

P2-86-143

М.К.Волков, А.Н.Иванов*, Н.И.Троицкая*

РАСПАДЫ К - 2 л

В КИРАЛЬНОЙ МОДЕЛИ КВАРКОВЫХ ПЕТЕЛЬ

Направлено в журнал "Zeitschrift für Physik" и на IX Семинар по проблемам физики высоких энергий /Протвино, ирль 1986 г./

Ленинградский политехнический институт

1986

I. <u>Введение</u>

В настоящей работе рассмотрены нелептонные распады каонов: $K^+ \to \overline{H}^+ \overline{H}^\circ, K^\circ \to \overline{H}^+ \overline{H}^- u K^\circ \to \overline{H}^\circ \overline{H}^\circ.$ Paenage $K \to 2\overline{H}$ обусловлены как слабыми, так и сильными взаимодействиями. Для описания слабых взаимодействий использован эффективный лагранжиан, полученный в работе / 1/. В этом лагранжиане слабые вершины имеют вид четырехкварковых операторов, структура которых обусловлена стандартной моделью Кобаяши - Маскавы (КМ) /2/ с учетом КХД-поправок. Матричные элементы четырехкварковых операторов, вычисленные между состояниями IK> M 1297> . определены сильными низкоэнергетическими взаимодействиями. Фейнмановские диаграммы матричных элементов включают сильные кварк-мезонные вершины и расходящиеся кварковые петли (см. рис. 1,2). Для описания сильных вершин и кварковых петель удобно использовать киральную модель кварковых петель (КМКП), предложенную в работах /3,4/. Эта модель хорошо описывает низкоэнергетические взаимодействия мезонов. С помощью трех параметров:масс составляющих квар-= 0,46 ГэВ и параметра об-KOB $m_{\mu} \approx m_{\lambda}$ = 0,28 F9B, m_{c}

резания Λ = I,25 ГэВ, можно вичислить все константы взаимодействия четырех мезонных нонетов (скалярного, псевдоскалярного, векторного и аксиального) и такие важные характеристики низкоэнергетического взаимодействия мезонов, как длины рассеяния, параметры наклона, электрические радиусы, поляризуемости мезонов и т.д. Использование КМКП для описания сильного низкоэнергетического взаимодействия в распадах $K \rightarrow 2S$ не приводит к появлению новых произвольных параметров.

Эфрективный лагранжиан слабых взаимодействий, описывающий распады $\mathcal{K} \to \mathcal{Z} \overline{\mathcal{K}}$, имеет вид $/I/\mathbf{x}$

* G_{r} - константа Ферми, $S_{i} = sin \theta_{i}$ и $C_{i} = cos \theta_{i}$ (i = 1, 3)- элементи матрицы КМ $^{/2/}$, $(G_{r}/I_{Z}) S_{i} C_{r} C_{3} = 1,77 \cdot 10^{-6} ((3B))^{/5/}$, $d_{S}(M)$ - константа КХД - взаимодействия для трех кварковых ароматов, M -точка нормировки. Мн выбираем $d_{r}(M) = 1$, что соответствует M = 0.24 $^{/6/}$. Коэффициенты при операторах Q_{N} вычислены для параметра КХД $/c \approx 0, I$ ГэВ $^{I/}$.

$$\begin{aligned} \mathcal{L}_{3 \neq q, p} &= \frac{G}{\sqrt{2}} \mathcal{L}_{1}^{r} \mathcal{L}_{1}^{r} \mathcal{L}_{3}^{r} \left\{ -0, 137 \left[\mathcal{A}_{q}^{r} / \mu \right] \right]^{-0.002} \widetilde{\mathcal{A}}_{1}^{r} + 1, 25 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-0.175} \widetilde{\mathcal{A}}_{2}^{r} + 0.0175 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-0.120} \widetilde{\mathcal{A}}_{3}^{r} + 0.362 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{q}^{r} + 0.126 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.0175 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.0175 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.362 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{q}^{r} + 0.126 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.0175 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.362 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{q}^{r} + 0.126 \left[\mathcal{A}_{q}^{r} / \mu \right]^{-\frac{1}{2}} \widetilde{\mathcal{A}}_{3}^{r} + 0.026 \left[\mathcal{A}_{s}^{r} + 0.036 \left(\mathcal{A}_{s}^{r} + 0.026 \right)^{r} \mathcal{A}_{s}^{r} + 0.026 \left($$

•

.

