{i} + f_{jk}^{i} \pi^{j} \mathcal{J}_{\mu} \pi^{k} + \frac{m_{\sigma}^{i}}{g} \mathcal{J}_{\mu}^{i} - \frac{m_{\sigma}^{i}}{g} a_{\mu}^{i} + \frac{1}{2} (\overline{B} V \mathcal{Y}_{\mu} B)_{f} + g_{A} [\alpha (\overline{B} A^{i} \mathcal{Y}_{\mu} B)_{a} + (1-\alpha) (\overline{B} A^{i} \mathcal{Y}_{\mu} B)_{f}] + ..., (I)$$

где m_d и m_a -масси I и I⁺ - мезонов соответственно.

Лагранжиан слабого взаимодействия имеет обычную форму "ток х ток ":

$$L_{w} = \frac{G}{\sqrt{2}} \left(J_{\mu} l_{\mu}^{\dagger} + \vartheta \cdot c \cdot \right)_{\mu}$$
(2)

где $G \simeq 10^{-5}$ – универсальная константа Ферми, ℓ_{μ} -лептонный ток. Адронный ток J_{μ} имеет форму Кабиббо,

$$J_{\mu} = (J_{\mu}^{1} + i J_{\mu}^{2} + J_{\mu}^{13} + i J_{\mu}^{14}) \cos \theta_{c} + (J_{\mu}^{4} + i J_{\mu}^{5} - J_{\mu}^{14} - i J_{\mu}^{12}) \sin \theta_{c}$$

(θ_{e} - угол Кабиббо, Sin θ_{e} ~0,23).

Амплитуда бета-распада в пренебрежении массой лептона и в отсутствие токов второго рода записывается в виде

$$M = \frac{G}{\sqrt{2}} \overline{u}(p_2) \left[f_1^{V}(q^2) y_{\mu} - f_2^{V}(q^2) \sigma_{\mu} v q_{\nu} + f^{A}(q^2) y_{\mu} y_{5} \right] u(p_1) \times (3)$$

$$\overline{u}_{e}(k_2) y_{\mu} (1+y_{5}) u_{\nu}(k_1),$$

где $q = k_1 + k_2$, (p_1, p_2) и $(k_1, k_2) - 4$ - импульсы барионов и лептонов соответственно. Значения $f_1^{\vee}(o)$ и $f^{\wedge}(o)$ оп-

Оррсянасяный	KHCTHTYT (
TACHERY BECS	CAOBANES
64511HO	TEHA

ределяются токами (I) с помощью (2) и (3). Для определения f_{2}^{\vee} из адронных токов следовало бы включить в МКФЛ лагранжиани с высшими производными, приводящие к дополнительным феноменологическим параметрам. Однако в расчетах мы использовали приближения: $f_{2}^{\vee} = 0$ и $f_{2}^{\vee} = (f_{2}^{\vee})_{SU(4)} - формфактор магнитного перехода <math>\Lambda_{c}^{+} \rightarrow 1/2^{+}$, вытекающий из SU(4) – группового свойства матричного элемента (3).

Диаграммы, описывающие
 β – распады Λ_c^+ – бариона, показаны на рисунке:

Диаграммы полулептонных распадов Λ_c^+ -бариона. Вершины s и \sim соответствуют сильному и слабому взаимодействиям, В -барион, $\mathfrak{N} -$ О-мезон, $\mathfrak{V} - \mathfrak{1}^-$ -мезон, $\mathfrak{Q} - \mathfrak{1}^+$ -мезон.

Диаграмма (б) позволяет в амплитуде (3) учесть Q -зависимость формщакторов. В приближении $m_e = 0$ диаграмма (в) вклада в (3) не дает. Нетрудно убедиться в том, что SU(4) -симметричное свойство матричного элемента (3) (о случае SU(3)-симметрия см. ⁽⁸⁾) приводит к $f_2^V(0) = (f^n - 4f^p)/\sqrt{6}$ в $f_2^V(0) = -f^n$ соответственно для (кабибовски-разрешенного) $\wedge_c^+ \rightarrow \wedge e^{3}$ в (кабибовски-запрещенного) $\wedge_c^+ \rightarrow ne^{3}$ переходов. Здесь $f^{n(p)} = \mathcal{M}_{n(p)} / 2m_p$, $\mathcal{M}_{n(p)} =$ -магнитные моменты нуклона. Результаты вычислений для парциальных ширин распадов приведены в таблице X.

При внчислении парциальных ширин интегрирование квадрата матричного элемента по фазовому объему производилось по методу Монте – Карло с использованием процедури Копылова. Фортранные подпрограммы этой процедуры содержатся в программе ТЕИСТ /9/. Таблица Вероятности Г (10^{II} с⁻¹) полулептонных распадов Ас⁺

Кабиббовски-	Кабиббовски-разрешенный		Кабиббовски-запрещенный		
Тип распада	$f_2^{V}(o)$		Тип распада	$f_{z}^{\nu}(o)$	
	0	0,42	ــــــــــــــــــــــــــــــــــ	0	0,06
$\Lambda_{c}^{+} \rightarrow \Lambda \in \mathcal{V}$	f ⁿ -4f ^p V6	60,5	A¦⇒nev	-fn	II,I

