

P2-86-284

В.В.Нестеренко

# ОБ ИНТЕРПРЕТАЦИИ НЕТЕРОВСКИХ ТОЖДЕСТВ

Направлено в Эйнштейновский сборник

## · I. Введение

Следствия, к которым приводят свойства инвариантности полевой теории при преобразованиях координат и полевых функций, изучались в рамках вариационных методов в 1915-1918 годах Д. Гильбертом, Г. Лоренцом, Ф. Клейном, Г. Вейлем и другими авторами (см. библиографию в<sup>/1/</sup>).В немалой степени эти исследования были стимулированы общей теорией относительности, разрабатывавшейся Эйнштейном в эти годы. Наиболее четко основные результаты в виде двух теорем были сформулированы Э. Нётер <sup>/2/</sup>.

Первая теорема Нётер рассматривает конечнопараметрическую группу преобразований и дает конструктивный метод построения сохраняющихся величин в теории, т.е. интегралов уравнений движения /3/.

Вторая теорема Нётер формулирует математические следствия, которые обусловлены инвариантностью полевой теории при преобразованиях, задаваемых произвольными функциями, координат и времени. В этом случае левые части уравнений Эйлера и производные от них удовлетворяют тождествам.

Согласно распространенной точке зрения /4,5/, нётеровские тождества устанавливают зависимость между уравнениями Эйлера в теории и позволяют тем самым рассматривать только часть из них как независимые, а оставшиеся уравнения – как следствие основных независимых уравнений.

Однако в общем случае эта зависимость не является просто линейной, а выражается с помощью соотношений, содержащих частные производные от левых частей уравнений Эйлера. Существенно, что при этом часть уравнений Эйлера не содержит старших (обычно вторых) производных полевых функций по времени (так называемые лагранжевы связи). Если тождества Нётер устанавливают простую линейную зависимость между левыми частями уравнений Эйлера, то лагранжевых связей в теории нет. Появление лагранжевых связей не позволяет утверждать без дополнительного анализа, что полученные в результате обычной вариационной процедуры уравнения Эйлера в рассматриваемой задаче согласованы. При их выводе никаких связей между вариациями полевых функций и вариациями их первых производных не предполагается. Такого типа вариационные задачи возникают в наиболее интересных с точки зрения приложений полевых моделях: в электродинамике, хромодинамике, в общей теории относительности. В этом случае тождества Нётер позволяют часть уравнений Эйлера. а именно лагранжевы связи, трактовать как условия на начальные данные. Эволюция во времени описывается при этом оставшимися уравнениями Эйле-

> Объсябненный институт Васовных ессяедований Кис. полотима

ра. Тем самым обеспечивается согласованность всей системы вариационных уравнений с точки зрения формулировки задачи Коши, т.е. нётеровские тождества в конечном счете гарантируют выполнимость принципа причинности в теории с бесконечной непрерывной группой симметрии. Все уравнения Эйлера оказываются существенными, и разделение их на независимые и зависимые в этом случае невозможно. Обоснованию такой трактовки нётеровских тождеств и посвящена данная работа.

### 2. Тождества Нётер и их интерпретация

Мы приведем здесь без доказательства вторую теорему Нётер /2,4,5/ Пусть функционал

$$S[u(x)] = \int_{\Omega} d^{n} x \mathcal{L}(u, \partial u)$$
<sup>(2.1)</sup>

инвариантен относительно преобразований координат  $\mathcal{X} = \{\mathcal{X}, \mathcal{X}, \dots, \mathcal{X}^{n-1}\}$ и полевых функций  $\mathcal{U}(\mathcal{X}) = \{\mathcal{U}_1(\mathcal{X}), \dots, \mathcal{U}_N(\mathcal{X})\}$ , зависящих от  $\mathcal{W}$  произвольных функций  $\mathcal{E}_1(\mathcal{X})$ ,  $\mathcal{S} = \mathbb{I}, \dots, \mathcal{W}$  и их производных до  $\mathcal{K}$ -го порядка включительно. Тогда имеют место  $\mathcal{W}$  тождеств, включающих лагранжевы выражения (левые части уравнений эйлера) и их производные до  $\mathcal{K}$ -го порядка.