.

٠

2

Рис. І

Контактные кварковые диаграммы, определяющие амплитуды переходов с $|\Delta I| = 3/2$ в распадах $K \rightarrow 2\pi$. Здесь учтены только те диаграммы, основной вклад которых квадратичен по импульсам мезонов.

Здесь $F_{\overline{y}} = 0,093$ ГэВ и $F_{\kappa} = 1,16$ $F_{\overline{y}}$ - константы распадов \overline{k} - и \mathcal{K} -мезонов, $\lambda = m_{\mathcal{K}} m_{\mathcal{H}} = 1,64$ /8/, $m_{\overline{y}}$ и m_{κ} - массн \overline{y} - и \mathcal{K} -мезонов, $\mathcal{I}^{-1} = 0,71$ - константа дополнительной перенормировки псевдоскалярных мезонных функций за счет учета ($\mathcal{O} \to 1^+$)-переходов /9/. Константа \mathcal{I} берется одинаковой для \overline{y} - и \mathcal{K} - мезонов. Наравенство $F_{\overline{y}}$ и F_{κ} является следствием нарушения унитарной симметрии. В КМКП отношение $F_{\kappa}/F_{\overline{y}}$ можно вычислить с помощью формулы

$$F_{\mu}/F_{\pi} = \left(\frac{1+\lambda}{2}\right) \left(I_{2}(m_{\mu}, m_{\pi})/I_{2}(m_{\mu}, m_{\mu})\right)^{1/2}, \quad (9)$$

где $I_2(m_i, m_j)(i_j = 4, s)$ - логарифмически расходящийся интеграл, соответствующий кварковой петле:

$$\begin{split} I_{2}(m_{i}, m_{j}) &= \frac{-3i}{(2\pi)^{4}} \int \frac{d^{4} \kappa \, \theta(\Lambda^{2} - \kappa^{2})}{(m_{i}^{2} - \kappa^{2})(m_{j}^{2} - \kappa^{2})} = \\ &= \frac{3}{(4\pi)^{2}} \frac{1}{m_{i}^{2} - m_{j}^{2}} \left[m_{i}^{2} ln \left(1 + \frac{\Lambda^{2}}{m_{i}^{2}} \right) - m_{j}^{2} ln \left(1 + \frac{\Lambda^{2}}{m_{j}^{2}} \right) \right], \end{split}$$
(10)

 Λ -параметр обрезания. В КМКП все физические величины определены при Λ = 1,25 ГэВ. Величина параметра обрезания согласуется с масштабом нарушения киральной симметрии /IO/. Численный расчет по формулам (9) и (I0) дает приведенный выше результат: F_{κ} = I,I6, хорошо согласующийся с экспериментальными данными: = I,I7/II/.

Численные значения амплитуд и парциальных ширин распадов $K \rightarrow 25$, обусловленных переходами $|\Delta I| = 3/2$, приведены в таблице.

<u>Таблица</u> <u>Численные значения амплитуд и парциальных ширин распадов К-277</u>

	Теория					
Распад	Переходы с/ДЛ/=3/2Переходы с/ДЛ/=1/2				Эксперимент	
	я	Г	А	רו	A	ק
K [‡] →π+π° K ^e →π+π− K ^e →π°π°	2,33 1,10 2,20	I,80 0,40 0,80	0 30,0 30,0	0 297 149	I,84 27,7 26,3	I,I3 253 II6

<u>Примечание</u>: \mathcal{A} – абсолютное значение амплитуды распада $K \rightarrow 2\pi$ в ед. 10⁻⁸ ГэВ, Γ – парциальная ширина распада $K \rightarrow 2\pi$ в ед. 10⁻¹⁷ ГэВ.

