

P2-84-646

П.С.Исаев, А.А.Осипов

ПАРАМЕТРЫ НАКЛОНА Т - СИСТЕМЫ

В работах/1,2/ были получены выражения для амплитуд низкоэнергетического ЛЛ-и ЛК - рассеяния в сделаны оценки соответствующих длин рассеяния Q_e^I . Здесь мы используем эти амплитуды для вычисления других низкоэнергетических характеристик мезонов - параметров наклона в. В отличие от длин рассеяния, параметры наклона являются коэффициентами при следующей степени Q² в разложении парциальных амплитуд f. :

$$f_{e}^{I} = (m_{1} + m_{2}) Q^{2e} [\alpha_{e}^{I} + \beta_{e}^{I} Q^{2} + \dots],$$

где m_1 в m_2 – масси рассматриваемых мезонов; $Q^2 = \frac{1}{2}(S-S_1)(1-S_0/S)$, $S = (P_1 + P_2)^2$, $S_0 = (m_1 + m_2)^2$, $S_1 = (m_1 - m_2)^2$. В системе центра масс $Q^2 = \vec{p}^2$, где \vec{p} –импульс налетающих частиц.

Амплитуда $\mathcal{T}\mathcal{T}$ -рассеяния $\mathcal{H}(s, t, u)$ имеет вид

$$\begin{aligned} \mathcal{R}(s,t,u) &= -\frac{m_{\pi}^{2}}{2F_{\pi}^{2}} + 4g^{2} \left[\frac{(2m\cos d)^{2}}{m_{e}^{2}(m_{e}^{2}-s)} + \frac{(2m\sin d)^{2}}{m_{s}^{2}(m_{s+}^{2}-s)} + \frac{1 - (m/4\pi F_{\pi})^{2}}{(2\pi F_{\pi})^{2}} \right]_{S}^{S} + \\ &+ g^{2} \left\{ \frac{S - u}{m_{p}^{2} - t} \left(1 + \frac{t - m_{p}^{2}}{8\pi^{2} F_{\pi}^{2}} \right)^{2} + \frac{S - t}{m_{p}^{2} - u} \left(1 + \frac{u - m_{p}^{2}}{8\pi^{2} F_{\pi}^{2}} \right)^{2} \right\}. \end{aligned}$$

Она получена в кварковой модели сверхпроводящего типа/3/.Постоянний член и выражение в квадратных скобках появляются в результате учета вкладов четырехугольной кварковой диаграммы и диаграмм с промежуточными скалярными Е (700)- и S*(975)-мезонами. Выражение в фигурных скобках является вкладом диаграмм с промежуточным $\mathcal{P}(770)$ мезоном. В рассматриваемой модели масса кварка / =280 МэВ. Константа связя $g = m/F_{\pi}$ ($F_{\pi} = 93,3$ МэВ). Угол смешивания $\propto =17^{\circ}$, а $g_{\mu}^{2}/4\pi = 3$. Парциальные амплитуды f_{μ}^{I} определяем по формуле

$$f_{e}^{I} = \frac{1}{32\pi} \int_{e}^{f} P_{e}(x) f_{e}^{I}(x) dx , \qquad (3)$$

где $P_{\mathcal{C}}(X)$ – полиномы Лежандра, а $\mathcal{R} = Cos \Theta$ (Θ – угол рассеяния ме-зонов в с.ц.м.). Амплитуды \mathcal{A}^{I} , отвечающие каналам с изоспином I , определяются следующими простыми соотношениями

$$\mathcal{A}^{o} = \mathcal{J}\mathcal{A}(s,t,u) + \mathcal{K}(t,s,u) + \mathcal{A}(u,t,s),$$

$$\mathcal{A}^{1} = \mathcal{A}(t,s,u) - \mathcal{A}(u,t,s),$$

$$\mathcal{A}^{2} = \mathcal{A}(t,s,u) + \mathcal{A}(u,t,s).$$

HAR CONTROLERA

(4)

(I)

В результате получаем следующие выражения для параметров наклона:

 $m_{x}^{3} \beta_{0}^{0} = \frac{g^{2}}{4\pi} \left\{ \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left[1 - \left(\frac{m}{4\pi F_{x}} \right)^{2} \right] + g \left(\frac{m_{m}}{m_{E}^{2}} \cos d \right)^{2} \left[\frac{3}{\left(1 - \frac{4m_{x}^{2}}{m_{E}^{2}} \right)^{2}} - 1 \right] + \frac{g^{2}}{2} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{2} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{\pi F_{x}} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{\pi F_{x}} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{\pi F_{x}} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left(\frac{1}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{\pi F_{x}} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left(\frac{1}{\pi F_{x}} \right)^{2} \left[\frac{1}{\pi F_{x}} \right]^{2} + \frac{g^{2}}{\pi F_{x}} \left(\frac{m_{x}}{\pi F_{x}} \right)^{2} \left(\frac{1}{\pi F_{x$ $+ 8 \left(\frac{m_{\pi_x}}{m_{s^*}^2} \operatorname{sind} \right)^2 \left[\frac{3}{\left(1 - \frac{4m_{\pi_x}^2}{m_{\pi_x}^2}\right)^2} - 1 \right] \right\} + \frac{3 \beta_{\rho}^2}{4 \pi} \left(\frac{m_{\pi_p}}{m_{\rho}} \right)^2 \left[\left(1 - \frac{m_{\rho}^2}{8 \pi^2 F_x^2} \right)^2 - \frac{4m_{\pi_x}^2}{3m_{\rho}^2} \left(1 - \frac{m_{\rho}^4}{(8 \pi^2 F_x^2)^2} \right) \right],$ $m_{\pi}^{3} \beta_{0}^{2} = -\frac{g^{2}}{2\pi} \left[\left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(1 - \frac{m^{2}}{46\pi^{2} F_{c}^{2}} \right) + \left(\frac{2mm_{\pi}}{m_{c}^{2}} \cos d \right)^{2} + \left(\frac{2mm_{\pi}}{m_{s}^{2}} \sin d \right)^{2} \right] - \frac{1}{2\pi} \left[\frac{m_{\pi}}{m_{s}^{2}} \sin d \right]^{2} = -\frac{1}{2\pi} \left[\frac{m_{\pi}}{2\pi F_{c}} \right]^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} + \frac{1}{2\pi} \left[\frac{m_{\pi}}{2\pi F_{c}} \right]^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} + \frac{1}{2\pi} \left[\frac{m_{\pi}}{2\pi F_{c}} \right]^{2} \left(\frac{m_{\pi}}{2\pi F_{c}} \right)^{2} \left(\frac{m_{\pi}}$ $-\frac{3g_{p}^{2}}{8\pi}\left(\frac{m_{\pi}}{m_{\rho}}\right)^{2}\left[\left(1-\frac{m_{\rho}^{2}}{8\pi^{2}F_{\pi}^{2}}\right)^{2}-\frac{4m_{\pi}^{2}}{3m_{\rho}^{2}}\left(1-\frac{m_{\rho}^{4}}{(8\pi^{2}F_{\pi}^{2})^{2}}\right)\right]$ $m_{\pi}^{5} B_{1}^{1} = -\frac{g_{g}^{2}}{g_{\pi}} \left[\left(\frac{m m_{\pi}^{2}}{m_{\pi}^{3}} \operatorname{COSd} \right)^{2} + \left(\frac{m m_{\pi}^{2}}{m_{\pi}^{3}} \operatorname{Sind} \right)^{2} \right] + \frac{g_{p}^{2}}{g_{\pi}} \left\{ \left(\frac{2m_{\pi}^{2}}{m_{\pi}^{2} - 4m_{\pi}^{2}} \right)^{2} \right\}$ $\times \left[\left(1 - \frac{m_{\rho}^{2} - 4m_{\pi}^{2}}{8\pi^{2} F_{\pi}^{2}} \right)^{2} - \frac{1}{3} \right] + \left(\frac{m_{\pi}}{\pi F_{\pi}} \right)^{2} \left(\frac{m_{\pi}^{2}}{m_{\rho}^{2} - 4m_{\pi}^{2}} - \frac{m_{\pi}^{2}}{8\pi^{2} F_{\pi}^{2}} \right) + \frac{4}{3} \left(\frac{m_{\pi}}{m_{\rho}} \right)^{4} \left(1 - \frac{4m_{\pi}^{2}}{m_{\rho}^{2}} \right) \right\}$ $m_{x}^{2} \beta_{2}^{0} = \frac{gg^{2}}{5\pi} \left[\left(\frac{4mm_{x}^{3}}{m_{y}^{4}} \cos \alpha \right)^{2} + \left(\frac{4mm_{x}^{3}}{m_{y}^{4}} \sin \alpha \right)^{2} \right] + \frac{gg^{2}}{15\pi} \left(\frac{m_{x}}{m_{y}} \right)^{6} \left[1 + \frac{27}{4} \left(1 + \frac{4m_{x}^{2}}{m_{y}^{2}} \right) \right]$ $m_{x}^{2} \theta_{2}^{2} = \frac{(12g)^{2}}{5\pi} \left[\left(\frac{m m_{x}^{3}}{m_{y}^{4}} \cos d \right)^{2} + \left(\frac{m m_{x}^{3}}{m_{y}^{4}} \sin d \right)^{2} \right] - \frac{4g^{2}}{15\pi} \left(\frac{m x}{m_{p}} \right)^{6} \left[1 + \frac{27}{4} \left(1 + \frac{4m_{x}^{2}}{m_{p}^{2}} \right) \right]$ (5)