Для простоты ограничимся случаем k = 1 и вариацию формы функций зададим формулой

$$\begin{split} & \delta u_{i}(x) = \gamma_{i}^{s} \xi_{s}(x) + \gamma_{i}^{s} \frac{\partial \xi_{s}(x)}{\partial x^{N}}, \\ & i = 1, \dots, N, \qquad S = 1, \dots, m, \qquad \mu = 0, 1, \dots, n-1. \end{split}$$
 (2.2)

Здесь коэффициенти  $\int_{x}^{S}$  и  $\int_{x}^{S}$  являются заданными функциями *x*, *u*,  $\partial u$ ,  $\partial^{2} u$  и т.д. По цовторяющимся индексам предполагается суммирование в соответствующих пределах. Если через  $\angle$  обозначить лагранжеви выражения для (2.1)

$$L_{i} \equiv \frac{\partial}{\partial x^{\mu}} \left( \frac{\partial \mathcal{L}}{\partial u_{i,\mu}} \right) - \frac{\partial \mathcal{L}}{\partial u_{i}}, \qquad (2.3)$$
$$U_{i,\mu} \equiv \frac{\partial u_{i}}{\partial x^{\mu}}, \qquad (2.3)$$

то тождества, о которых говорится во второй теореме Нётер, записываются так:

$$L_{i} \gamma_{i}^{s} - \frac{\partial}{\partial x^{\mu}} \left( L_{i} \gamma_{i \mu}^{s} \right) \equiv 0, \quad s = 1, \dots, m.$$
(2.4)

Обсудим теперь, в чем состоит смысл тождеств (2.4).

Если закон преобразования полевых функций (2.2) таков, что  $\int_{j/2}^{s} = O$  (точечная релятивистская частица, релятивистская струна/5/), то нётеровские тождества означают линейную зависимость левых частей уравнений Эйлера  $L_{z}$ . В этом случае  $\mathcal{W}$  уравнений Эйлера являются следствием остальных  $\mathcal{X} = \mathcal{N} - \mathcal{W}$  уравнений. Число независимых уравнений меньше числа неизвестных функций.

Пусть теперь  $\mathcal{J}_{i,\mu}^{s} \neq 0$ . Запишем уравнения Эйлера в следующем виде:

$$L_{i} = \lambda_{ij} \overset{i}{\mathcal{U}}_{j} - l_{i} (u, \partial u, \overline{\partial u}) = 0, \qquad (2.5)$$

$$\dot{z}_{i} = 1, \dots, N,$$

где

$$\Lambda_{ij} = \frac{\partial^2 \mathscr{L}}{\partial u_i \partial \dot{u}_j}, \qquad \dot{u_i} = \frac{\partial u_i}{\partial x^o}, \qquad (2.6)$$

 $\partial \mathcal{U}$  означает вторые производные полевых функций, отличные от  $\mathcal{U}$ . С помощью тождеств (2.4) покажем, что уравнения (2.5) представляют собой систему из  $\mathcal{I} = \mathcal{N} - \mathcal{M}$  уравнений второго порядка по переменной  $\mathcal{N}$  (по времени) и  $\mathcal{M}$  уравнений, содержащих производные полевых функций по  $\mathcal{X}$  не выше первого порядка ( $\mathcal{M}$  лагранжевых связей). Мы ограничимся такими преобразованиями (2.2), для которых коэффициенты  $\mathcal{N}$  и  $\mathcal{J}$  содержат производные по  $\mathcal{X}$  полевых функций не выше первого порядка. Подставим в тождества (2.4) явный вид лагранжевых выражений (2.5). В результате слагаемые, содержащие вторые производные по  $\mathcal{X}$  от полевых функций, приведут к появлению в тождествах (2.4) третьих производных по  $\mathcal{X}$  от  $\mathcal{U}(\mathcal{X})$ . Коэффициенты при этих производных должны тождественно по своим аргументам обращаться в ноль

$$\lambda_{ij} \gamma_{j0}^{S} \equiv 0, \quad 1 \leq i, j \leq N, \quad S = 1, \dots, m.$$
(2.7)