В настоящее время имеются экспериментальные данные только для инклюзивных процессов ${}^{II} \wedge_c^+ \to \wedge e \times$, $\wedge_c^+ \to p e \times u \wedge_e^+ \to e \times$. Парциальная ширина первого распада $\Gamma(\wedge_c^+ \to \wedge e \times) = (0,48 \pm 0,39) \times 10^{II} c^{-1}$ может быть использована для проверки вероятности кабиббовски-разрешенного распада $\wedge_c^+ \to \wedge e \vee$ (в котором также рождается \wedge - барион). Из таблицы видно, что при $f_2^{\vee} = 0$ согласие между экспериментальной шириной распада и вероятностью распада $\wedge_c^+ \to \wedge e \vee$ удовлетворительное. При $f_2^{\vee} = (f_2^{\vee})_{SU40}$ теоретическая и экспериментальная вероятности сильно отличаются. Это означает, что оценка f_2^{\vee} из $S \cup (4)$ -симметрии не является хорошим приближением, и магнитный формфактор перехода $\wedge_c^+ \to 1/2^+$ в действительности значительно меньше^X, чем $f_2^{\nu(ep)}$.

Таким образом, можно сделать (хотя и нестрогое) заключение о том, что киральные токи (содержащие только барионные поля) являются разумным приближением для описания β -распадов очарованного Λ_c^+ -бариона. Дальнейшее экспериментальное и теоретическое изучение полулептонных распадов типа $\Lambda_c^+ \rightarrow \frac{1}{2}^+ + \varrho + \vartheta$ (особенно определение $f_2^{-\vee}$ в этих распадах) позволяет окончательно проверить киральные токи.

Авторы благодарят В.Н. Первушина в Д. Эберта за полезные обсуждения.

x) B KXI $f^{\prime c}/f^{P} \sim m_{u}/m_{c}$, IZE m_{q} -Macca KBapka q.

4

5

^{X)}В расчетах для неизвестных масс счарованных спин-I мезонов использовано приближение $m_{F_A} = m_{F^*} = m_{\mathcal{D}_A} = m_{\mathcal{D}^*} \simeq 2$ ГэВ/I/.

Литература

- I. Review of Particle Properties . CERN, 1984.
- Cabibbo N., Maiani L. Phys. Lett., 1978, v. 79B, 109; Cabibbo N et.al. Nucl. Phys., 1979, v.155, p. 93; Ali A. et.al., Nucl. Phys., 1979, v. B154, p. 519.
- Buras A.J. Nucl. Phys., 1976, v. BI09, 373;
 Yamada K. Phys. Rev., 1980, D22, 1676.
- Волков М.К., Первушин В.Н. Существенно-нелинейные квантовые теории, динамические симметрии и физика мезонов. М.: Атомиздат, 1978 г.
- 5. Ebert D., Volkov M.K. Fortsch. Phys., 1981, 112, Bd. 29, 35; Калиновский Ю.Л., Первушин В.Н. ЯФ, 1979, т. 29, 450.
- Калиновский Ю.Л., Первушин В.Н., Сариков Н.А. ОИЯИ, P2-85-951, 1985.
- Kalinovsky Yu.L., Sarikov N.A., Takhtamyshev G.G. JINR, E2-85-737, 1985.
- 8. Нгуен Ван Хьеу. Лекции по теории унитарной симметрии элементарных частиц. М.: Атомиздат, 1967.
- 9. Тахтамышев Г.Г. ОИЯИ, 1-80-640, 1980.

Рукопись поступила в издательский отдел 10 июня 1986 года. Калиновский Ю.Л., Сариков Н.А., Тахтамьшев Г.Г. Р2-86-365 Полулептонные распады очарованного бариона Λ_c^+ в методе феноменологических киральных лагранжианов

В рамках метода киральных лагранжианов, обобщенных путем введения взаимодействий спин-1 мезонов с $1/2^+$ -барионами и 0-мезонами вычислены вероятности полулептонных распадов очарованного Λ_c^+ -бариона $\Lambda_c^+ \rightarrow 1/2^+ + e + \nu$. Показано, что доминирующим является кабиббовски-разрешенный распад $\Lambda_c^+ \rightarrow \Lambda e\nu$ с вероятностью, согласующейся с парциальной шириной экспериментально обнаруженного инклюзивного процесса $\Lambda_c^+ \rightarrow \Lambda eX$.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод Т.Ю.Думбрайс

Kalinovsky Yu.L., Sarikov N.A., Takhtamyshev G.G. P2-86-365 Semileptonic Decays of Charmed Baryon Λ_c^+ in the Phenomenological Chiral Lagrangian Method

The probabilities of the semileptonic decays of charmed baryon Λ_c^+ ($\Lambda_c^+ \rightarrow 1/2^+ + e + \nu$) have been calculated in the framework of the chiral Lagrangian method generalized by including of interactions of spin-1 mesons with $1/2^+$ -baryons and O⁻-mesons. It is shown that the dominant decay is Cabibbofavoured one $\Lambda_c^+ \rightarrow \Lambda e\nu$ with the decay probability being in agreement with the experimentally found partial width of the inclusive decay $\Lambda_c^+ \rightarrow \Lambda e X$.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986