1-844

1214/2-75

......

В.К.Лукьянов, А.И.Титов

О МЕХАНИЗМЕ ФРАГМЕНТАЦИИ РЕЛЯТИВИСТСКИХ ТЯЖЕЛЫХ ИОНОВ

P2 - 8528

P2 - 8528

В.К.Лукьянов, А.И.Титов

О МЕХАНИЗМЕ ФРАГМЕНТАЦИИ РЕЛЯТИВИСТСКИХ ТЯЖЕЛЫХ ИОНОВ

Направлено в Physics Letters

Объздаленный институт Керрилх гестеровант БИБЛИСТЕКА

Лукьянов В.К., Титов А.И.	P2 -	8528			
О механизме фрагментации релятивистских тяжелых ионов Предложена модель, объясняющая основные закономерности поведения сечения фрагментации релятивистских тяжелых ионов, включая их относительные выходы. Продемонстрирована аналогия этого процесса с соответствующими реакциями нерелятивистских ионов. Препринт Объединенного института ядерных исследований Дубна 1975					
			Lukyanov V.K., Titov A.I.	P2	- 8528
			On the Fragmentation Mechanism of Relativistic Heavy Ions		
Heavy Ions					
Heavy Ions A model is suggested which explains t rities of the behaviour of the fragmentati of relativistic heavy ions including their The analogy of this process with the corre tions of nonrelativistic ions is shown.	he main on cross relativ sponding	regula- s section ve yields. g reac-			
Heavy Ions A model is suggested which explains t rities of the behaviour of the fragmentati of relativistic heavy ions including their The analogy of this process with the corre tions of nonrelativistic ions is shown.	he main on cross relativ sponding	regula- s section ve yields g reac-			

В данной работе сделана попытка проанализировать эксперименты Хекмана и др. /1/ по фрагментации релятивистских ионов кислорода / Е = 2,1 ГэВ/нуклон/ на бериллиевой мишени ¹⁶ О+Ве → ^АС+Х, в которых измерялись спектры изотопов углерода с A = 9 ÷ 15. В условиях данных экспериментов оказалось, что средние скорости ионов пучка и регистрируемых фрагментов АС совпадают, а распределения каждого из фрагментов по импульсам р₁₁ и Ра в системе пучка одинаковы и имеют ширину, характерную для внутриядерных импульсов ~140 МэВ/с. Первое означает, что подхват частиц из мишени подавлен и фрагментирует собственно падающий нон, а второе - что в данной реакции существенную роль играет механизм статистического испускания фрагментов. Все это позволяет рассмотреть следующую модель реакции. Процесс фрагментации идет в две стадии. На первой релятивистский ион возбуждается в результате периферического столкновения с ядром - мишенью /он может также отдать часть нуклонов/ и продолжает двигаться со скоростью, близкой к первоначальной. Соответствующую вероятность обозначим W_{ic}. На второй стадии ион распадается на лету, испуская с вероятностью W_{cf} соответствующие фрагменты. Тогда полная вероятность всего процесса факторизуется в виле

$$W = W_{ic} \cdot W_{cf}$$
 . $/1/$

Теперь очевидно, что в системе покоя иона спектры по $p_{||}$ и p_{\perp} для каждого из фрагментов должны совпадать. Заметим, что в /1/ наблюдалась факторизация сечения с выделением множителя M^{γ} , где М - масса ядра -мишени, а $\gamma = 0,256$ определена из эксперимента. В данной

модели, учитывая периферийный характер взаимодействия иона с ядром, можно считать, что качественно сечение будет пропорционально раднусу ядра-мишени R, то есть $\gamma = 1/3$. Однако истинный характер зависимости можно выявить только на основе более детального рассмотрения механизма реакции на первой стадии. Пока же примем для соответствующей вероятности W_{ic} наиболее простую параметризацию вида

$$W_{ic} = e^{-q^2/2\kappa^2}$$
, /2/

где q - переданный импульс, а κ - параметр модели. В принципе, вместо /2/ можно использовать и другую функцию δ -образного вида, однако это не изменит качественно конечный результат. $W_{\rm ef}$ запишем согласно статистической теории распада

$$W_{cf} d\epsilon \sim \frac{\rho_{f} (E^{*} - \epsilon + Q_{gg})}{\rho_{c} (E^{*})} \epsilon d\epsilon. \qquad /3/$$