Таким образом, матрица  $\lambda$  козффициентов при  $\mathcal{U}_{j}(x)$  в уравнениях Эйлера (2.5) имеет m собственных векторов с нулевыми собственными значениями  $\mathcal{J}_{jo}^{S}$ . Это означает, что линейными преобразованиями систему уравнений (2.5) можно представить как  $\gamma = N - m$ 

уравнений, разрешенных относительно 2

$$\mathcal{L}_{\alpha}^{(2)} = \mathcal{U}_{\alpha} - \mathcal{Q}_{\alpha}(\mathcal{U}_{i}, \partial \mathcal{U}_{i}, \overline{\partial} \mathcal{U}_{\beta}) = 0, \qquad (2.8)$$

и ж уравнений, содержащих производные полевых функций по  $\mathcal{X}^{\circ}$  не выше первого порядка

$$B_{s}(u,\partial u,\overline{\partial u}) = \prod_{j=0}^{s} (u,\partial u) \cdot l_{j}(u,\partial u,\overline{\partial u}) = 0, \qquad (2.9)$$

С помощью тождеств Нётер (2.4) доказывается следующее важное утверждение. Лагранжевы связи (2.9) можно рассматривать как условия на начальные данные для нормальной системы уравнений (2.8). Докажем это, т.е. покажем, что если начальные данные в момент времени  $\mathscr{X}^{=}$   $t^{\circ}: \{\mathscr{U}_{i}(t, x, ..., x^{n-i}), \mathscr{U}_{i}(t, x, ..., x^{n-i}), \tau \leq i \leq N\}$  выбраны так, что удовлетворяют уравнениям(2.9), то эти уравнения

будут выполнены и во все последующие моменты времени, если эволюция системы во времени подчиняется уравнениям (2.8).

Лагранжевы выражения  $L_j$ ,  $1 \leq j \leq N$ , входящие в тождества Нётер (2.4), можно представить в виде линейной комбинации уравнений второго порядка (2.8) и лагранжевых связей (2.9)

Подставим (2.10) в тождества (2.4) и учтем уравнения (2.8). В результате получим однородную систему уравнений в частных производных первого порядка на левые части лагранжевых связей  $\beta_{c}$ :

$$\frac{\partial B_s}{\partial x^o} = \sum_{h=1}^{n-1} \alpha_{sh} \frac{\partial B_s}{\partial x^h} + \sum_{s'=1}^m \beta_{ss'} \beta_{s'}, \quad 1 \le s, s' \le m. \quad (2.11)$$

Коэффициенты  $\mathcal{A}_{5h}$  и  $\mathcal{B}_{55}$  выражаются через  $\mathcal{J}_{5}^{5}$ ,  $\mathcal{J}_{5h}$  Решением системы (2.II), удовлетворяющим начальным данным

 $B_{s|r_{=}^{0}t^{0}}=0,$ 

иd<sub>is</sub>.

(2.12)

является нулевое решение  $\beta_s = 0$  при x > t. В силу теоремы единственности других решений для (2.11), (2.12) нет. Именно это утверждение позволяет непротиворечиво сформулировать задачу Коши для системы уравнений Эйлера (2.5).

Обсудим теперь некоторые общие свойства этой системы. Начальные данные для уравнений (2.5) не могут быть выбраны произвольно. Они полжны удовлетворять дагранжевым связям (2.9). В этом смысле уравнения Эйлера (2.5) можно считать "переопределенными". Но в то же время, если начальные данные выбраны так, что они удовлетворяют лагранжевым связям (2.9), то на N переменных  $\mathcal{U}_{i}(x)$ ,  $1 \leq i \leq N$ остается тольуравнений второго порядка по х в нормальной фор-KO  $\mathcal{I} = \mathcal{N} - \mathcal{m}$ ме (2.8). При этом. как было показано выше, не надо заботиться о выполнении связей (2.9) в последующие моменты  $x^{\circ} > t^{\circ}$ . В этом смысле вся система уравнений Эйлера (2.5) может рассматриваться как "недоопределенная", содержащая функциональный произвол. Эти противоречивые на первый взгляд свойства удавнений (2.5) согласовываются с точки зрения залачи Коши только благопаря нётеровским тожлествам (2.4). позволяющим трактовать часть уравнений Эйлера (2.9) как условия на начальные данные. Важно отметить, что все уравнения Эйлера (2.5) оказываются существенными, и их разделение на независимые и зависимые в этом случае невозможно.