3. Переходы с $|\Delta I| = I/2$

Переходы с $|\Delta I| = I/2$ имеют место в распадах $\mathcal{K}^{o} \longrightarrow \mathcal{T}^{+} \mathcal{T}^{-}$ и $\mathcal{K}^{o} \longrightarrow \mathcal{T}^{o} \mathcal{T}^{o}$. Эффективный лагранжиан слабых взаимодействий, описывающий переходы с $|\Delta I| = I/2$, может быть получен из (I) вы-читанием (5):

$$\mathcal{L}_{spp}^{|\Delta I|=1/2} = \mathcal{L}_{spp} - \mathcal{L}_{spp}^{|\Delta I|=3/2} = \frac{G_F}{\sqrt{2}} S_1 C_1 C_3 \cdot Q_{|\Delta I|=1/2} . \quad (II)$$

Матричные элементы операторов Q_i определены как контактными, так и полюсными диаграммами. Основной вклад дает полюсная диаграмма с обменом скалярным мезоном \mathcal{E} (700). С точностью лучше IO % вкладом контактных диаграмм и полюсных диаграмм с обменом другими резонансами можно пренебречь по сравнению с вкладом \mathcal{E} -мезона.

Ha puc.2a представлена полюсная диаграмма распада $\mathcal{K}^{\circ} \rightarrow 2\pi$ с обменом \mathcal{E} – мезоном. Матричный элемент перехода $\mathcal{K}^{\circ} \rightarrow \mathcal{E}$ определен кварковыми диаграммами, приведенными на рис. 26. Отличны от нуля лишь матричные элементы операторов Q_5 и Q_6 : $\langle \mathcal{E} | Q_4 | \mathcal{K}^{\circ} \rangle = \langle \mathcal{E} | Q_2 | \mathcal{K}^{\circ} \rangle = \langle \mathcal{E} | Q_3 | \mathcal{K}^{\circ} \rangle = 0,$ $\langle \mathcal{E} | Q_6 | \mathcal{K}^{\circ} \rangle = 3 \langle \mathcal{E} | Q_5 | \mathcal{K}^{\circ} \rangle = i \mathcal{E}^{3/2} \mathcal{E}^{1/2} 64 \cdot (1+\lambda) \times$ $\times m_4^2 (\mathcal{F}_\pi^3 / \mathcal{F}_{12}) = i \cdot 0.24 (\mathcal{F} \Rightarrow B)^4.$ (12)

Матричный элемент оператора \mathcal{Q} / ΔI = I/2 связан с матричным элементом оператора \mathcal{Q}_{ζ} равенством

$$\left\langle \varepsilon | \mathcal{Q}_{|\Delta I| = \frac{1}{2}} | \mathcal{K}^{\circ} \right\rangle = -\mathcal{Q}_{,0}\mathcal{G} \left\langle \varepsilon | \mathcal{Q}_{,0}^{\circ} | \mathcal{K}^{\circ} \right\rangle = -\dot{c} \cdot 2, 2 \cdot 10^{-2} (\Gamma \ni B)^{4}. \tag{13}$$

Приведем амплитуды распадов $\mathcal{K} \to \mathcal{H}^{\dagger}\mathcal{H}^{-}$ и $\mathcal{K} \to \mathcal{H}^{\circ}\mathcal{H}^{\circ}$: $\mathcal{A}^{\frac{4}{2}}(\mathcal{K}^{\circ} \to \mathcal{H}^{\dagger}\mathcal{H}^{-}) = \mathcal{A}^{\frac{4}{2}}(\mathcal{K}^{\circ} \to \mathcal{H}^{\circ}\mathcal{H}^{\circ}) = \frac{G_{F}}{\sqrt{2}} \mathcal{N}_{I}^{*}C_{I}C_{3} \frac{4m_{4}g}{m_{2}^{*}} \mathcal{L}_{E\mathcal{H}\mathcal{H}}^{*}(m_{\chi})$ $\times \cos \delta_{\varepsilon}(m_{\chi}) \cdot e_{\chi} \rho i \delta_{\varepsilon}(m_{\chi}) \times$ $\times \langle \varepsilon | Q_{|\Delta I|} = \mathcal{Y}_{2} | \mathcal{K}^{\circ} \rangle = -i \cdot 3, 0 \cdot 10^{-7} \cdot e_{\chi} \rho (i \delta_{\mathcal{H}_{\chi}}) (\Gamma \ni \mathcal{B}),$