Здесь ϵ - энергия относительного движения фрагментов, $Q_{gg} = M({}^{16}O) - M({}^{A}C) - M$ - энергия перестройки ${}^{16}O$ при фрагментации, M_r - масса остальных продуктов распада. Для качественного анализа эксперимента в функции плотности состояний $\rho_f = e^{S_f}$ удобно представить энтропию $S_f(E^* - \epsilon + Q_{gg})$ в виде ряда ($\epsilon - Q_{gg}$)/ E^* , ограничиваясь при этом линейным членом ${}^{/2}$. Тогда

$$W_{ef} d\epsilon - e^{-\frac{\epsilon}{T}} e^{-\frac{2gg}{T}} \epsilon d\epsilon, \qquad /4/$$

где $T = dE^*/dS$ - температура, характеризующая энергию возбуждения распадающегося иона $E^*=aT^2/2$. Заметим, что в рассматриваемых процессах распад может быть и неравновесным - тогда вместо /4/ надо брать другое выражение ^{/3/}. Но это также не повлияет качественно на конечный результат, лишь температура приобретет смысл эффективного параметра. Подставляя /2/ и /4/ в /1/ и проводя там интегрирование по импульсу нерегистрируемых частиц с учетом законов сохранения, получим

$$W \sim e^{\frac{Q_{gg}}{T}} e^{-\frac{p^2}{2\sigma^2}} A(p, U_B),$$
 /5/

где р - импульс фрагмента ^АС в системе пучка,

$$\sigma^{2} = \mu T + \kappa^{2} \left(\frac{M(^{A}C)}{M(^{1}6)}\right)^{2}; \quad \mu = \frac{M(^{A}C)M_{r}}{M(^{1}6)}, \quad /6/$$

а функция $A(p, U_B)$ слабо меняется с р и при p=0 зависит от кулоновского барьера U_B системы /фрагмент + остальные продукты распада/ явным образом:

$$A(0, U_{\rm B}) = e^{-\mu U_{\rm B}(\frac{1}{\mu T} + \frac{1}{\kappa^2} (\frac{M(100)}{M(A_{\rm C})})^2)} . /7/$$

Обсудим основные качественные выводы, следующие из данной модели.

1. Из /5/ видно, что относительные выходы фрагментов должны экспоненциально падать с ростом $-Q_{gg}$.Проверим, выполняется ли это на эксперименте, для чего представим данные работы $^{/1/}$ в требуемом виде. При этом среди возможных каналов фрагментации с выходом данного изотопа каждый раз естественно выбирать тот, который дает минимальное значение $-Q_{gg}$.Таковыми оказались

⁹C:
$${}^{16}O \rightarrow {}^{9}C + {}^{6}He + n; Q_{gg} = -55 M \ni B.$$

¹⁰C: ${}^{16}O \rightarrow {}^{10}C + {}^{4}He + 2n; Q_{gg} = -39, O M \ni B.$
¹¹C: ${}^{16}O \rightarrow {}^{11}C + {}^{4}He + n; Q_{gg} = -24, 9 M \ni B.$
¹²C: ${}^{16}O \rightarrow {}^{12}C + {}^{4}He; Q_{gg}^{gg} = -6, 9 M \ni B.$
¹³C: ${}^{16}O \rightarrow {}^{13}C + {}^{3}He; Q_{gg}^{gg} = -22, 7 M \ni B.$
¹⁴C: ${}^{16}O \rightarrow {}^{14}C + 2p; Q_{gg}^{gg} = -21, 1 M \ni B.$

Для [°]С здесь бралась масса зеркального ядра с учетом кулоновской поправки.

4

Результаты расчета представлены на рис. 1. Видно. что поведение относительных выходов с ростом (-0) носит четко выраженный экспоненциальный характёр. Небольшие отклонения вызваны пренебрежением в /4/ высшими порядками по $(\epsilon - Q_{gg})/E^*$, а также тем, что вероятность реакции на первой стадии считается одинаковой для всех каналов, хотя в /2/ должен присутствовать, вообще говоря, дополнительный множитель - ширина канала $\Theta^2 \neq 1$. Влияние Θ^2 сказывается, например. на выходе изотопа ¹⁵С, который ослаблен по сравнению со значением, предписываемым формулой/5/, примерно на два порядка. В данном случае это вызвано сравнительной малостью сечения перезарядки п -мезона - процесса на первой стадии, который приводит к образованию ¹⁶ N*. распадающегося затем в канал ¹⁵С + р $/Q_{gg} \simeq -21,1 M \Im B/.$

Рис. 1. Относительный выход фрагментов углерода в зависимости от Q_{ии} реакции.