Рассмотрим в качестве простого примера свободное поле Максвелла

$$S = -\frac{1}{4} \int d^{4}x F_{\mu\nu} F^{\mu\nu}, \qquad (2.13)$$

$$F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} , \quad \mu, \nu = 0, 1, 2, 3. \quad (2.14)$$

Инвариантность теории при калибровочных преобразованиях

$$\widehat{\mathcal{A}}_{\mu}(x) = \partial_{\mu} \mathcal{E}(x) \tag{2.15}$$

приводит к тому, что вторая пара уравнений Максвелла

$$\partial_{\mu} F' = 0 \tag{2.16}$$

состоит из трех уравнений второго порядка по времени 1)

$$\partial_{\mu}F^{\mu} = \hat{\mathcal{A}}^{i} - \partial^{i}\hat{\mathcal{A}}^{o} + \partial_{j}(\partial^{j}\hat{\mathcal{A}}^{i} - \partial^{i}\hat{\mathcal{A}}^{j}) = 0, \quad i \neq i, j \neq 3 \quad (2.17)$$

и одной лагранжевой связи

$$\partial_{\mu} F^{\mu o} = \partial_{i} (\partial_{A}^{i} - \partial_{A}^{i}) = 0, \quad 1 \leq i \leq 3.$$
(2.18)

I) Используется метрика с сигнатурой (+,-,-,-).

4

В векторных обозначениях (2.17) и (2.18) записывается соответственно так.

$$\operatorname{vot} \overrightarrow{H} - \frac{\partial \overrightarrow{E}}{\partial x^{\circ}} = 0, \qquad (2.19)$$

(2.20) Все четыре уравнения (2.17), (2.18) являются существенными, и ни одно из них нельзя рассматривать как следствие других. Но благодаря тождеству Нётер

$$\partial_{\mu} \partial_{\nu} = 0$$
(2.21)

лагранжеву связь (2.18) или (2.20) можно трактовать как условие на начальные данные для системы трех уравнений второго порядка (2.17). Действительно, производная по времени от  $\partial_{\mu} f^{\mu\nu}$  обращается в ноль в силу тождества Нётер (2.21) и уравнений (2.17)

$$\partial_{0}\partial_{\mu}F' = \partial_{\nu}\partial_{\mu}F' - \partial_{i}\partial_{\mu}F'^{\mu i} = -\partial_{i}(\partial_{\mu}F'^{\mu i}) = 0.$$
(2.22)

# 3. Интерпретация нётеровских тождеств в теории гравитации

Трактовка тождеств Нётер (2.4) и соотношений, вытекающих из них, как условий совместности (непротиворечивости) полевых уравнений (2.5) представляется нам наиболее последовательной.

В этой связи целесообразно подробно обсудить здесь известное утверждение <sup>/6/</sup> о том, что уравнения гравитационного поля содержат в себе также и уравнения для самой материи, которая создает это поле (т.е. уравнения движения материальных частиц или вторую пару уравнений Максвелла и т.д.). Здесь же мы проследим эволюцию в интерпретации нётеровских тождеств в работах Гильберта <sup>/7,8/</sup> по основаниям общей теории относительности.