$$m_{x}^{9} \mathcal{B}_{3}^{1} = -\frac{32}{35\pi} \left\{ 4g^{2} \left[\left(\frac{m m_{x}^{4}}{m_{z}^{5}} \cos d \right)^{2} + \left(\frac{m m_{x}^{4}}{m_{s}^{5}} \sin d \right)^{2} \right] + g_{\rho}^{2} \left(\frac{m_{x}}{m_{\rho}} \right)^{10} \right\}.$$

Численные оценки, сделанные по этим формулам, приведены в таблице I.

Поскольку величина масси \mathcal{E} (700)-мезона известна неточно, ми при расчетах используем два различных значения: $\mathcal{M}_{\mathcal{E}} = 700$ МэВ и $\mathcal{M}_{\mathcal{E}} = 750$ МэВ. К таким изменениям массы \mathcal{E} -мезона наиболее чувствителен параметр наклона \mathcal{B}_2^2 . Здесь, как и в случае длины рассея-

	$m_{\epsilon} = 700 \text{ MaB}$	m_{ϵ} = 750 MaB	Эксперимент/4/
mao	0,29	0,26	0,26 ± 0,05
mas	-0,024	-0,024	-0,028 <u>+</u> 0,012
m3 8°	0,26	0,23	0,25 ± 0,03
$m_{x}^{3} B_{0}^{2}$	-0,II	-0,10	-0,082± 0,008
$m_x^3 a_1^1$	0,039	0,037	0,038± 0,002
m 5 81	9,1.10-4	14,9.10-4	
ms Q2	6,6.10-4	5,5.10-4	(17 <u>+</u> 3)·10 ⁻⁴
m5 a2	1,8.10-4	0,7.10-4	(I,3 <u>+</u> 3)·10 ⁻⁴
$m^{7} B_{2}^{o}$	2,5.10-3	2,2.10 ⁻³	
$n_{\pm}^{\pm} B_{2}^{2}$	-2.10-4	-5.10-4	
$n_{\pm}^{\mp} a_{3}^{\dagger}$	0,2.10-4	0,2.10-4	(0,6±0,2).10 ⁻⁴
mª 81	-0,4.10 ⁻⁵	-0,2.10 ⁻⁵	
~ _			

Таблипа I

ния $\Omega_{\mathcal{L}}^2$, происходит сильная компенсация вкладов скалярных мезонов, с одной стороны, и векторного \mathcal{N} (770)-мезона, с другой. Для полноты в таблице I указаны и величины длин рассеяния $\Omega_{\mathcal{L}}^{I}$.

Теперь аналогичные расчеты сделаем для амплитуды упругого ЛКрассеяния, которая была получена в работе^{/2/}. В этом случае выражения для параметров наклона громоздки, поэтому мы приведем только их численные значения.

В таблице 2 последовательно указаны вклады в низкоэнергетические параметры четырехугольных кварковых диаграмм и диаграмм типа деревьев с промежуточными скалярными $\mathcal{E}^{-}(700)$, $S^{*}(975)$, $\widetilde{\mathcal{K}}(1350)$ и векторными $\mathcal{K}^{*}(892)$ - и $\mathcal{P}(770)$ -мезонами.

Можно сделать следующие выводы. Амплитуда (2) нозволяет в полном согласни с имеющимися экспериментальными данными описать длики рассеяния и параметры наклона $\mathcal{K}\mathcal{K}$ -системы. Несколько заниженине значения инэксэнергетических параметров для \mathcal{L} - и f- воли возрастут, если учесть вклади других мезонных ионетов, например, здесь является существенным вклад тензорного f (1270)-мезона. Получениме данные для инэксэнергетических параметров \mathcal{K} -системы качественно

3

верно воспроизводят экспериментальную ситуацию. Для более точных оценок необходимо последовательно учитывать эффекты нарушения SU(3)симметрии при вычислении кварковых петлевых диаграмм.