 $\overline{7}$

где $\delta_{1/2} = \delta_{\mathcal{E}}(\mathcal{M}_{\mathcal{K}}) = 61, 4^{\circ}$. Паримальные ширины распадов χ°_{*25} равны

$$\int (\mathcal{K}^{\circ} \rightarrow \mathcal{G}^{\dagger} \mathcal{G}^{-}) = 2 \int (\mathcal{K}^{\circ} \rightarrow \mathcal{G}^{\circ} \mathcal{G}^{\circ}) = 2,97 \cdot 10^{-15} \int \mathcal{B}.$$
(15)

Результаты расчета согласуются с экспериментальными данными/II/ (см. таблицу).

В стандартной параметризации фазы амплитуд распадов $K \to 2\pi$ параметризуют двумя фазами δ_o и δ_z /12/, которые обусловлены сильным $\mathcal{F}\mathcal{F}$ – взаимодействием в состояниях с I = 0 и I = 2 соответственно. Фазу $\mathcal{S}_{1/2}$ амплитуды $\mathcal{A}^{\frac{3}{2}}(\mathcal{K}^o \rightarrow 2\mathcal{F})$ надо сравнивать с фазой δ_{0} . Однако экспериментальные данные известны только для разности: $(\delta_{0} - \delta_{2})_{\partial ICI,I} = 56,5 \pm 3,0^{\circ/13/ж}$. Поэтому, имея в виду, что δ_{2} мала по сравнению с δ_{0} , можно сравнить $\delta_{1/2}$ с $(\delta_{0} - \delta_{2})$. Нетрудно видеть, что теоретическое значение $\delta_{1/2} = 61,4^{\circ}$ согласуется с экспериментальным.

4. Обсуждение

× /

(- · ·

Результаты расчета амилитуд распадов К - 25 подтверждают феноменологическое правило $|\Delta I| = I/2$: TROP.

Величина $(\int_{0} - \int_{2})_{3KCR} = 56,5 \pm 3,0^{\circ}$ извлечена из эксперименталь-ных данных по распадам $K \rightarrow 25$ /IЗ/.

Усиление переходов с $|\Delta I| = I/2$ обусловлено обменом скалярным мезоном & (700). Отличный от нуля вклад в матричный элемент перехода $\mathcal{K} \xrightarrow{\bullet} \mathcal{E}$ дают матричные элементы операторов $Q_{\mathcal{S}}$ и $Q_{\mathcal{E}}$. Доминантность Е -мезона при описании в КМКП низкоэнергетических сильных взаимодействий в распадах К-25 неудивительна. Учет скалярного мезона \mathcal{E} (700) в промежуточным состоянии играет важную роль и при описании в КМКП многих других распадов (например $\eta' \rightarrow \eta \, \overline{x} \, \overline{y}$ и $(n,n') \rightarrow 3 \mathcal{G}$), а также таких низкоэнергетических характеристик мезонов, как длины рассеяния и поляризуемости /3/.