Рассмотрим, следуя Гильберту /7,8/, теорию векторного поля  $\mathcal{W}^{\mathcal{H}}(\mathcal{X})$  (не обязательно поля Максвелла) в гравитационном поле, оп-

$$S = S + S_{W}, \quad S = -\overline{a} - \frac{1}{2} \int dx \sqrt{-g} R, \quad S_{w} = \int dx \sqrt{-g} d_{W}. \quad (3.1)$$

Мы не будем конкретизировать вид лагранжевой плотности векторного

поля  $\mathcal{L}_{W}$ , а ограничимся предположением, что действие  $S_{W}$  является, как и  $S_{g}$ , инвариантом при общих преобразованиях координат x'' = f''(x).

Введем следующие обозначения для уравнений гравитационного поля:

$$f_{\mu\nu} = G_{\mu\nu} + T_{\mu\nu} = 0,$$
(3.3)

(3.2)

$$\hat{T}_{\mu\nu} = -\varkappa^{-1} \left( R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \right), \qquad (3.4)$$

$$\frac{1}{2}\sqrt{-g} T_{\mu\nu} = \delta S_{\mu} / \delta g^{\mu\nu}$$
(3.5)

и векторного поля W'(x)

$$\frac{1}{9}L_{\mu} = \frac{\partial S_{w}}{\partial w^{\mu}} = 0.$$
(3.6)

Тождества Нётер (2.4) записываются так /5/

$$\nabla_{\lambda} \mathcal{G}_{\mu}^{\prime \lambda} - \mathcal{L}^{\lambda} \mathcal{W}_{\lambda \mu} - \mathcal{W}_{\mu} \nabla_{\lambda} \mathcal{L}^{\lambda} = 0, \qquad (3.7)$$

 $\begin{aligned} & \mathcal{W}_{\lambda,\mu} = \partial_{\lambda} \mathcal{W}_{\mu} - \partial_{\mu} \mathcal{W}_{\lambda}, \qquad \mathcal{M}, \lambda = 0, 1, 2, 3, \\ \text{где } \nabla_{\mu} - \text{ковариантная производная в метрике } \mathcal{G}_{\mu\nu}(\mathcal{X}). \qquad \text{Входя$  $щие в } S_{\mu} \text{ вторые производные } \mathcal{G}_{\mu\nu}(\mathcal{X}) & \text{не влияют на вид тож$  $деств (2.4), так как они не меняют лагранжевых выражений <math>\delta S_{\mu}/\delta \mathcal{G}^{\mathcal{M}}. \\ \mathcal{Y}$ читывая, что для  $\mathcal{G}_{\mu\nu}$  в отдельности имеют место тождества

$$\nabla_{\lambda} G_{\mu} = 0, \qquad (3.8)$$

легко получаем из (3.7) и (3.8) известное утверждение /9,10/: ковариантная дивергенция гильбертовского тензора энергии импульса (3.5) обращается в ноль в силу только уравнений гравитационного поля (3.3) или только уравнений материальных полей (3.6)

$$\nabla_{\mu} T^{\mu\nu} = 0.$$
 (3.9)

Если предположить, что выполнены уравнения гравитационного поля (3.3), то из (3.7) получаем

$$\mathcal{L}^{\lambda}\mathcal{W}_{\lambda\mu}+\mathcal{W}_{\mu}\mathcal{\nabla}_{\lambda}\mathcal{L}^{\lambda}=0,$$

(3.10)

что эквивалентно (3.9) при заданном виде /

Соотношения (3.9) или (3.10) накладывают очень жесткие ограничения на вид уравнений Эйлера для "материальных" полей. В ряде случаев этих условий оказывается достаточно, чтобы однозначно получить те уравнения для "материальных" полей, которые следуют из вариации функционала действия, соответствующего выбранному виду  $T_{\mu\nu}$  в гравитационных уравнениях (3.3).

Если тензор энергии-импульса  $/_{\mu\nu}$  порожден точечными частицами, то для выполнения (3.9) необходимо, чтобы частицы двигались по геодезическим в метрике  $Q_{\mu\nu}(x)$  /II,I2/.