Рис. 2. Выход изотопов в реакции 232 Th $+ ^{22}$ Ne в за-висимости от Q_{gg} . График взят из работы $^{/4/}$.

2. Весьма любопытно, что экспоненциальная зависимость выходов изотопов от $(-Q_{gg})$ наблюдалась ранее в реакциях с нерелятивистскими ионами ^{/4/} /см. рис. 2, взятый из ^{/4/} /. Это говорит о том, что механизмы обеих реакций имеют глубокую аналогию. Сопоставление рассматриваемого здесь и предложенного для описания нерелятивистских реакций механизма ^{/2-4/} показывает, что в первом случае "излучателем" фрагментов является движущийся возбужденный ион, а во втором - образующаяся в ходе реакции двойная ядерная система /тяжелый ион + ядро/, которая распадается после наступления частичного равновесия.

3. Тот факт, что в нашем случае выделенными оказываются каналы /8/, позволяет предсказывать появление

7

среди продуктов реакции легких фрагментов ⁴ Не и ³ Не, которые сопутствуют тяжелым ^AC. Они распределены с вероятностями, соответствующими выходам тяжелых фрагментов, и имеют среднюю скорость, равную скорости пучка. Более интересной для проверки данной модели была бы постановка опытов на совпадение легких и тяжелых фрагментов в сочетаниях, соответствующих каналам /8/.

4. Из /6/ видно, что ширина спектров импульсного распределения фрагментов зависит от температуры Т распадающегося иона. Поскольку, однако, их атомные веса в соответствии с /8/ оказываются близкими друг к другу, то им можно приписать и одинаковые Т. Кроме того, сами ошибки эксперимента здесь таковы, что Т можно задавать с 20%-ной точностью /это видно, например, из рис. 3/. В результате в данной реакции спектры

Рис. 3. Импульсное распределение фрагментов ¹⁴С. Параметр к принят равным 125 МэВ/с.

всех фрагментов оказываются близкими к "универсальному", что и наблюдается на опыте $^{/1/}$. Так, для одинаковых κ^2 и Т возможные изменения ширины за счет массовых множителей в /6/ составляют ~ 20% и лежат в пределах экспериментальных ошибок. Само значение Т определяется как по наклону кривой выхода на рис. 1, так и по ширине. Т оказывается здесь равной Т ~ 7 *МэВ*, что превышает величины Т~ 2 *МэВ* в экспериментах с нерелятивистскими ионами $^{/4/}$. Вызвано это тем, что в нашем случае "разогретым" является довольно легкое ядро с $A \sim 16$.

5. И последнее. Энергия возбуждения распадающегося иона в соответствии с полученным значением Т равна ~50 МэВ. В связи с этим представляет интерес исследовать механизм передачи ядру такого большого возбуждения в результате столкновения. Второй, открытый пока вопрос - это структура ядер при таких больших энергиях, в частности, их сильная кластеризация.

В заключение авторы благодарят В.Д.Тонеева за полезные критические замечания.

Литература

- I. H.H.Heckman et al. Proc. Fifth Int. Conf. on High Energy. Phys. Nucl. Struct. in Uppsala, 1974.
- 2. J.D.Bondorf, F.Dickmann, D.H.E.Gross, P.J.Siemens. Journ. de Phys., C6, suppl. No. II-I2, 32, 145 (1971).
- 3. К.К.Гудима, А.С.Ильинов, В.Д.Тонеев. Преприн ОИЯИ, Р7-7915, Дубна, 1974.

4. A.G.Artukh et al. Nucl. Phys., A168, 321 (1971);

. V.V.Volkov. Proc. Int. Conf. on Nucl. Phys., b. II, Munich, 1973.

Рукопись поступила в издательский отдел 17 января 1975 года.