	Четырех- угольная диаграмма	Скалярные мезоны	Векторные мезоны	Сумма	Эксперимент ^{/5/}
$m_{x} Q_{0}^{1/2}$ $m_{x} Q_{0}^{3/2}$ $m_{x}^{3} \mathcal{E}_{0}^{3/2}$ $m_{x}^{3} \mathcal{E}_{0}^{3/2}$ $m_{x}^{3} \mathcal{E}_{0}^{3/2}$ $m_{x}^{3} Q_{1}^{3/2}$ $m_{x}^{3} Q_{1}^{3/2}$ $m_{x}^{3} Q_{1}^{3/2}$	-0,22 -0,40 +0,076 -0,051 0,009 -	0,35 0,35 3,2·10 ⁻⁴ -6,0·10 ⁻³ 1,8.10 ⁻³ 1,6·10 ⁻³	-0,02 -0,01 -1,8·10 ⁻³ -3,1·10 ⁻³ 8,2·10 ⁻³ -2,5·10 ⁻⁴	0,II -0,06 0,075 -0,06 0,019 I,3.10 ⁻³	0, I3 <u>+</u> 0, 09 -0, I3 <u>+</u> 0, 03 0, 0I8
$m_{\pi}^{5} \delta_{1}^{42}$ $m_{\pi}^{5} \delta_{2}^{42}$ $m_{\pi}^{5} \delta_{2}^{42}$ $m_{\pi}^{7} \delta_{2}^{42}$ $m_{\pi}^{7} \delta_{2}^{42}$ $m_{\pi}^{7} \delta_{2}^{42}$	-	-3,4·10 ⁻⁴ -2,7·10 ⁻⁴ 5,4·10 ⁻⁵ 6,2·10 ⁻⁵ 3,0·10 ⁻⁴ 3,0·10 ⁻⁴	+3,9·10 ⁻³ -2,4·10 ⁻⁴ 1,7·10 ⁻⁴ -1,5·10 ⁻⁴ 5,2·10 ⁻⁴ -2,5·10 ⁻⁴	3,6·10 ⁻³ -0,5·10 ⁻³ 2,2·10 ⁻⁴ -0,9·10 ⁻⁴ 8,2·10 ⁻⁴ 5,0·10 ⁻⁵	

Tadama 2

. Литература

I. Волков М.К., Осипов А.А. ЯФ, 1984, 39, с.694.

2. Волков М.К., Осипов А.А. ОИНИ, Р2-83-490, Дубиа, 1983.

3. Волков М.К., Эберт Д. ЯФ, 1982, 36, с.1265;

Z.Phys.C., 1983, 16, p. 205.

4. Dumbrajs 0. et al. Nucl. Phys., 1983, 216B, p. 277.

5. Karabarbounis A., Shaw G. Journal Phys., 1980, 6G. p. 583.

Рукопись поступила в издательский отдел

2I сентября 1984 года.

Исаев П.С., Осипов А.А. Параметры наклона пл -системы P2-84-646

В кварковой модели сверхпроводящего типа вычислены параметры наклона $\pi\pi$ -системы: $\mathbf{m}^{3}\mathbf{b}_{0}^{0} = 0,23$, $\mathbf{m}^{3}\mathbf{b}_{2}^{2} = -0,10$, $\mathbf{m}^{5}\mathbf{b}_{1}^{1} = 1,5\cdot10^{-3}$, $\mathbf{m}^{7}_{\pi}\mathbf{b}_{2}^{0} = 2,2\,10^{-3}\pi$, $\mathbf{m}^{7}_{\pi}\mathbf{b}_{2}^{2} = -5\,10^{-4}$, $\mathbf{m}^{9}_{\pi}\mathbf{b}_{1}^{3} = \pi^{-1}$ = -0.2.10-5. Аналогичные расчеты сделаны для случая «К -системы. Амплитуды процессов получены в результате учета четырех-УГОЛЬНЫХ КВАРКОВЫХ ДИАГРАММ И ДИАГРАММ ТИПА ДЕРЕВЬЕВ С ПРОМЕжуточными скалярными $\epsilon/700/$, S*/975/, $\vec{K}/1350/$ и векторными р /770/, К* /892/-мезонами.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Isaev P.S., Osipov A.A. Slope Parameters of nn -System P2-84-646

The $m_{\pi}^{3}b_{0}^{0} = 0.23$, $m_{\pi}^{3}b_{0}^{2} = -0.10$, $m_{\pi}^{5}b_{1}^{1} = 1.5 \cdot 10^{-3}$, $m_{\pi}^{7}b_{2}^{0} = 2.2 \cdot 10^{-3}$, $m_{\pi}^{7}b_{2}^{2} = -5 \cdot 10^{-4}$, $m_{\pi}^{9}b_{3}^{1} = -0.2 \cdot 10^{-5}$ slope parameters of the $\pi\pi$ -system are calculated in the framework of the superconductor-type quark model. The same calculations are made for the πK -system. The amplitudes are obtained by using the box quark diagrams and tree diagrams with the intermediate scalar ϵ /700/, S* /975/, \tilde{K} /1350/-mesons and vector ρ /770/, K* /892/-mesons.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research, Dubna 1984