Для полей, взаимодействующих с гравитацией, тождества Нётер дают некоторые уравнения на лагранжевы производные этих полей. Например, для скалярного поля  $\phi(x)$  вместо (3.10) имеем

для поля Максвелла без зарядов

Соотношения (3.10)- (3.12) уже не столь однозначно требуют выполнения уравнений для "материальных" полей, по сравнению со случаем точечных частии. Например, (3.11) будет выполнено и при тех значениях  $\mathcal{X}$ , когда  $\partial \phi = 0$ , а  $\mathcal{L}_{c\kappa} \neq 0$ . Вторая пара уравнений Максвелла  $\mathcal{L}_{jM}$  не будет следовать из (3.12), если  $det || F_{\mu\nu} || = 0$ , т.е. (EH) = 0 /13/. Еще более сложные уравнения (3.10) на  $\mathcal{L}^{\lambda}$  мы имеем в случае произвольного векторного поля, взаимодействующего с гравитацией. Ясно, что они могут иметь не только тривиальные решения  $\mathcal{L} = 0$ , но и ненулевые решения, например,  $\mathcal{L}^{\lambda} = const$  при  $(E_{\nu}H_{\nu}) = 0$ , где  $\tilde{E}_{\nu}$  и  $\tilde{H}_{\nu}$  – векторы "электрического" и "магнитного" нолей для тенвора  $\mathcal{W}_{\mu\nu}$ .

Трактовка соотношений (3.9) как уравнений для "материальных" полей заведомо не проходит для поля, число компонент которого превышает четыре.

Таким образом, соотношения (3.9) или (3.10) неэквивалентни в строгом смысле этого слова уравнениям для "материальных" полей. Но главное значение данных соотношений заключается вовсе не в генерировании уравнений для "материальных" полей из гравитационных уравнений (3.3), а в том, чтобы согласовать сами уравнения гравитационного поля (3.3). Только при выполнении (3.9) можно трактовать уравнения  $\mathcal{Y}_{\mu\sigma} = O$ , не содержащие вторых производных  $\mathcal{G}_{\mu\nu}(x)$  по времени, как условия на начальные данные, и тем самым корректно сформулировать задачу Коши. Именно эта роль условий (3.9), (3.10) часто унускается из виду /6/.

В этом отношении интересно проследить, как трактовались соотношения (3.10) Гильбертом в его работе "Основания физики"/<sup>7,8/</sup>.

Хорошо известно, что еще до работы Э. Нётер /2/ Гильберт дал формулировку (без доказательства) теоремы, получившей впоследствии название второй теоремы Нётер (теорема I в /7,8/), и широко ее использовал.

Установив соотношения (3.7), Гильберт утверждал в первом варианте статьи "Основания физики" /7/:

"Будем называть уравнения (4) ( в наших обозначениях это уравнения (3.3)) основными уравнениями гравитации, а уравнения (5) (в данной статье – уравнения (3.6)) – основными уравнениями электродинамики или обобщенными уравнениями Максвелла. На основании теоремы I четыре уравнения (5) можно рассматривать как следствия уравнений (4), т.е. непосредственно на основании этой математической теоремы можно утверждать, <u>что в указанном смысле явления электродинамики представляют собой эффекты гравитации</u>. В этом выводе я усматриваю простое и совершенно неожиданное решение проблемы Римана, первым начавшего теоретические изыскания относительно взаимосвязи между тяготением и светом".

Разумеется, соотношения (3.7), выполнимость которых требуется для согласованности самих гравитационных уравнений (3.3), не позволяют делать такие физические выводы. В окончательном варианте статьи "Основания физики" /8/ Гильберт опустил весь процитированный выше обзац<sup>2)</sup>. А соотношения (3.7) он трактует здесь просто как математическое выражение связи, имеющей место в его теории между гравитацией и электромагнетизмом.

Правильная трактовка нётеровских тождеств оказывается принципиальной при классификации теорий с бесконечной непрерывной группой симметрии.

<sup>&</sup>lt;sup>x)</sup>На русском языке дважды публиковался только первоначальный вариант этой работы Гильберта <sup>77</sup> без необходимых здесь комментариев.