Отметим, что низкоэнергетические матричные элементы четырехкварковых операторов, вичисленные в КМКП, не содержат новых свободных параметров. Для описания сильных низкоэнергетических взаимодействий в распадах $K \rightarrow 2 \mathcal{G}$ достаточно трех параметров КМКП: $m_{\mu} \approx m_{d} =$ = 0,28 ГэВ, M_л = 0,46 ГэВ и Л = 1,25 ГэВ. Единственным свободным параметром в наших расчетах является точка нормировки м. Её появление обусловлено учетом КХД - поправок / I/ при вычислении эффективного лагранжиана (I). Мы выбираем $\mathcal{A}_{\mathcal{F}}(\mathcal{M}) = I$, to ecte

 $\mu = 0.24 \Gamma B.$

В этом случае теоретическое значение отношения амплитуд переходов с $|\Delta I|$ = I/2 и $|\Delta I|$ = 3/2 лучше всего согласуется с экспериментальным . Абсолютные величины амплитуд распадов $\mathcal{K} \rightarrow 2 \mathscr{R}$ превышают наблюдаемые на 20-25 % . Это увеличение может быть обусловлено не только модельным вычислением низкоэнергетических матричных элементов операторов $\widetilde{\mathcal{Q}_k}$, но и КХД-взаимодействием, определяющим величину коэффициентов при операторах \widetilde{Q}_{k} . Численные значения коэффициентов зависят от КХД - параметров и масс тяжелых кварков /1/

Расчеты распадов $\mathcal{K} \to 2 \mathcal{H}$ с эффективным лагранжианом (I) бы-ли выполнены в работе $^{/6/}$. Для вычисления низкоэнергетических матричных элементов использован метод $\mathcal{N}_{c} \rightarrow \infty$, где \mathcal{N}_{c} -число "цветов". Чтобы усилить переходы с |AI| = I/2, авторы работы $\frac{6}{6}$ включили скалярный мезон Е (700). Отметим, что в их схеме расчета включение Е -мезона не является столь естественным, как в КМКП. Кроме того, в отличие от нашего рассмотрения, амплитуды распадов $\mathcal{K}^o \rightarrow 2 \mathcal{K}$, вычисленные в $^{/6/}$, содержат свободный параметр β' : 0,7 $\leq |\beta'| \leq$ I,3 (в ед.(ГъВ)³).

Мы благодарны за полезные обсуждения Герасимову С.Б., Говоркову А.Б. и Ефремову А.В.

9

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

 Экспериментальная физика высоких энергий Теоретическая физика высоких энергий Экспериментальная нейтронная физика Теоретическая физика низких энергий Математика Ядерная спектроскопия и радиохимия Физика тяжелых ионов Криогеника Ускорители Автоматизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	Индек	с Тематика
 Теоретическая физика высоких энергий Экспериментальная нейтронная физика Теоретическая физика низких энергий Математика Ядерная спектроскопия и радиохимия Физика тяжелых ионов Криогеника Ускорители Автоматизация обработки экспериментальных данных Автоматизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	1.	Экспериментальная физика высоких энергий
 Экспериментальная нейтронная физика Теоретическая физика низких энергий Математика Ядерная спектроскопия и радиохимия Физика тяжелых ионов Криогеника Ускорители Автоматизация обработки экспериментальных данных Автоматизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	2.	Теоретическая физика высоких энергий
 4. Теоретическая физика низких энергий 5. Математика 6. Ядерная спектроскопия и радиохимия 7. Физика тяжелых ионов 8. Криогеника 9. Ускорители 10. Автоматизация обработки экспериментальных данных 11. Вычислительная математика и техника 12. Химия 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	3.	Экспериментальная нейтронная физика
 5. Математика 6. Ядерная спектроскопия и радиохимия 7. Физика тяжелых ионов 8. Криогеника 9. Ускорители 10. Автоматизация обработки экспериментальных данных 11. Вычислительная математика и техника 12. Химия 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	4.	Теоретическая физика низких энергий
 Ядерная спектроскопия и радиохимия Физика тяжелых ионов Криогеника Ускорители Автоматизация обработки экспериментальных данных Автоматизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	5.	Математика
 Физика тяжелых ионов Криогеника Ускорители Автонатизация обработки экспериментальных данных Автонатизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	6.	Ядерная спектроскопия и радиохимия
 Криогеника Ускорители Автоматизация обработки экспериментальных данных Автоматизация обработки экспериментальных данных Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	7.	Физика тяжелых ионов
 9. Ускорители 10. Автоматизация обработки экспериментальных данных 11. Вычислительная математика и техника 12. Химия 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	8.	Криогеника
 Автоматизация обработки экспериментальных данных Вычислительная математика и техника Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	9.	Ускорители
 Вычислительная математика и техника Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	10.	Автоматизация обработки экспериментальных
 Химия Техника физического эксперимента Исследования твердых тел и жидкостей ядерными методами Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	11.	Вычислительная математика и техника
 13. Техника физического эксперимента 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	12.	Химия
 14. Исследования твердых тел и жидкостей ядерными методами 15. Экспериментальная физика ядерных реакций при низких энергиях 16. Дозиметрия и физика защиты 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	13.	Техника физического эксперимента
 Экспериментальная физика ядерных реакций при низких энергиях Дозиметрия и физика защиты Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	14.	Исследования твердых тел и жидкостей ядерными методами
 Дозиметрия и физика защиты Теория конденсированного состояния Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	15.	Экспериментальная физика ядерных реакций при низких энергиях
 17. Теория конденсированного состояния 18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники 	16.	Дозиметрия и физика защиты
18. Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	17.	Теория конденсированного состояния
	18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки и техники