Если принять трактовку нётеровских тождеств в первом варианте работы Гильберта<sup>(7)</sup>, то его теорию, а фактически стандартную общую теорию относительности, включающую поле Максвелла, следует считать примером единой геометризованной теории поля. Электромагнетизм является здесь якоби следствием гравитации. Такой ошибочный вывод, базирующийся только на первом варианте статьи Гильберта<sup>(7)</sup>, и был спедан в нецавних работах по истории бизики <sup>(74, 15)</sup>.

На самом деле и гравитационное поле и электромагнитное поле в тебрии Гильберта виступают совершенно равноправно. Причем электромагнитное поле непосредственно с геометрическими характеристиками пространства-времени не связано. Считать такую теорию единой геометризованной теорией поля совершенно необоснованно.

#### Литература

- I. Визгин В.П. Развитие взаимосвязи принципов инвариантности с законами сохранения в классической физике. М.: "Наука", 1972.
- Noether E. Gottinger Nachrichten, Math-phys. KL., 1918. H.2, S. 235.

Перевод в кн.: Вариационные принципы механики. Под ред. Л.С. Полака. М.: Физматгиз, 1959, с. 611-630.

- Боголюсов Н.Н., Ширков Д.В. Введение в теорию квантованных полей М.: "Наука, 1984.
- 4. Коноплева Н.П., Попов В.Н. Калибровочные поля. М.: Атомиздат, 1980.
- Barbashov B.M., Nesterenko V.V. Continuous Symmetriesin Field
   Theory.- Fortschr. Phys., 1983, B.31, H.10, S.535-567.
- 6. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: "Наука", 1967.
- <sup>7</sup>. Hilbert D. Die Grundlagen der Physik. Gottinger Nachrichten, Math.-phys. KL., 1915, Heft 3, 8. 395.
  перевод в кн.: Вариационные принципы механики. Под ред. Л.С. Полака. М., Физматгиз, 1959, с. 589-598, и в сб.: Альберт Эйнштейн и теория гравитеции. М.: "Мир", 1979, с. 133.
- Hilbert D. Die Grundlagen der Physik.-Math. Annalen, 1924, B.92, S. 1-22.
- 9. Вейноерг С., Гравитация и космология. М.: "Мир," 1975.
- 10. Дирак П.А.М. Общая теория относительности. М.: Атомиздат, 1978.
- II. Фок В.А. Теория пространства, времени и тяготения. М.: Физматгиз, 1961.
- I2. Инфельд Л., Плебанский Е. Движение и релятивизм. М.: Изд-во иностранной литературы, 1962.

- IЗ. Мизнер Ч., Торн К., Уилер Дж. Гравитация, т. 2, с. 109, М.: "Мир", 1977.
- 14. Визгин В.П. "Эйнштейн, Гильберт, Вейль: генезис программы единых геометризованных теорий поля." - В кн.: Эйнштейновский соорник, 1980-1981, с. 86-101. М.: "Наука", 1985.
- I5. Визтин В.П. Единые теории поля в первой трети XX века, М.: "Наука", 1985.

Рукопись поступила в издательский отдел 30 апреля 1986 года.

#### НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

#### Вы можете получить по почте перечисленные ниже книги,

#### если они не были заказаны ранее.

| Д2-82-568         | Труды совещания по исследованиям в области<br>релятивистской ядерной физики. Дубна, 1982.                                                                                                                                                                               | 1 p. 75 ĸ.                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Д9-82-664         | Труды совещания по коллективным методам<br>ускорения. Дубна, 1982.                                                                                                                                                                                                      | 3 р. 30 к.                      |
| ДЗ,4-82-704       | Труды IV Международной школы по нейтронной<br>физике. Дубна, 1982.                                                                                                                                                                                                      | 5 p. 00 x.                      |
| Д11-83-511        | Труды совещания по системам и методам<br>аналитических вычислений на ЭВМ и их применению<br>в теоретической физике. Дубна, 1982.                                                                                                                                        | 2 p. 50 ĸ.                      |
| Д7-83-644         | Труды Международной школы-семинара по физике<br>гяжелых ионов. Алушта, 1983.                                                                                                                                                                                            | 6 p. 55 ĸ.                      |
| Д2,13-83-689      | Труды рабочего совещания по проблемам излучения<br>и детектирования гравитационных волн. Дубна, 1983.                                                                                                                                                                   | 2 p. 00 ĸ.                      |
| Д13-84-63         | Труды XI Международного симпозиуна по<br>ядерной электронике. Братислава,<br>Чехословакия, 1983.                                                                                                                                                                        | 4 р. 50 к.                      |
| Д <b>2-84-366</b> | Труды 7 Международного совещания по проблемам<br>квантовой теории поля. Алушта, 1984.                                                                                                                                                                                   | 4 р. 30 к.                      |
| Д1,2-84-599       | Труды VII Международного семинара по проблемам<br>Физики высоких энергий. Лубия 1984                                                                                                                                                                                    | 5 p. 50 m.                      |
| Д17-84-850        | Труды Ш Международного симпозиума по избранным<br>проблемам статистической механики. Дубна,1984.<br>/2 тома/                                                                                                                                                            | 7 p. 75 ĸ.                      |
| Д10,11-84-818     | Труды V Международного совещания по про-<br>блемам математического моделирования, про-<br>граммированию и математическим методам реше-<br>ния физических задач. Дубна, 1983<br>Труды IX Всесоюзного совещания по ускорителям<br>заряженных частиц. Дубна, 1984 /2 тома/ | 3 р. 50 к.<br>13 р.50 к.        |
| Д4-85-851         | Труды Международной школы по структуре<br>ядра, Алушта, 1985.                                                                                                                                                                                                           | 3 р. 75 к.                      |
| д11-85-791        | Труды Международного совещания по аналитическим<br>вычислениям на ЭВМ и их применению в теоретиче-<br>ской физике. Дубна,1985.                                                                                                                                          | 4 p.                            |
| д1 3-85-793       | Труды XП Международного симпозиума по ядерной<br>электронике. Дубна 1985.                                                                                                                                                                                               | 4 р. 80 к.                      |
| Зак<br>Издате     | азы на упомянутые книги могут быть направлены<br>101000 Москва, Главпочтамт, п/я 7<br>льский отдел Объединенного института ядерных 1                                                                                                                                    | по адресу:<br>9<br>исследований |

# Нестеренко В.В.

#### P2-86-284

P2-86-284

Об интерпретации нётеровских тождеств

Согласно распространенной точке зрения, нетеровские тождества устанавливают зависимость между уравнениями движения в теории и позволяют тем самым рассматривать только часть из них как независимые, а оставшиеся уравнения - как следствие основных независимых уравнений. Показано, что в наиболее интересных с точки зрения приложений полевых моделях /электродинамика, хромодинамика, 0Т0 и т.д./ это не так. В таких теориях нётеровские тождества обеспечивают согласованность полевых уравнений с точки зрения формулировки задачи Коши. Часть уравнений движения /лагранжевы связи/ благодаря нётеровским тождествам можно трактовать как условия на начальные данные. Подробно обсуждается интерпретация тождеств Нётер в гравитации, взаимосвязь между ковариантным законом сохранения энергии-импульса и уравнениями для "материальных" полей, а также трактовка этих вопросов в работах Гильберта.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

#### Перевод 0.С.Виноградовой

•

٠

Nesterenko V.V. On the Interpretation of the Noether Identities

It is widely believed that the Noether identities result in the dependence of the equations of motion and enables us to consider only the part of them as independent ones and the others as a consequence of the independent equations. It is shown that in field models the most interesting from a physical application point of view (electrodynamics, chromodynamics, general theory of relativity, etc.) this statement is wrong. In such theories the Noether identities give us the compatibility of the field equations in view of the Cauchy problem. A part of the equations of motion (the lagrangian constraints) can be considered due to the Noether identities as the conditions on the initial data. This paper deals with the interpretation of the Noether identities in gravitational theory, the connection of the covariant conservation law of the energy-momentum tensor and the equations of the "material" fields and the interpretation of these problems in Hilbert's papers.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986