19. Биофизика

ŀ ..

Волков М.К., Иванов А.Н., Троицкая Н.И. Распады К → 2п в киральной модели кварковых петель

Рассмотрены нелептонные распады К + 2п: К⁺ + $\pi^+\pi^0$, К⁰ + $\pi^+\pi^-$ и К⁰ + $\pi^0\pi^0$. Для описания слабых взаимодействий использован эффективный лагранжиан, полученный в стандартной модели Кобаяши - Маскавы с учетом КХД-поправок. Эффективный лагранжиан слабых взаимодействий имеет вид линейной комбинации четырехкварковых операторов, удовлетворяющих правилам отбора: $|\Delta S| = 1, |\Delta I| = 1/2$ и $|\Delta I| = 3/2$, где S - странность, а I - изоспин. Низкоэнергетические матричные элементы четырехкварковых операторов вычислены в рамках киральной модели кварковых петель /КМКП/. Амплитуды переходов $|\Delta 1| = 3/2$ определены в КМКП только контактными кварковыми диаграммами. Амплитуды переходов $|\Delta 1| = 1/2$ описываются как контактными, так и полюсными диаграммами. Усиление переходов $|\Delta 1| = 1/2$ по отношению к переходам $|\Delta 1| = 3/2$ происходит за счет вклада полисных диаграмм с обменом скалярным мезоном ϵ (700): $\Gamma(K^+ + \pi^+\pi^0)_{TeOP}$: $\Gamma(K^0 + \pi^+\pi^-)_{TEOP} = 1:165$ при $\Gamma(K^+ + \pi^+\pi^0)_{3KC\Pi} = \Gamma(K^0 + \pi^+\pi^-)_{3KC\Pi} = 1:224$.

Работа выполнена в Лаборатории теоретической физики ОНЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод 0.С.Виноградовой

Volkov M.K., Ivanov A.N., Troitskaya N.I. Decay K $\rightarrow 2\pi$ in the Chiral Quark Loop Model P2-86-143

P2-86-143

Nonleptonic decays $K + 2\pi(K^+ + \pi^+\pi^0, K^0 + \pi^+\pi^-, K^0 + \pi^0\pi^0)$ are considered. For describing weak interaction the effective Lagrangian has been obtained in the standard Kobayashi - Masakwa model with the account of QCD-corrections. The weak interaction effective Lagrangian takes the form of linear superposition of four-quark operators satisfying the selection rules: $|\Delta S| = 1$, $|\Delta I| = 1/2$ and $|\Delta I| = 3/2$ where S is a strangeness and I is an isospin.Four-quark operator low-energy matrix elements are calculated in the chiral quark-loop model (the CQL-model). The $|\Delta I| = 3/2$ transition amplitudes are defined by quark contact diagrams only. The $|\Delta I| = 1/2$ transitions is due to the ϵ (700) scalar meson exchange: $\Gamma(K^0 + \pi^+\pi^0)_{th} = 1:224$.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986